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Abstract: When covariates are measured with error, inference based on conventional generalized linear
models can yield biased estimatesof regressionparameters. This problem can potentiallybe recti�ed by using
generalizedlinear latent and mixed models (GLLAMM), including a measurement model for the relationship
between observed and true covariates. However, the models are typically estimated under the assumption
that both the true covariates and the measurement errors are normally distributed, although skewed
covariate distributions are often observed in practice. In this article we relax the normality assumption for
the true covariates by developing nonparametric maximum likelihood estimation (NPMLE) for GLLAMMs.
The methodology is applied to estimating the effect of dietary �bre intake on coronaryheart disease. We also
assess the performance of estimation of regression parameters and empirical Bayes prediction of the true
covariate. Normal as well as skewed covariate distributions are simulated and inference is performed based
on both maximum likelihood assuming normality and NPMLE. Both estimators are unbiased and have
similar root mean square errors when the true covariate is normal. With a skewed covariate, the conventional
estimator is biased but has a smaller mean square error than the NPMLE. NPMLE produces substantially
improved empirical Bayes predictions of the true covariate when its distribution is skewed.
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1 Introduction

Explanatory variables in generalized linear models are frequently subject to measure-
ment error, for instance in epidemiology where the effects of lifetime exposure to
pollutants, alcohol, exercise and so on are often of interest.
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Explicit measurement modelling is crucial for at least two reasons: First, neglecting
measurement error will often lead to biased estimates for the regression parameters. For
instance, it is well known that ordinary logistic regression can lead to biased estimates
of odds ratios when the covariates are subject to measurement error (Rosner et al.,
1990), a phenomenon known as regression dilution in the simple case of a single
covariate. Joint modelling of the response and measurement process allows estimation
of a ‘disattenuated’ odds ratio for the true covariate (see, for example, Carroll et al.,
1995). Secondly, measurement modelling facilitates prediction of the true covariate or
exposure for an individual unit, utilizing not only the exposure measurements for the
unit but also information from the outcome as well as ‘borrowing strength’ from the
other units.

In conventional covariate measurement error models, it is assumed that both
measurement errors and true covariate are normally distributed. The validity of these
usually arbitrary assumptions is often questionable. Indeed, the assumptions are at odds
with skewed covariate distributions, which are often observed in applications. Thus, it
appears to be very useful to relax the assumption of a normal true covariate by instead
using ‘nonparametric maximum likelihood estimation’ (NPMLE) (Laird, 1978). The
NPMLE of the exposure distribution is discrete with nonzero probabilities at a �nite set
of locations (Simar, 1976; Laird, 1978; Lindsay, 1983).

Although the speci�cation of nonparametric distributions for true covariates is
theoretically attractive, research on evaluating the practical performance of NPMLE
for covariate measurement error models is scarce and limited. First, little attention has
been given to the evaluation of NPMLE for generalized linear models with covariate
measurement error when the true covariate distribution is normal. In this case
maximum likelihood under a correct model speci�cation is known to be optimal and
little is known regarding the �nite sample performance of NPMLE. However, adequate
performance of NPMLE under normality would appear to be a minimum requirement
for NPMLE to be considered a robust alternative to the conventional method. The only
simulation studies we are aware of are by Hu et al. (1998) and Schafer (2001). For Cox
regression with covariate measurement error, Hu et al. claim that NPMLE produced
regression estimates exhibiting some bias. However, instead of jointly estimating
locations and masses as required for NPMLE, their ‘pseudo NPMLE’ method
constrained the masses to lie on a subset of 20 prespeci�ed locations. Hu et al.
(1998) also found that the pseudo NPML estimates had a greater standard deviation
than the estimates assuming a normal true covariate distribution. For logistic regression
with covariate measurement error, Schafer (2001) states, without giving details, that the
NPML estimates have similar characteristics to the maximum likelihood estimates
based on the correct distributiona l assumptions. However, Schafer only simulates the
somewhat unrealistic case where the measurement error variance is known. We
compare the performance of the estimators for the nonparametric and correctly
speci�ed covariate distribution when the measurement error variance is estimated
jointly with the other parameters and the mass locations for NPMLE are freely
estimated. Secondly, we are aware of only two studies investigating the robustness of
the conventional model to mis-speci�cation of the true covariate distribution. Using the
skewed chi-square distribution with 1 degree of freedom, Thoresen and Laake (2000)
found that maximum likelihood estimation of the conventional model using 32-point
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quadrature performed reasonably well both for small and large samples. This is in
contrast to Schafer (2001), who found the regression coef�cient estimates of the
conventional model to be biased when the true covariate was simulated from a
moderately skewed mixture of two normals with mixing probability 0.75, means 50
and 80 and variances 100 and 300. Again, the measurement error variance was taken
as known and it is also not clear how the conventional model was estimated. Thirdly,
the performance of NPMLE has, to our knowledge, only been assessed when the true
covariate has a moderately skewed distribution given by the mixture of two normals
mentioned above. Schafer (2001) found that the NPML estimates were unbiased in this
case but had a greater root mean square error than those of the conventional model,
where the measurement error variance was again taken as known. We will consider the
case of a highly skewed covariate distribution as found in many applications since it is
in these situations that NPMLE would be expected to have the greatest potential. We
will assess the performance of maximum likelihood estimation for both the model
assuming a normal and a nonparametric exposure distribution where the measurement
error variance is estimated jointly with the other parameters. Fourthly, unlike previous
simulation studies, we also evaluate the performance of empirical Bayes prediction of
the true covariate. Prediction both under normality and using a nonparametric
distribution is considered for normal as well as skewed true covariate distributions.

