Generalized linear latent and mixed modeling (GLLAMM)

Sophia Rabe-Hesketh Institute of Psychiatry, London

joint work with

Anders Skrondal

Norwegian Institute of Public Health, Oslo

and

Andrew Pickles
The University of Manchester

UCLA, March 2003

Outline

- \bullet Structure of GLLAMM models and gllamm syntax
 - Response model: Generalized linear model conditional on latent variables
 - * Linear predictor: latent variables as factors or random coefficients
 - * Links and distributions
 - Structural model:
 - * Regressions of latent variables on observed variables
 - * Regressions of latent variables on other latent variables
 - Distribution of the latent variables (disturbances)
 - * Multivariate normal
 - * Discrete
- Application: Cluster randomized study of sex education in Norwegian schools

Slide 2

Slide 1

Linear Predictor in GLLAMM

 $\nu = \mathbf{x}'\boldsymbol{\beta} + \sum_{l=2}^{L} \sum_{m=1}^{M_l} \eta_m^{(l)} \mathbf{z}_m^{(l)\prime} \boldsymbol{\lambda}_m^{(l)} \quad \text{for identification, } \boldsymbol{\lambda}_{m1}^{(l)} = 1$

- ullet Fixed part: $\mathbf{x}'oldsymbol{eta}$ as usual
- Random part: Slide 3
 - $\eta_m^{(l)}$ is mth latent variable at level l, $m=1,\cdots,M_l$, $l=2,\cdots,L$
 - $-\eta_m^{(l)}$ can be a factor or a random coefficient
 - $-\mathbf{z}_{m}^{(l)}$ are variables and $oldsymbol{\lambda}_{m}^{(l)}$ are parameters
 - Unless regressions for the latent variables are specified, latent variables at different levels are independent whereas latent variables at the same level may be dependent.

Random coefficient models in GLLAMM

• One covariate multiplies each latent variable,

$$\eta_m^{(l)} z_m^{(l)} \quad (\lambda_m^{(l)} = 1)$$

 \bullet e.g. Latent growth curve model for individuals j (level 2) observed at times t_{ij} , $i = 1, \dots, n_j$ (level 1)

$$\nu_{ij} = \beta_1 + \beta_2 t_{ij} + \eta_{1j}^{(2)} + \eta_{2j}^{(2)} t_{ij}$$

mean intercept and slope β_1 , β_2 :

 $\eta_{1j}^{(2)}$, $\eta_{2j}^{(2)}$: random deviations of the subject-specific intercepts and slopes from their means

- The model can also be defined as

$$\nu_{ij} = b_{1j} + b_{2j}t_{ij}$$

$$h_{i} = \beta_{i} \perp n^{(2)}$$

$$b_{1j} = \beta_1 + \eta_{1j}^{(2)}$$

$$b_{2j} = \beta_2 + \eta_{2j}^{(2)}$$

Factor models in GLLAMM

• A linear combination of dummy variables for the items multiplies each latent variable,

$$\eta_m^{(l)} \mathbf{z}_m^{(l)'} \boldsymbol{\lambda}_m^{(l)}, \ \lambda_{m1}^{(l)} = 1$$

ullet e.g. One-factor model for items $i,\ i=1,\cdots,I$ (level 1) and subjects j (level 2)

$$\nu_{ij} = \mathbf{d}_i'\boldsymbol{\beta} + \eta_j^{(2)}\mathbf{d}_i'\boldsymbol{\lambda}
= d_{1i}\beta_1 + \dots + d_{Ii}\beta_I + \eta_j^{(2)}(d_{1i} + d_{2i}\lambda_2 \dots + d_{Ii}\lambda_I)
= \beta_i + \eta_i^{(2)}\lambda_i$$

where

Slide 5

$$d_{pi} = \left\{egin{array}{ll} 1 & ext{if } p = i \ 0 & ext{otherwise} \end{array}
ight., \quad \mathbf{d}_i' = (d_{1i}, \cdots, d_{Ii})$$

 eta_i intercept for item i

 $\eta_j^{(2)}$: common factor

 λ_i factor loading for item i, $\lambda_1 = 1$

$unit\ j$	item i	d_{1i}	d_{2i}		d_{Ii}	y_{ij}
1	1	1	0		0	y_{11}
1	2	0	1		0	y_{21}
:	;	÷	:	٠.,	:	:
1	1	0	0		1	y_{I1}

