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o Structure of GLLAMM models and gllamm syntax
— Response model: Generalized linear model conditional on
latent variables
+ Linear predictor: latent variables as factors or random
coefficients
* Links and distributions
— Structural model:
* Regressions of latent variables on observed variables
+ Regressions of latent variables on other latent variables
— Distribution of the latent variables (disturbances)
* Multivariate normal

* Discrete

e Application: Cluster randomized study of sex education in
Norwegian schools
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'Linear Predictor in GLLAMM]

Lo
v=xB+% Y 10z"A for identification, AL}, = 1

=2 m=1

e Fixed part: x'3 as usual

e Random part:
— n{l) is mth latent variable at level [, m =1,---, M,
l=2,---,L
— 1 can be a factor or a random coefficient

— z{l) are variables and A) are parameters

— Unless regressions for the latent variables are specified,
latent variables at different levels are independent whereas
latent variables at the same level may be dependent.

'Random coefficient models in GLLAMM]

o One covariate multiplies each latent variable,

W) 08 =1)

m

e e.g. Latent growth curve model for individuals j (level 2)
observed at times t;;, i = 1,---,n; (level 1)

2 2
vij = B1+ Patij + 77;;) + 77;4;)?24;
B1, B2 :  mean intercept and slope
778), ng): random deviations of the subject-specific intercepts

and slopes from their means

— The model can also be defined as
vij = blj + b?jtjj
9
B+ 77;,')
B2 + n&?’
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'Factor models in GLLAMM]

e A linear combination of dummy variables for the items
multiplies each latent variable,

1
771(7]7)Z1(7[1)/A$7l7)7 >‘$77)1 =1
e e.g. One-factor model for items ¢, i = 1,---, I (level 1) and
subjects j (level 2)
vy = dif+udx
= dubi+ -+ diBr + 0 (dii + doida - + diidi)
— B4
where
1 ifp=1
dyi = o, di=(du,-e,dn)
0 otherwise
[B;:  intercept for item i

n;’: common factor

Ai: factor loading for item i, A\ = 1

unit j itemé di; dy --- dn oy
1 1 1 0 -+ 0 yn
1 2 0 1 -+ 0 yx
1 0 0 -+ 1 yn

‘Syntax for linear predictor in gllamm I

gllamm [varlist] [ if ezp] [ in range] , i(varlist)
[ nrf(numlist)  eqs(egnames) noconstant

offset(varname) constraints(numlist)

i(varlist) L — 1 variables identifying the hierarchical, nested
clusters, from level 2 to L, e.g., i(pupil class school).

nrf (numlist) L — 1 numbers specifying the numbers of latent
variables M, at each level.

eqs(eqnames) M = ¥ M; equations for the z{l’ Al multiplying
each latent variable. No constant is assumed unless
explicitly included in the equation definition.

noconstant no constant in the fixed part x'3.

offset(varname) variable in fixed part with regression
coefficient set to 1.

constraints(numlist) list of linear parameter constraints

defined using the constraint define command.

AN
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‘Syntax examples: linear predictorI

e Two-level growth curve model (occasions in subjects)

gen cons=1
eq int: coms
eq slope: time

gllamm y time, i(subject) nrf(2) eqs(int slope)

Three-level growth curve model (occasions in subjects in
centers)

gllamm y time, i(subject center) nrf(2 2) /*
*/ eqs(int slope int slope)

e One-factor model

tab items, gen(d) /* create dummy variables */
eq fact: di1-db

gllamm y d1-d5, i(subject) nrf(1) egs(fact) nocons .

e Two-factor model (independent clusters)

eq factl: d1-d5

eq fact2: d6-d10

gllamm y d1-d10, i(subject) nrf(2) /*
*/ eqs(factl fact2) nocomns ...