Estimation (using NPMLE or maximum likelihood (ML) under normality) and
empirical Bayes prediction (based on NPMLE or normality) for generalized linear
models with measurement error is implemented in gllamm, a Stata1 program for
generalized linear latent and mixed models (GLLAMM). The methods are used to
estimate the effect of dietary �bre intake on heart disease. Using the terminology
common in epidemiology, we will in the following sometimes refer to the true covariate
as ‘exposure,’ the observed covariate as ‘measured exposure’ and the binary outcome as
‘disease.’

2 Models

We will concentrate on the problem of estimating the association between a true
exposure and disease in a logistic regression model, when exposure measurement is
imperfect and replicate measurements are available for at least a subsample. This may
be accomplished by introducing a latent variable for the unobserved true value of the
exposure and specifying three submodels [following Clayton’s (1992) terminology]; an
exposure model, a measurement model and a disease model.

2.1 Exposure model

We will model true exposure Fi for unit i as

Fi ˆ g0 ‡ g1xi ‡ ui (2:1)

where xi is a covariate (there may be several), g0 and g1 are regression parameters and ui
is a latent variable representing the deviation of unit i’s true exposure from the mean
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exposure for covariate xi. Traditionally, a normal exposure distribution has been
assumed with ui ¹ N(0, t2 ), but we will also consider a nonparametric exposure
distribution. Principally in the context of random intercept models, Simar (1976) and
Laird (1978), and more generally Lindsay (1983), have shown that the NPMLE of the
unspeci�ed (possibly continuous) distribution is a discrete distribution with nonzero
probabilities pk at a �nite set of locations zk, k ˆ 1, . . . , K (see also Lindsay et al., 1991;
Aitkin, 1996, 1999). The locations and probabilities can be estimated jointly with the
other parameters using maximum likelihood estimation. Here the number of locations
is increased until the largest maximized likelihood is achieved. However, there does not
appear to exist a formal proof of boundedness of the likelihood with increasing K.

Maximum likelihood theory for this model is reviewed by Lindsay (1995) and
Böhning (2000). Roeder et al. (1996) consider this approach for covariate measurement
error in case–control studies with a validation sample, Aitkin and Rocci (2002) when
there are neither replicates nor validation samples, Hu et al. (1998) for Cox regression
with replicates and Schafer (2001) for linear, nonlinear and logistic regression.

An important advantage of NPMLE is that it is appropriate regardless of the latent
variable distribution. True exposure could be continuous (normal or non-normal), as
for instance blood pressure, or discrete as in medical diagnosis. Mixtures of discrete and
continuous distributions are also a possibility, for example, nonsmokers within a
cigarette exposure distribution. Relying on NPMLE, we can concentrate on the
speci�cation of other model components and need not worry about the nature of the
latent variable distribution.

2.2 Measurement model

The classical measurement model assumes that the rth exposure measurement for unit i,
fir, differs from the true exposure Fi by a normally distributed measurement error Eir,

fir ˆ Fi ‡ Eir, Eir ¹ N(0, s2
f )

ˆ g0 ‡ g1xi ‡ ui ‡ Eir (2:2)

where Eir and ui are independent and we have substituted for Fi from (2.1). The repeated
measurements on the same unit are therefore assumed to be conditionally independent
given true exposure. We consider the case of (a) nontransformed measurement and (b)
log transformed measurement.

The total variance of the measurements, conditional on xi, is given by

var(firjx i) ˆ s2
f ‡ var(ui)

The conditional reliability R may therefore be estimated from the model parameters by
substituting the relevant terms into

R ˆ var(Fijxi)
var(firjxi)

(2:3)

(see, for example, Dunn (1989), p. 54).
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Our framework allows very general measurement models, speci�ed in terms of
multivariate generalized linear models

g(mir) ˆ g0r ‡ g1rxi ‡ lrui

where lr is a factor loading. The measurements can therefore be of any type
accommodated by generalized linear models including mixed types. For instance, the
classica l measurement model arises as the special case with identity links and
conditionally normal measurements. If all measurements are dichotomous, we obtain
a two-parameter item response model. Additional generality is allowed by including
multidimensional latent variables.