Syntax for linear predictor in gllamm

 $\begin{array}{lll} \texttt{gllamm} & [varlist] & [\texttt{ if } exp] & [\texttt{ in } range] & , & \texttt{i} (varlist) \\ & [\underbrace{\texttt{nrf}(numlist)} & \underline{\texttt{eqs}}(eqnames) & \underline{\texttt{nocons}} \texttt{tant} \\ & \underline{\texttt{offset}(varname)} & \underline{\texttt{constraints}(numlist)} & \cdots \end{array}$

i(varlist) L-1 variables identifying the hierarchical, nested clusters, from level 2 to L, e.g., i(pupil class school).

 $\mathtt{nrf}(\mathit{numlist})$ L-1 numbers specifying the numbers of latent variables M_l at each level.

eqs(eqnames) $M = \sum M_l$ equations for the $\mathbf{z}_m^{(l)\prime} \boldsymbol{\lambda}_m^{(l)}$ multiplying each latent variable. No constant is assumed unless explicitly included in the equation definition.

no constant no constant in the fixed part $x'\beta$.

offset(varname) variable in fixed part with regression coefficient set to 1.

constraints (numlist) list of linear parameter constraints defined using the constraint define command.

Syntax examples: linear predictor

• Two-level growth curve model (occasions in subjects)

```
gen cons=1
eq int: cons
eq slope: time
gllamm y time, i(subject) nrf(2) eqs(int slope) ...
```

Three-level growth curve model (occasions in subjects in centers)

gllamm y time, i(subject center) nrf(2 2) /*
 */ eqs(int slope int slope) ...

• One-factor model

```
tab items, gen(d) /* create dummy variables */ eq fact: d1-d5 gllamm y d1-d5, i(subject) nrf(1) eqs(fact) nocons .
```

• Two-factor model (independent clusters)

```
eq fact1: d1-d5
eq fact2: d6-d10
gllamm y d1-d10, i(subject) nrf(2) /*
  */ eqs(fact1 fact2) nocons ...
```

Links and families in GLLAMM

• The conditional expectation of the response is 'linked' to the linear predictor

$$g(E[y|\mathbf{x}, \boldsymbol{\eta}, \mathbf{z}]) = \nu$$

• The conditional distribution of the response is from the exponential family:

Slide 8

Slide 7

Links

identity
reciprocal
logarithm
logit
probit
scaled probit
compl. log-log

Ordinal responses
ordinal logit
ordinal probit
ordinal compl. log-log
scaled ord. probit

Nominal & Rankings

• Heteroscedasticity: Standard deviation or scale parameter σ can be modelled as $\log \sigma = \mathbf{z}^{(1)\prime} \boldsymbol{\alpha}$

Options for links and families

Slide 9

family(families) family (or families) to be used.

- fv(varname) variable whose values indicate which family applies to which observation.
- link(links) and lv(varname) analogous to family(families) and fv(varname).
- s(eqname) equation for log standard deviation or scale parameter.

Syntax examples: One-factor models

• Dichotomous responses: binomial probit

```
tab item, gen(d)
eq fact: d1-d5
gllamm d1-d5, i(subject) nrf(1) eqs(fact) nocons /*
 */ link(probit) family(binom)
```

• Continuous responses: normal with item-specific unique factor variances

Slide 10 eq he

```
eq het: d1-d5
gllamm d1-d5, i(subject) nrf(1) eqs(fact) nocons /*
 */ link(ident) family(gauss) s(het)
```

• Mixed responses (items 1,2 normal and 3,4,5 binomial probit)

```
/* key = 1 for items 1,2; key=2 for items 3,4,5 */
gen key = (d1+d2) + 2(d3+d4+d5)
/* different variances for items 1 and 2 */
eq het: d1 d2
eq fact: d1-d5
gllamm y d1-d5, i(subject) nrf(1) eqs(fact) nocons /*
   */ link(ident probit) family(gauss binom) /*
   */ lv(key) fv(key) s(het)
```

Structural model in GLLAMM

• Regressions of latent variables on other latent and explanatory variables at the same or higher levels

$$\eta = B\eta + \Gamma w + \zeta$$

- $\bullet \ \boldsymbol{\eta} = (\eta_1^{(2)}, \eta_2^{(2)}, \cdots, \eta_{M_2}^{(2)}, \cdots, \eta_1^{(l)}, \cdots, \eta_{M_l}^{(l)}, \cdots, \eta_{M_l}^{(L)})'$
 - $-M = \sum_l M_l$ latent variables:
 - * factors
 - * random coefficients
- \bullet ${\bf B}$ is an upper diagonal $M\times M$ matrix of regression coefficients
- ullet Γ is an M imes p matrix of regression coefficients
- ullet w is a p dimensional vector of explanatory variables
- ζ is an M dimensional vector of errors/disturbances (same level as corresponding elements in η).