'Links and families in GLLAMM|

e The conditional expectation of the response is ‘linked’ to the
linear predictor
9(Elylx,n,2]) = v
e The conditional distribution of the response is from the
exponential family:

Links Ordinal responses
identity e . ] dinal logit
) Families ordinat fogr
reciprocal 3 ordinal probit
| C Gaussian
ogarithm ordinal compl. log-lo
] gamma pl. fog-loe
logit . scaled ord. probit
] Poisson
probit bi ol
nomia . .
scaled probit | Prnomial | ‘ Nominal & Rankings ‘
compl. log-log ‘ multinomial logit ‘

e Heteroscedasticity: Standard deviation or scale parameter o
can be modelled as logo = zV'ax




Slide 9

Slide 10

\Options for links and familiesI

[ -+ family(families) fv(varname) 1link(links)

1v(varname) s(egname) --- ]

family(families) family (or families) to be used.

fv(varname) variable whose values indicate which family

applies to which observation.

link(links) and 1v(varname) analogous to family(families)

and fv(varname).

s(egname) equation for log standard deviation or scale

parameter.

AN

‘Syntax examples: One-factor modelsI

Dichotomous responses: binomial probit

tab item, gen(d)

eq fact: di1-db

gllamm d1-d5, i(subject) nrf(1) egs(fact) nocons /*
*/ link(probit) family(binom)

Continuous responses: normal with item-specific unique factor

variances

eq het: di1-db

gllamm d1-d5, i(subject) nrf(1) egs(fact) nocons /*
*/ link(ident) family(gauss) s(het)

Mixed responses (items 1,2 normal and 3,4,5 binomial probit)

/* key = 1 for items 1,2; key=2 for items 3,4,5 */

gen key = (d1+d2) + 2(d3+d4+d5)

/* different variances for items 1 and 2 */

eq het: d1 d2

eq fact: di1-db

gllamm y di1-d5, i(subject) nrf(1) egs(fact) nocons /
*/ link(ident probit) family(gauss binom) /*
*/ 1lv(key) fv(key) s(het)
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'Structural model in GLLAMM]

o Regressions of latent variables on other latent and explanatory
variables at the same or higher levels

n=Bn+Tw+(
)

2 2 2 1 1 L
n= (”75 )777; a"'anf\fi7"'7ni)7“'7774(1[),7"'/’7?\1'2)/

— M = ¥, M; latent variables:
* factors

* random coefficients

e B is an upper diagonal M x M matrix of regression
coefficients

T'is an M x p matrix of regression coefficients
e w is a p dimensional vector of explanatory variables

e ¢ is an M dimensional vector of errors/disturbances
(same level as corresponding elements in 7).

\Options for the structural modeII

[ -+ geqgs(eqnames) bmatrix(matname)

constraints(numlist) --- ]

geqs(egnames) equations for regressions of latent variables on
explanatory variables. The second character of each
equation name indicates which latent variables is regressed

on the predictors.

bmatrix(matriz) M x M matrix of 1s and 0s. Elements equal
to 0 indicate that the corresponding element in B is 0;
elements equal to 1 that the corresponding element in B

should be estimated.

constraint(numlist) list of linear parameter constraints

defined using the constraint define command.

AN
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‘Specifying a multilevel structural equation modeII

2 2 2
TILL 0 bia 1 77;,'34 1 0 d,}l
3 3 Wijik 3
ﬂik) =10 00 77§L’) T 0 + dk)
3 3 Wak 3
77;;») 0 00 77;1.-) 0 0 (’_Sk)
school &
)

Ys m by /(a Yo %

Y22 dz) Y1
w1 .
student j

/* Equations for response model */
eq factl: d1-d3

eq fact2: d4-dé

gen zero = 0

eq Zero: zero

/* B-matrix */
matrix B=(0, 1, 1\ 0, 0, O\ 0, 0, 0)
constr def 1 [b1_3]_cons = 1

/* Equations for regressions of latent variables
on observed variables */

eq f1: wil

eq f2: w2

gllamm y d1-d6, i(student school) nrf(1l 2) /*
*/ eqs(factl fact2 zero) bmat(B) geqs(f1l £2) /*

*/ constr(1) nip(8 4 4) nocons nocor adapt ...