2.3 Disease model

The disease model speci�es the relationship between the outcome variable and true
exposure and could also take the form of any generalized linear model. Often, a logistic
regression on true exposure is used, that is,

logit(P[di ˆ 1jFi]) ˆ a0 ‡ a1xi ‡ bFi

ˆ d0 ‡ d1xi ‡ bui (2:4)

where d0 ˆ a0 ‡ bg0 and d1 ˆ a1 ‡ bg1 .
We have included xi both in the disease and exposure models to allow for a direct

effect of xi on disease (a1 ) as well as any indirect effects through affecting true exposure
(bg1 ). If there is no direct effect, estimation of the reduced form parameters d0 and d1
requires nonlinear constraints since with a1 ˆ 0, d1 ˆ bg1 is the product of the effect of
true exposure on disease and the effect of xi on true exposure. In gllamm this problem
can be overcome by directly estimating the structural parameters (the as, gs and b).

Note that the assumed relationship between true and measured exposures has
implications for the interpretation of the odds ratio exp (b) in the disease model since
this is measured per unit increase in Fi (or ui). Using an identity link as in the classica l
measurement model has the advantage that the odds ratio can then be interpreted as the
effect on the odds of an absolute difference in true exposure except when the log of the
measured exposure is used in which case the effect relates to a relative difference in
exposure.

2.4 Parameter restrictions

We will now consider in more detail the most common case of having two repeated
exposure measurements as in the heart disease data analysed in Section 4. The model
can in this case be presented graphically as in Figure 1, where circles represent latent
variables, rectangles observed variables, arrows from explanatory to response variables
represent regressions (linear or logistic) and short arrows to response variables
represent residual variability (e.g., additive errors for linear regression).
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Note that due to the absence of any direct effects of fir on di or vice versa, the model
assumes that the risk of disease given true exposure is independent of measured
exposure so that measurement error is nondifferential.

The disease and measurement models jointly represent a factor model for three mixed
responses where Fi is the common factor, b is the factor loading for the binary response
di and the factor loadings for the continuous exposure measurements fir have been set
to 1. In factor models at least one factor loading must be set to an arbitrary nonzero
constant or the factor variance �xed. If no such restriction were used, multiplying the
factor loadings by a positive constant a could be counteracted by dividing the
factor variance by a2 , that is, the scale of the factor is not identi�ed. Setting the factor
loadings in the additive measurement model to 1 �xes the scale of the latent variable
equal to that of the exposure measurements so that the odds ratio in the disease model
can be interpreted as the effect of an increase in true exposure by one unit, in terms of
the physical units (e.g., grams per day) in which exposure is measured. In addition, the
mean of the factor ui is set to 0 so that the intercept g0 in the measurement model is
identi�ed. In the case of NPMLE, a more common identi�cation restriction is to set g0
or one of the locations to zero, but here we use the above restriction to make the
estimates comparable across estimation methods. Because the exposure measurements
are ‘exchangeable’ replicates, we have set both factor loadings equal and measurement
error variances equal. This speci�cation may be relaxed since we can identify a separate
factor loading l for one of the measurements as well as separate measurement error
variances s2

f 1 and s2
f 2 in addition to var(Fi) and b. Differences in mean between

measures are also allowed for, sample ‘drift’ being commonplace (Carroll et al., 1995).
When there is only one exposure measurement it is important to note that var(Fi), b

and s2
f are not jointly identi�ed from the �rst and second order moments of the

observed variables. This renders the conventional covariate measurement error models
(where exposure, ‘disease’ and measurements are conditionally normal) nonidenti�ed.

Figure 1 Logistic regression model with covariate measurement error and two replicates
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The reliability or measurement error variance is therefore usually, and often unrealis-
tically, assumed to be known a priori in this case (typically estimated in another study).
With a normal exposure distribution, theoretical identi�cation may be achieved
through information in the higher order moments by specifying a logistic disease
model, but this is likely to be fragile (Rabe-Hesketh and Skrondal, 2001). Alternatively,
identi�cation can be obtained by using a non-normal exposure distribution (e.g.,
Reiersøl, 1950). Aitkin and Rocci (2002) argue that NPMLE leads to identi�cation
in models with conditionally normal ‘disease’ and measurements without replicates.