Options for the structural model

[··· geqs(eqnames) bmatrix(matname)
constraints(numlist) ···]

Slide 12

Slide 11

geqs(eqnames) equations for regressions of latent variables on explanatory variables. The second character of each equation name indicates which latent variables is regressed on the predictors.

 $\begin{array}{ll} \mathtt{bmatrix}(\mathit{matrix}) \ \mathit{M} \times \mathit{M} \ \mathrm{matrix} \ \mathrm{of} \ 1s \ \mathrm{and} \ 0s. \ \mathrm{Elements} \ \mathrm{equal} \\ \mathrm{to} \ 0 \ \mathrm{indicate} \ \mathrm{that} \ \mathrm{the} \ \mathrm{corresponding} \ \mathrm{element} \ \mathrm{in} \ \mathbf{B} \ \mathrm{is} \ 0; \\ \mathrm{elements} \ \mathrm{equal} \ \mathrm{to} \ 1 \ \mathrm{that} \ \mathrm{the} \ \mathrm{corresponding} \ \mathrm{element} \ \mathrm{in} \ \mathbf{B} \\ \mathrm{should} \ \mathrm{be} \ \mathrm{estimated}. \end{array}$

constraint(numlist) list of linear parameter constraints
 defined using the constraint define command.

Specifying a multilevel structural equation model

$$\begin{bmatrix} \eta_{1jk}^{(2)} \\ \eta_{1jk}^{(3)} \\ \eta_{2k}^{(3)} \end{bmatrix} = \begin{bmatrix} 0 & b_{12} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \eta_{1jk}^{(2)} \\ \eta_{1k}^{(3)} \\ \eta_{2k}^{(3)} \end{bmatrix} + \begin{bmatrix} \gamma_{11} & 0 \\ 0 & \gamma_{22} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} w_{1jk} \\ w_{2k} \end{bmatrix} + \begin{bmatrix} \zeta_{1jk}^{(3)} \\ \zeta_{1k}^{(3)} \\ \zeta_{2k}^{(3)} \end{bmatrix}$$

Slide 13

Slide 14


```
/* Equations for response model */
eq fact1: d1-d3
eq fact2: d4-d6
gen zero = 0
eq zero: zero

/* B-matrix */
matrix B=(0, 1, 1\ 0, 0, 0\ 0, 0, 0)
constr def 1 [b1_3]_cons = 1

/* Equations for regressions of latent variables
on observed variables */
eq f1: w1
eq f2: w2

gllamm y d1-d6, i(student school) nrf(1 2)  /*
   */ eqs(fact1 fact2 zero) bmat(B) geqs(f1 f2) /*
   */ constr(1) nip(8 4 4) nocons nocor adapt ...
```

Distribution of the latent variables

- Specify distribution of ζ . If there is no structural model, $n=\zeta$
- Disturbances at different levels are independent
- Multivariate normal $\boldsymbol{\zeta}^{(l)}=(\zeta_1^{(l)},\cdots,\zeta_{M_l}^{(l)})'$ with mean ${\bf 0}$ and covariance matrix ${\bf \Sigma}_l$
 - Program estimates Cholesky decomposition \mathbf{Q}_l of $\mathbf{\Sigma}_l$, $\mathbf{\Sigma}_l = \mathbf{Q}_l \mathbf{Q}_l'$
 - The integral over the distribution of $\boldsymbol{\zeta}^{(l)}$ is approximated by integrating over independent standard normal \mathbf{v} with $\boldsymbol{\zeta} = \mathbf{Q}_l \mathbf{v}$ using product quadrature
- Discrete $\boldsymbol{\zeta}^{(l)} = \mathbf{e}_c^{(l)}$ with probability π_c , where $\mathbf{e}_c^{(l)}$ are points in M_l dimensions, $c = 1, \dots, C_l$
 - Interpretation as latent classes
 - Nonparametric maximum likelihood (NPML)

Options for the distribution of the disturbances

[··· <u>ip(string) nocorrel nip(numlist) ada</u>pt ···]

ip(string) if string is g, the disturbances have a multivariate
 normal distribution and if string is f, the mass-points are
freely estimated. The default is g.

nocorrel sets all correlations to zero if latent variables are multivariate normal.