~1
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Distribution of the latent variables]

e Specify distribution of {. If there is no structural model,
n=¢
e Disturbances at different levels are independent

e Multivariate normal ¢ = ( o..., gﬁ’},)’ with mean 0 and
covariance matrix ¥
— Program estimates Cholesky decomposition Q; of 3,
¥ =QQ
— The integral over the distribution of ¢ () is approximated
by integrating over independent standard normal v with
¢ = Q,v using product quadrature

") are points

o Discrete ¢ = e{!) with probability ., where e
in M; dimensions, c=1,---,C;
— Interpretation as latent classes

— Nonparametric maximum likelihood (NPML)

/
~

\Options for the distribution of the disturbances'

[ -+ ip(string) nocorrel nip(numlist) adapt

]

ip(string) if string is g, the disturbances have a multivariate
normal distribution and if string is £, the mass-points are
freely estimated. The default is g.

nocorrel sets all correlations to zero if latent variables are

multivariate normal.

nip(numlist) numbers of quadrature points or locations of the
latent variables. For quadrature, a number is given for each
latent variable (total M ); for discrete latent variables, a
number is given for each level (total L —1). A single

number means that all values are the same.

adapt adaptive quadrature will be used (if ip(g) is specified)

instead of ordinary Gauss-Hermite quadrature.




Slide 17

Slide 18

‘Syntax for prediction using gllapred'

gllapred warname [if ezp] [in range] [, u
fac linpred mu marginal us(varname)
outcome(#) above(#) ---]

u posterior means and standard deviations of disturbances ¢
returned in varnameml, varnamesl, varnamem?2, etc.

fac posterior means and standard deviations of latent variables 1

returned in varnameml, varnamesl, varnamem?2, etc.

linpred linear predictor (with posterior means of latent variables)
returned in varname.

mu mean response returned in varname. Without further options,

mean w.r.t. posterior distribution.

marginal together with mu, causes marginal or population
average mean to be returned (mean w.r.t. prior distribution).

us (varname) together with mu, causes conditional mean to be
returned, conditional on latent variables being equal to the
values in varnamel, varname2, etc.

outcome(#) with mlogit link, causes mu option to return

probability that the response equals #.

above(#) with ordinal links, causes mu option to return
probability that the response exceeds #.

-

~

‘Syntax for simulation using gllasiml

gllasim warname [if exp] [ in range] [, u fac
us(varname) from(matriz) ---]

By default, responses are simulated for the model just

estimated and returned in varname.

u disturbances ¢ are simulated and returned in varnamepl,

varnamep2, etc.

fac latent variables ) are simulated and returned in

varnamepl, varnamep2, etc.

us(varname) response variables are simulated for latent

variables equal to varnamel, varname2, etc.

from(matriz) causes simulations to be based on the model just

estimated in gllamm but with parameter values in matriz.

AN
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\Estimation and prediction in gllamml

e To obtain the likelihood of GLLAMM'’s, the latent variables
must be integrated out

— Sequentially integrate over latent variables, starting with the

lowest level using a recursive algorithm
— Use Gauss-Hermite quadrature to replace integrals by sums
— Scale and translate quadrature locations to match the peak
of the integrand using adaptive quadrature

o Maximum likelihood estimates obtained using Newton-Raphson

o Empirical Bayes (EB) predictions of latent variables and EB
standard errors obtained using adaptive quadrature

e Cluster randomized study of sex education in Norway
e Schools were randomized to receive sex education or not

o Assessments pre randomization, 6 months and 18 months post
randomization

e Three ordinal outcomes (5-point scale) measuring
‘contraceptive self-efficacy’:
“If my partner and | were about to have intercourse without
either of us having mentioned contraception ...