3 Estimation and prediction

3.1 Estimation

Owing to the conditional independence between the exposure measurements and
disease status given true exposure, the likelihood is simply the product of the measure-
ment, disease and exposure models, integrated over exposure or, equivalently ui. If a
normal distribution is assumed for ui, the likelihood is

L(qD, qM , t) ˆ
Y

i

…
P(di j ui; qD)

Yni

rˆ1

g(fir j ui; qM )g(ui; t) dui (3:1)

where qD are parameters of the disease model, qM are parameters of the measurement
model and the second product is over all ni measurements available on unit i.
If measurements or disease status are missing at random (MAR) or completely at
random (MCAR), the maximum likelihood estimates will be consistent (e.g., Rubin,
1976). Note that replicates are often MCAR or MAR by design, in which case no
assumption regarding missingness need be invoked for the measurements.

For logistic regression with a classical measurement model the terms in the likelihood
become

P(di j ui; qD) ˆ exp{di[a0 ‡ bg0 ‡ (a1 ‡ bg1)xi ‡ bui]}
1 ‡ exp[a0 ‡ bg0 ‡ (a1 ‡ bg1 )xi ‡ bui]

g(fir j ui; qM ) ˆ 1�����������
2ps2

f

q exp ¡ [fir ¡ (g0 ‡ g1xi ‡ ui)]
2

2s2
f

Á !

and

g(ui; t) ˆ 1����������
2pt2

p exp ¡ u2
i

2t2

³ ´

The likelihood has no closed form but may be integrated numerically using Gauss–
Hermite quadrature (e.g., Bock and Lieberman, 1970; Butler and Mof�tt, 1982; Aitkin,
1999).
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If the exposure distribution is not speci�ed, the likelihood has the form

L(qK
M , qK

D, p K, zK) ˆ
Y

i

XK

kˆ1

pkP(dijui ˆ zk; qK
D)

Yni

rˆ1

g(firjui ˆ zk; qK
M ), (3:2)

where zk are location parameters, pk are mass parameters and zK, p K are the
corresponding K-dimensional parameter vectors. Note that the Gauss–Hermite quad-
rature approximation has the same form with zk replaced by tvk and with the crucial
difference that the locations vk and masses pk are �xed a priori.

The parameters are estimated using a Newton–Raphson algorithm. Standard errors
are estimated by inverting the observed information matrix, obtained by numerical
differentiation of the log-likelihood. For NPMLE, the information matrix includes
terms for the mass-point parameters so that standard errors for regression coef�cients
take account of the uncertainty regarding the ‘true’ locations and masses, but not
regarding the number of mass-points. The standard errors are therefore conditional on
the number of mass-points. To ensure positive measurement error variances, we
estimate ln sf and use the delta method to derive standard errors of (back) transformed
parameters. For NPMLE, k ¡ 1 log odds and K ¡ 1 locations are estimated to ensure
valid probabilities and to constrain the mean of ui to zero.

In order to achieve the NPML estimator, the maximum number of mass-points needs
to be determined, so that if a further mass-point is added, it will either be estimated as
having zero mass or as sharing a location (or very close location) with another mass. A
common approach is to start estimation with a large number of mass-points and omit
points that either merge with other points or whose mass approaches zero during
maximization of the likelihood (e.g., Butler and Louis, 1992). In contrast, we introduce
mass-points one by one using the concept of a directional derivative (e.g., Simar, 1976;
Jewell, 1982; Böhning, 1982; Lindsay, 1983), referred to as the Gateaux derivative by
Heckman and Singer (1984). Consider the maximized likelihood for K masses
L(q̂qK

D, q̂qK
M , p̂p K, ẑzK). To determine whether this is the NPMLE solution, we consider

changing the discrete mass-point distribution along the path ((1 ¡ l)p̂p K, l)0 with
locations (ẑzK, zK‡1)0, where l ˆ 0 corresponds to the current solution and l ˆ 1
places unit mass at a new location zK‡1 . The directional derivative is then de�ned as

D(zK‡1) ˆ lim
l!0

ln L(q̂qK
D, q̂qK

M , ((1 ¡ l)p̂p K, l)0, (ẑzK, zK‡1)0) ¡ ln L(qK
D, q̂qK

M , p̂pK, ẑzK)
l

(3:3)

According to the general mixture maximum likelihood theorem (Lindsay, 1983;
Böhning, 1982), the NPMLE has been found if and only if D(zK‡1 ) µ 0 for all zK‡1 .
In practice, our stopping rule is that for a small l the numerator of (3.3) is nonpositive
for all locations zK‡1 on a �ne grid spanning a wide range of values.