 $\operatorname{nip}(\operatorname{numlist})$ numbers of quadrature points or locations of the latent variables. For quadrature, a number is given for each latent variable (total M); for discrete latent variables, a number is given for each level (total L-1). A single number means that all values are the same.

adapt adaptive quadrature will be used (if ip(g) is specified) instead of ordinary Gauss-Hermite quadrature.

Slide 15

Slide 16

mstea

Syntax for prediction using gllapred

- gllapred varname [if exp] [in range] [, u <u>fac</u> <u>lin</u>pred <u>mu</u> <u>marginal</u> <u>us(varname)</u> <u>outcome(#)</u> <u>above(#)</u> ...]
- u posterior means and standard deviations of disturbances ζ returned in varnamem1, varnames1, varnamem2, etc.
- fac posterior means and standard deviations of latent variables η returned in varnamem1, varnames1, varnamem2, etc.
- linpred linear predictor (with posterior means of latent variables) returned in varname.
- mu mean response returned in *varname*. Without further options, mean w.r.t. posterior distribution.
- marginal together with mu, causes marginal or population average mean to be returned (mean w.r.t. prior distribution).
- us(varname) together with mu, causes conditional mean to be returned, conditional on latent variables being equal to the values in varname1, varname2, etc.
- $\label{eq:come} \verb|come| (\#) with mlogit link, causes mu option to return probability that the response equals \#.$
- above(#) with ordinal links, causes mu option to return probability that the response exceeds #.

Syntax for simulation using gllasim

gllasim varname [if exp] [in range] [, <u>u</u> <u>fac</u> <u>us(</u>varname) <u>from(</u>matrix) ···]

By default, responses are simulated for the model just estimated and returned in varname.

Slide 18

- **u** disturbances $\boldsymbol{\zeta}$ are simulated and returned in varnamep1, varnamep2, etc.
- fac latent variables η are simulated and returned in varnamep1, varnamep2, etc.
- us(varname) response variables are simulated for latent variables equal to varname1, varname2, etc.
- from(matrix) causes simulations to be based on the model just
 estimated in gllamm but with parameter values in matrix.

Estimation and prediction in gllamm

- To obtain the likelihood of GLLAMM's, the latent variables must be integrated out
 - Sequentially integrate over latent variables, starting with the lowest level using a recursive algorithm
 - Use Gauss-Hermite quadrature to replace integrals by sums
 - Scale and translate quadrature locations to match the peak of the integrand using adaptive quadrature
- Maximum likelihood estimates obtained using Newton-Raphson
- Empirical Bayes (EB) predictions of latent variables and EB standard errors obtained using adaptive quadrature

Application

- Cluster randomized study of sex education in Norway
- Schools were randomized to receive sex education or not
- Assessments pre randomization, 6 months and 18 months post randomization
- Three ordinal outcomes (5-point scale) measuring 'contraceptive self-efficacy':

"If my partner and I were about to have intercourse without either of us having mentioned contraception \dots

- I would have no problems saying that I have no contraception"
- I would have no problems asking my partner whether he/she has contraception"
- it would be easy for me to produce a condom (if | brought one)"
- 46 schools and 1183 pupils contributed to the analysis

Slide 20

Measurement and structural models

• Measurement model for item i at occasion t for student j in school k:

$$y_{itjk}^* = \delta_i + \lambda_i \eta_{tjk}^{(2)} + \epsilon_{itjk}, \quad \delta_1 = 0, \ \lambda_1 = 1$$

where

Slide 21

$$y_{itjk} = \begin{cases} 1 & \text{if} & y_i^* \le \kappa_1 \\ 2 & \text{if} & \kappa_1 < y_i^* \le \kappa_2 \\ 3 & \text{if} & \kappa_2 < y_i^* \le \kappa_3 \\ 4 & \text{if} & \kappa_3 < y_i^* \le \kappa_4 \\ 5 & \text{if} & \kappa_4 < y_i^*, \end{cases}$$

This is a constrained version of a 'graded response model' (Samejima, 1969).