— | would have no problems saying that | have no
contraception”

— | would have no problems asking my partner whether he/she
has contraception”

— it would be easy for me to produce a condom (if | brought

"

one)

® 46 schools and 1183 pupils contributed to the analysis
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Measurement and structural models]

e Measurement model for item i at occasion ¢ for student j
in school k:

Yujr = 0 + )\/7],(;,77;1 +é€itjr, 01=0, Ay =1

where

IA

if yi
if Ky <y;

K1

IA
3

IN

Yitjk = Ko <y; < K3

IN

if Ky <y < K4

ot > w (8] —_
—-
=

if Ky <y;,
This is a constrained version of a ‘graded response model’
(Samejima, 1969).

e Structural model with covariates [Time] xy4, [Treat] xo;
and [Treat] x[Time] 234
2 3 4 2
7715,,'2’ = Pix1r + Potor + B3z + 7],(,1,) + Wér '+ (f(j],)’
This is a three-level random intercept model for ‘contraceptive

self-efficacy’.

‘Missingness modeII

e The probability that student j fails to complete the
questionnaire on occasion ¢ (dyj; = 1) is modeled as a logistic
regression:

0 if dj;, <0

dijr, = ’
1 if dj;, >0

The latent response (propensity not to complete the

questionnaire) depends on the contemporaneous self efficacy

as well as self efficacy on previous occasions:

2
=7+ aoﬂi,-)k + €Lk

IR
= =
| |

2 2
.= 0+ 0077;;2- + alﬁu- + ek
& = 2) @ (2 _
3j = Y ol + oang + ey + €3k
This is analogous to the models by Hausman & Wise (1979)

and Diggle & Kenward (1994), but missingness depends on
latent variables 7) instead of the observable responses y.
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4 ™
e The school variance was estimated as nearly zero; therefore
school effects were omitted
Slide 23
N /
Model 1 Model 2 Model 3 Model 4
Est (SE) Est (SE) Est (SE) Est (SE)

Missingness model
¥ -1.99 (0.26) -2.10 (0.29) -0.85 (0.04) -1.09 (0.06)
o [lag 0] 0.77 (0.09)  0.64 (0.09) - -
oy [lag 1] -0.10 (0.04) - - -0.07 (0.03)
as [lag 2] -0.20 (0.05) - - -0.25 (0.04)
Structural model
By [Time] 0.32 (0.10)  0.45 (0.09) -0.06 (0.09) -0.39 (0.09)
Bs [Treat] -0.91 (0.26) -0.25 (0.23) -0.28 (0.24) -1.46 (0.21)
B3 [Treat]x[Time] ~ 0.48 (0.11)  0.34 (0.10)  0.20 (0.11)  0.56 (0.11)
var(¢;) 6.74 (0.60)  7.29 (0.68) 457 (0.41)  5.04 (0.45)
var(n'y) 530 (0.57)  4.29 (0.98)  3.72 (0.43)  3.51 (0.39)
Measurement model Not shown
log-likelihood -8624 -8632 -8680 -8658




'Factor scores and standard errors]|

Control group Intervention group

A

-

S
:
(1
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: T : i H/]
T Wmﬁ
Lines: Siz: + fBoxk + Pazey + ﬁﬁ) Points: ﬁ&) = Bizs + Poxi + Bazys + ﬁﬁ) + @(,ZL)
e all three items, O one or two questions, — no questions.
Alternative interpretations of
missingness/dropout modeling
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e Bias correction in structural model

(overly optimistic?)

e Sensitivity analysis
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'Some links and references]

gllamm and a manual can be downloaded from

www.iop.kel.ac.uk/iop/departments/biocomp/programs/gllamm.html

Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2003).
Generalized multilevel structural equation modelling.
Psychometrika, in press.

Skrondal, A. & Rabe-Hesketh, S. (2003). Mulitlevel logistic
regression for polytomous data and rankings Psychometrika,
in press.

Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2002). Reliable
estimation of generalized linear mixed models using adaptive
quadrature. The Stata Journal, 2, 1-21.

Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2003).
Maximum likelihood estimation of limited and discrete
dependent variable models with nested random effects.
Submitted for publication.

Skrondal, A. & Rabe-Hesketh, S. (2003). Generalized latent
variable modeling: Multilevel, longitudinal and structural
equation models. Boca Raton, FL: Chapman & Hall/ CRC, to
appear