The algorithm can then be outlined as follows. Initially, the likelihood is maximized
for a single mass-point, giving starting values for the regression coef�cients
and measurement error variance, but not b since it would not be identi�ed. The
likelihood is then maximized for K ˆ 2 mass-points. After maximizing the likelihood for
K mass-points, a further mass-point is introduced if a location zK‡1 can be found at
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which introduction of a very small new mass l increases the likelihood when all other
parameters are held constant, giving a positive numerator of (3.3). If such a location can
be found, this implies that a larger maximum likelihood is achievable with an extra
mass-point. A new point is therefore introduced and the likelihood maximized using as
starting values the parameters of the previous model with a new mass at the location
yielding the greatest increase in likelihood. A mass greater than l is used as starting
value to avoid numerical problems. This procedure is repeated until no location can be
found at which introduction of a small mass increases the likelihood.

Our approach is similar to the algorithm proposed by Simar (1976) and adapted by
Heckman and Singer (1984), Follmann and Lambert (1989) (in one dimension), Davies
and Pickles (1987) (in two dimensions), among others. The EM algorithm has also been
used for maximizing the likelihood for a given number of mass points (e.g., Hinde and
Wood, 1987; Butler and Louis, 1992; Aitkin, 1996, 1999; Schafer, 2001). This
approach and algorithms for �nding the NPMLE (both the number of masses and
parameter estimates) are described in Lindsay (1995) and Böhning (2000).

3.2 Prediction of true exposure

The unit speci�c exposure can be predicted using empirical Bayes, the expected value of
exposure given the units’ observed disease status and exposure measurements, with
parameter estimates plugged in. For NPMLE, the posterior probability that the
deviation of unit i’s exposure from the mean exposure is ui ˆ ẑzk becomes

P(ui ˆ ẑzkjfir, di; q̂qK
D, q̂qK

M , p̂p K, ẑzK) ˆ p̂pkP(dijui ˆ ẑzk; q̂qK
D)

Qni
rˆ1 g(firjui ˆ ẑzk; q̂qK

M )
PK

kˆ1 p̂pkP(dijui ˆ ẑzk; q̂qK
D)

Qni
rˆ1 g(firjui ˆ ẑzk; q̂qK

M )

(3:4)

and the posterior mean of the deviation is

~uui ² E(uijfir, di; q̂qK
D, q̂qK

M , p̂p K, ẑzK) ˆ
XK

kˆ1

ẑzkP(ui ˆ ẑzkjfir, di, q̂qK
D, q̂qK

M , p̂p K, ẑzK) (3:5)

For Gaussian quadrature, simply replace ẑzk by t̂tvk and p̂pk by known pk in the above
equations. It follows from the exposure model that the empirical Bayes prediction of
true exposure becomes

E(Fi j fir, di; q̂qK
D, q̂qK

M , p̂p K, ẑzK) ˆ ĝg0 ‡ ĝg1xi ‡ E(ui j fir, di; q̂qK
D, q̂qK

M , p̂pK, ẑzK) (3:6)

When a normal exposure distribution is assumed, the empirical Bayes predictions are
shrunken compared to the raw measurements (see, for example, Plummer and Clayton,
1993) and will have smaller variance than the prior distribution. If an identity link is
used in the measurement model, the measurement errors can be predicted by subtract-
ing the empirical Bayes predictions from the measured exposures.
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Note that empirical Bayes predictions are not con�ned to the estimated locations ẑzK.
This is natural since NPMLE is usually interpreted as a nonparameteric estimator of a
possibly continuous exposure distribution. In contrast, if the NPMLE were viewed as
an estimate of a truly discrete distribution, each unit should be allocated to one of the
locations, typically that with the largest posterior probability.

Estimation and prediction for all models is carried out using gllamm (Rabe-Hesketh
et al., 2001a, b, 2002, 2003b), a general purpose program written in Stata1 (Stata-
Corp, 2003) for estimating ‘generalized linear latent and mixed models’ (e.g., Rabe-
Hesketh et al., 2003a; Skrondal and Rabe-Hesketh, 2004).

4 Analysis of heart disease data

We now estimate the effect of dietary �bre intake on heart disease. The dataset
considered is on 337 middle-aged men, recruited between 1956 and 1966 and followed
until 1976 (Morris et al., 1977). There were two occupational groups, bank staff and
London transport staff (drivers and conductors). At the time of recruitment, the men
were asked to weigh their food over a seven-day period from which the total number of
calories were derived as well as the amount of fat and �bre. Seventy-six bank staff had
their diet measured in the same way again six months later. Coronary heart disease
(CHD) was determined from personnel records and, after retirement, by direct
communication with the retired men and by ‘tagging’ them at the Registrar General’s
Of�ce. The latter ensured that deaths from CHD were recorded. However, the
recording of nonfatal CHD after retirement was imperfect. There were 4601 man-
years of observation and a total of 45 cases giving an overall incidence rate of 9.78 per
1000 man-years. Given the imperfect recording of CHD in later life, we will analyse
merely the presence or absence of an event in the follow-up period using logistic
regression rather than �tting a survival model.