• Structural model with covariates [Time] x_{1t} , [Treat] x_{2k} and [Treat]×[Time] x_{3tk} :

$$\eta_{tjk}^{(2)} = \beta_1 x_{1t} + \beta_2 x_{2k} + \beta_3 x_{3tk} + \eta_{jk}^{(3)} + \eta_k^{(4)} + \zeta_{tjk}^{(2)}$$

This is a three-level random intercept model for 'contraceptive self-efficacy'.

Missingness model

• The probability that student j fails to complete the questionnaire on occasion t ($d_{tjk}=1$) is modeled as a logistic regression:

$$d_{tjk} = \left\{ \begin{array}{l} 0 \ \ \text{if} \ d_{tjk}^* \leq 0 \\ 1 \ \ \text{if} \ d_{tjk}^* > 0 \end{array} \right.$$

Slide 22

The latent response (propensity not to complete the questionnaire) depends on the contemporaneous self efficacy as well as self efficacy on previous occasions:

$$\begin{array}{lcl} d_{1jk}^* & = & \gamma + \alpha_0 \eta_{1jk}^{(2)} + \epsilon_{1jk} \\ \\ d_{2jk}^* & = & \gamma + \alpha_0 \eta_{2jk}^{(2)} + \alpha_1 \eta_{1jk}^{(2)} + \epsilon_{2jk} \\ \\ d_{3jk}^* & = & \gamma + \alpha_0 \eta_{3jk}^{(2)} + \alpha_1 \eta_{2jk}^{(2)} + \alpha_2 \eta_{1jk}^{(2)} + \epsilon_{3jk} \end{array}$$

This is analogous to the models by Hausman & Wise (1979) and Diggle & Kenward (1994), but missingness depends on latent variables η instead of the observable responses y.

Path diagram

• The school variance was estimated as nearly zero; therefore school effects were omitted

Slide 23

	Model 1		Model 2		Model 3		Model 4	
	Est	(SE)	Est	(SE)	Est	(SE)	Est	(SE)
Missingness model								
γ	-1.99	(0.26)	-2.10	(0.29)	-0.85	(0.04)	-1.09	(0.06)
$lpha_0$ [lag 0]	0.77	(0.09)	0.64	(0.09)		-		_
$lpha_1$ [lag 1]	-0.10	(0.04)		_		_	-0.07	(0.03)
$lpha_2$ [lag 2]	-0.20	(0.05)		_		=	-0.25	(0.04)
<u>Structural model</u>								
eta_1 [Time]	0.32	(0.10)	0.45	(0.09)	-0.06	(0.09)	-0.39	(0.09)
eta_2 [Treat]	-0.91	(0.26)	-0.25	(0.23)	-0.28	(0.24)	-1.46	(0.21)
eta_3 [Treat] $ imes$ [Time]	0.48	(0.11)	0.34	(0.10)	0.20	(0.11)	0.56	(0.11)
$\operatorname{var}(\zeta_{tjk}^{(2)})$	6.74	(0.60)	7.29	(0.68)	4.57	(0.41)	5.04	(0.45)
$\mathrm{var}(\eta_{jk}^{(3)})$	5.30	(0.57)	4.29	(0.98)	3.72	(0.43)	3.51	(0.39)
Measurement model			Not	shown				
log-likelihood	-8624		-8632		-8680		-8658	

Alternative interpretations of missingness/dropout modeling

- Bias correction in structural model (overly optimistic?)
- Sensitivity analysis

Some links and references

- gllamm and a manual can be downloaded from www.iop.kcl.ac.uk/iop/departments/biocomp/programs/gllamm.html
- Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2003). Generalized multilevel structural equation modelling. Psychometrika, in press.
- Skrondal, A. & Rabe-Hesketh, S. (2003). Mulitlevel logistic regression for polytomous data and rankings *Psychometrika*, in press.

- Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 1-21.
- Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2003).
 Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects.
 Submitted for publication.
- Skrondal, A. & Rabe-Hesketh, S. (2003). Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Boca Raton, FL: Chapman & Hall/ CRC, to appear