Concerns arise in analysing the dataset using the standard model since the �bre
measurements have a skewed distribution as shown in Figure 2. The model described in
section 2 was estimated by maximum likelihood under normality as well as NPMLE.
We considered �bre measurements on the original scale as well as log-transformed. Age,
occupation and age by occupation were used as covariates. An indicator variable for the
second measurement occasion was also included as a covariate in the measurement
model to allow for a drift in the responses. The models assuming a normal exposure
distribution were initia lly estimated with 20 quadrature points. Ten further points were
repeatedly added until the resulting relative change in the maximized log-likelihood was
less than 10¡7 . After maximizing the likelihood for a given number of mass-points, a
new mass with a log odds of ¡5 was moved in 1000 equal steps from the minimum to
maximum deviation of measured �bre intake from its mean. If the increase in the log-
likelihood exceeded 10¡5 at any location a new mass was introduced. When no further
points could be introduced, a smaller log odds of ¡7 was also tried.

Case (a) (nontransformed �bre measurements) required 50 points for Gaussian
quadrature and 6 for NPMLE. Case (b) (log-transformed �bre measurements) required
60 points for quadrature and 8 for NPMLE.
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The estimates of the log odds ratio of heart disease b, the variance of true �bre intake
conditional on covariates var(ui), the measurement error variance s2

f , the reliability R
conditional on covariates, and the locations and masses for NPMLE are given in
Table 1. Both models suggest that increasing �bre intake reduces the odds of CHD.
Ignoring the second �bre measurements and estimating b by ordinary logistic regression
covarying for age, occupation and their interaction, gives estimates of ¡0:11 (0.04) for
�bre and ¡1:54 (0.55) for log �bre, estimates that are attenuated relative to those of the
full models as expected. The reliability estimates are larger using NPMLE than
quadrature in both case (a) and (b), consistent with the �ndings of Hu et al. (1998).

The difference in log-likelihood and estimates of b between NPMLE and ML under
normality was marked in case (a) but less so for (b). This may be because a normal

Figure 2 Histogram of � bre measurements

Table 1 Parameter estimates for heart disease data

Case (a): Fibre Case (b): Log � bre

Quadrature NPMLE Quadrature NPMLE
(60 points) (6 points) (90 points) (8 points)

b (SE) ¡0.128 (0.051) ¡0.146 (0.061) ¡1.836 (0.740) ¡1.753 (0.700)
Var (ui) (SE) 23.655 (0.520) 24.926 (—) 0.068 (0.029) 0.072 (—)
s2

f (SE) 6.948 (1.137) 6.132 (0.855) 0.022 (0.004) 0.018 (0.003)
R 0.773 0.803 0.759 0.796
Log-likelihood ¡1372.354 ¡1319.787 ¡182.399 ¡172.255

Locations ¡5.6, ¡3.0, 0.7, 7.6, 17.8, 32.6 ¡0.76, ¡0.52, ¡0.24, 0.04, 0.09, 0.37, 0.72, 1.10
Masses (%) 1, 30, 43, 12, 1, 0.6 2, 4, 26, 40, 12, 15, 1, 0.6
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exposure distribution is less plausible for case (a) than (b) since the raw �bre
measurements have a positively skewed distribution. As expected, the estimated
mass-point distribution for case (a) is more skewed than for (b) as shown in Figure 3.

5 Simulation study

Parameters similar to the estimates in Table 1 were used to simulate measured exposure
and disease status for the same number of units and repeated measurements of exposure as
in the study data (see Table 2 for parameter values used). We carried out two sets of

Table 2 Simulation results for normal exposure distribution: mean and standard deviations (SD) of para-
meter estimates, mean standard error (SE), bias with 95% con� dence interval and root mean square error
(RMSE)

Quadrature (60 points)

Parameter True value Mean SD Mean SE Bias 95% CI for bias RMSE

b ¡0.127 ¡0.127 0.041 0.041 0.000 (¡0.009, 0.008) 0.041
var(ui) 23.805 23.35 2.64 2.49 ¡0.46 (¡0.99, 0.07) 2.67
s2

f 6.864 7.04 1.08 1.14 0.17 (¡0.04, 0.39) 1.09
R 0.776 0.767 0.040 — ¡0.009 (¡0.017, ¡0.001) 0.041

NPMLE

Parameter True value Mean SD Mean SE Bias 95% CI for bias RMSE

b ¡0.127 ¡0.125 0.041 0.041 0.002 (¡0.006, 0.010) 0.040
var(ui) 23.805 23.82 2.63 — 0.01 (¡0.52, 0.54) 2.62
s2

f 6.864 6.59 1.11 0.99 ¡0.27 (¡0.50, ¡0.05) 1.14
R 0.776 0.782 0.040 — 0.006 (¡0.002, 0.014) 0.040

Figure 3 Estimated mass-point distributions using NPMLE for cases (a) and (b)
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100 simulations. The �rst set used a normal true exposure distribution and the second set
used a skewed distribution. For each simulated dataset, the parameters were estimated
using both Gaussian quadrature and NPMLE. The empirical Bayes predictions of ui were
compared with the simulated ‘true’ values. Sixty quadrature points were used.

5.1 Normal true exposure distribution

The numbers of mass-points required for NPMLE were 4 (twice), 5 (23 times),
6 (48 times), 7 (16 times), 8 (9 times), 9 (once) and 11 (once). Table 2 shows the
mean estimates and standard errors of b, var(ui), s2

f and R together with the standard
deviation, bias and root mean square errors of these parameter estimates. Both methods
give good results with no substantial bias in any of the parameter estimates for either
method, except for a small negative bias in s2

f for NPMLE. The root mean square errors
are similar for both methods. The mean standard errors are close to the standard
deviations of the parameter estimates for both quadrature and NPMLE. As previously
noted with the real study data, NPMLE tended to attribute a smaller portion of the total
variance to measurement error, giving larger reliability estimates. The �nding that
NPMLE works very well when the true distribution is normal is consistent with
Schafer’s (2001) results, but inconsistent with the results of Hu et al. (1998), possibly
because Hu et al. used an approximate NPMLE method with a �xed set of locations.

Figure 4(a) shows a plot of the differences between the empirical Bayes predictions
using quadrature and the true (simulated) values of ui for the �rst �ve simulations and
includes a reference line for zero difference. Lowess curves based on all 100 simulations
are superimposed, representing the mean bias and the root mean square error. The
latter was obtained by taking the square root of the lowess curve �tted to the squared
differences between the estimated and true latent variables. For bias, the negative slope
and zero intercept are consistent with shrinkage of the form ~uui ˆ lui, …l < 1† since
E…~uui ¡ ui† ˆ …l ¡ 1†ui. The root mean square error increases as the absolute value of ui
increases. The bias and root mean square error curves for NPMLE are identical to those
using quadrature (not shown).

5.2 Skewed true exposure distribut ion

The exposure distribution was simulated by counting the number of ‘thresholds’ (0.2, 0.9,
1.3, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0) exceeded by a standard normal variable, mimicking
commonly observed distributions of questionnaire sum scores; see Figure 4(b). The
resulting discrete exposure variable was rescaled to have the same expectation and
variance as the normal exposures in the previous simulation. The simulation results are
summarized in Table 3. When the model is estimated by Gaussian quadrature, the regres-
sion coef�cient b is underestimated, in absolute value, by about 20% (95% CI from
14 to 28%). The mean standard error of the exposure variance estimates is much lower
than the standard deviation and root mean square error of these estimates (see Tables 3).

The NPMLE method required 5 masses (9 times), 6 masses (27 times) 7 masses
(37 times), 8 masses (18 times), 9 masses (7 times) and 10 masses (2 times). Two of the
NPMLE solutions gave outlying parameter estimates (large negative values of b) and
were omitted from the table. There is a slight negative bias for the measurement error
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variance. Although there is no evidence of bias for b, the estimates have a greater root
mean square error than those assuming a normal exposure distribution. Fortunately,
the larger variance of the b estimates is correctly re�ected in the mean standard error.
The �nding that the NPML estimates of b have a greater root mean square error than the
estimates assuming a normal exposure distribution is consistent with Schafer (2001).

Plots comparing the predicted and true values of ui are given in Figures 4(c) and (d)
for Gaussian quadrature and NPMLE, respectively. In the case of quadrature, shrinkage
is again apparent, leading to very large biases when the true exposure is large. In
contrast, the bias and root mean square error for NPMLE are approximately constant
(in absolute value) over the range of true values of ui and much lower than for
quadrature for large values of ui.

Figure 4 (a) Normal exposure distribution: comparison of realized values of u and empirical Bayes
predictions using quadrature; (b) Skewed exposure distribution; (c) Skewed exposure distribution: comparison
of realized values of u and empirical Bayes predictions using quadrature; (d) Skewed exposure distribution:
comparison of realized values of u and empirical Bayes predictions using NPMLE
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6 Discussion

We have considered generalized linear models with possibly non-normal exposures
measured with error. Nonparametric maximum likelihood estimation (NPMLE) was
developed for this setting and implemented in the gllamm software. For an application
with skewed measures of exposure, NPMLE was used for estimating logistic regression,
correcting for measurement error. Finally, a Monte Carlo experiment was conducted to
investigate the performance of NPMLE.

Our simulation study suggests that NPML estimation yields unbiased estimates of the
odds ratio and other parameters of interest except for a possible downward bias of the
measurement error variance. When the true exposure distribution is normal, the NPML
estimates do not appear to be less ef�cient than the quadrature estimates assuming a
normal exposure distribution. When the true exposure distribution is highly skewed,
assuming a normal exposure distribution gives biased estimates of the odds ratio for
exposure whereas there is little evidence of bias for NPMLE. However,
the NPML estimates unfortunately have a larger root mean square error. If predictions
of true exposure are required, NPMLE is the preferred method since the predictions are
substantially closer to the true values than those of the conventional model when the
exposure distribution is skewed. When the true exposure distribution is normal, both
methods provide nearly identical predictions.

An alternative to NPMLE would be to use smooth, �exible estimates of the mixing
distribution (see, for example, Gallant and Nychka, 1987; Stefanski and Carroll, 1990;
Zhang, 1990; Davidian and Gallant, 1992; Magder and Zeger, 1996). An advantage
of these approaches is that the estimated mixing distribution may resemble the true
(continuous) distribution more closely than the discrete mass-point distribution
estimated by NPMLE. However, the smoothness of the estimated distribution often
depends on an arbitrary parameter. Furthermore, it should be noted that despite the
discreteness of NPMLE, the method does not assume a truly discrete distribution.

Table 3 Simulation results for skewed exposure distribution: mean and standard deviations (SD) of
parameter estimates, mean standard error (SE), bias with 95% con� dence interval and root mean square
error (RMSE)

Quadrature (60 points)

Parameter True value Mean SD Mean SE Bias 95% CI for bias RMSE

b ¡0.127 ¡0.101 0.044 0.052 0.026 (0.018, 0.035) 0.051
var(ui) 23.805 23.00 4.83 2.49 ¡0.80 (¡1.78, 0.17) 4.88
s2

f 6.864 7.06 1.13 1.15 0.20 (¡0.03, 0.43) 1.14
R 0.776 0.759 0.058 — ¡0.017 (¡0.029, ¡0.006) 0.060

NPMLE

Parameter True value Mean SD Mean SE Bias 95% CI for bias RMSE

b ¡0.127 ¡0.143 0.079 0.083 ¡0.016 (¡0.032, 0.003) 0.080
var(ui) 23.805 23.63 4.71 — ¡0.18 (¡1.13, ¡0.78) 4.69
s2

f 6.864 6.42 0.98 0.91 ¡0.44 (¡0.64, ¡0.24) 1.07
R 0.776 0.781 0.051 — 0.005 (¡0.006, 0.015) 0.051
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In an extensive simulation study comparing NPMLE with a mixture of normals,
Magder and Zeger (1996) show that both methods give similar mean square errors of
the �xed effects in linear mixed models with different true mixing distributions. Therefore
if, as in the present study, interest is focused mostly on the �xed effects, NPMLEappears to
be as suitable and arguably easier to estimate than, for example, a mixture of normals.

Our implementation of NPMLE performed well both in the application and simula-
tions, typically requiring less than 15 Newton–Raphson iterations to maximize the
likelihood for a given number of mass-points. This could be due to the likelihood being
less �at than in mixture problems without replicates. Estimation of the conventional
model assuming a normal exposure distribution required a large number of quadrature
points. This is likely to be due to the integrands having sharp peaks that can easily fall
between adjacent quadrature locations (e.g., Lesaffre and Spiessens, 2001). Adaptive
quadrature (Naylor and Smith, 1982) can overcome these problems and has been
implemented in gllamm (Rabe-Hesketh et al., 2002, 2003b). However, we have only
described ordinary quadrature in this article since it closely parallels NPMLE.

gllamm can also be used for the case where several exposures, for example fat and
�bre, are subject to measurement error. When the joint exposure distribution is assumed
to be multivariate normal, (adaptive) Gaussian product quadrature is used to approx-
imate the marginal log-likelihood. NPMLE is in this case implemented by using multi-
dimensional locations. Measurement error variances can be allowed to differ between
methods, for example if a ‘gold standard’ is available in a validation sample. Different
links and distributions can be speci�ed for the response and measurement models, for
example where measured exposures are a mixture of continuous and categorical
variables. Currently, gllamm allows continuous, dichotomous, ordered and unordered
categorical responses to be modelled, as well as rankings (Skrondal and Rabe-Hesketh,
2003), counts and continuous or discrete durations (Rabe-Hesketh et al., 2001c), see also
Skrondal and Rabe-Hesketh (2004) for application. The program can be downloaded
from www.iop.kcl.ac.uk=IoP=Departments=BioComp=programs=gllamm.html.
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