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Summary. Distinguishing between longitudinal dependence due to the effects of previous
responses on subsequent responses and dependence due to unobserved heterogeneity is
important in many disciplines. For example, wheezing is an inflammatory reaction that may
‘remodel’ a child’s airway structure and thereby affect the probability of future wheezing (state
dependence). Alternatively, children could vary in their susceptibilities because of unobserved
covariates such as genes (unobserved heterogeneity). For binary responses, distinguishing
between state dependence and unobserved heterogeneity is typically accomplished by us-
ing dynamic/transition models that include both a lagged response and a random intercept.
Naive maximum likelihood estimators can be severely inconsistent because of two kinds of
endogeneity problem: lack of independence of the initial response and the random intercept
(the initial conditions problem) and lack of independence of the covariates and the random in-
tercept (the endogenous covariates problem). We clarify and unify previous work on handling
these problems in the disconnected literatures of statistics and econometrics, suggest improved
methods, investigate the asymptotic performance of competing methods and provide practical
recommendations. The recommended methods are applied to longitudinal data on children’s
wheezing, where we investigate the extent of state dependence and unobserved heterogeneity
and whether there is an effect of maternal smoking.

Keywords: Auto-regressive model; Dynamic model; Endogeneity; gllamm; Initial conditions;
Panel data; State dependence; Transition model; Unobserved confounding

1. Introduction

Responses in longitudinal or panel data are invariably dependent over time, even after condition-
ing on observed covariates. Different kinds of statistical models have therefore been proposed
to handle such longitudinal within-subject dependence. In this paper we focus on models for
binary data and on the prevalent case of ‘short panels’ with relatively few occasions. We analyse
wheezing status of children initially aged 7 years and followed up annually for 3 years.

A standard approach to handling longitudinal dependence is to use models where binary
responses are regressed on previous or lagged responses (typically just the preceding response).
Such models have many names; they are often called (Markov) transition models in statistics
(e.g. Diggle et al. (2002)) and dynamic models in econometrics (e.g. Hsiao (2002)). In our
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application, the probability of a child wheezing at an occasion could depend on whether or
not the child experienced wheezing at the previous occasion. This is because wheezing is an
inflammatory reaction that can ‘remodel’ a child’s airway structure. Such state dependence is
also often considered in social statistics, a prominent example being unemployment, where the
probability of a person being unemployed at an occasion could be higher if he was unemployed
at the previous occasion than if he was employed. This might be because having experienced
unemployment has changed the person in various ways and because becoming unemployed is not
the same as remaining unemployed. In this case, past experience has a genuine behavioural effect
in the sense that an otherwise identical person who did not experience the event would behave
differently in the future from a person who experienced the event (Heckman, 1981a). A policy
implication is that an intervention that changes the state at an occasion would affect future states.

Another standard approach is to use subject-specific effects to handle longitudinal depen-
dence. In statistics, random-effects models are typically used where subject-specific random
effects are (usually implicitly) assumed to be uncorrelated with the covariates (e.g. Verbeke and
Molenberghs (2000)). In econometrics, fixed effects approaches that relax this assumption are
more common (e.g. Wooldridge (2010)). The subject-specific effects are often interpreted as
representing the combined effects of omitted time constant covariates. For example, the proba-
bility of wheezing could vary between children over and above variability explained by observed
covariates (e.g. maternal smoking) and previous wheezing because of unobserved time constant
covariates (e.g. genes). Regarding the unemployment example, the probability of unemployment
could vary between people over and above variability explained by observed covariates (e.g. age)
and previous unemployment because of omitted person-specific covariates (e.g. ability).

It is evident that effects of previous responses (or states) and unobserved heterogeneity are
two competing but not mutually exclusive explanations of within-subject dependence. The two
types of dependence were called ‘true contagion’ and ‘false contagion’ respectively by Bates
and Neyman (1952) and ‘true state dependence’ and ‘spurious state dependence’ respectively
by Heckman (1981b). There are of course other explanations for longitudinal dependence, such
as serially correlated errors and dynamics in the latent responses (see, for example, Heckman
(1981a)), but the focus in this paper will be on models that can distinguish between the effects
of previous states and unobserved heterogeneity.

An obvious approach to distinguishing between state dependence and unobserved heterogene-
ity seems to be simply to include the lagged response as an additional covariate in a random-
intercept model. This is frequently done in applications and is also common in statistical papers
(see, for example, Albert and Follmann (2003, 2007), Sutradhar and Farrell (2007) and Song
et al. (2011)). Unfortunately, the corresponding maximum likelihood estimators can be quite
severely inconsistent owing to the initial conditions problem. The initial response at the start
of the observation period is affected by the random intercept and presample responses, and
ignoring this endogeneity leads to inconsistent estimation.

For continuous responses, methods for handling the initial conditions problem are standard
in econometrics (e.g. Anderson and Hsiao (1982), Bhargava and Sargan (1983) and Arellano
and Bond (1991)). Corresponding methods for other response types are less well developed,
perhaps because the problem is more challenging and because the contributions are scattered
in the largely disconnected literatures of statistics and econometrics. In this paper we discuss
several versions of each of two approaches to the problem for binary responses:

(a) modelling the initial response jointly with the subsequent response (e.g. Heckman (1981a))
and

(b) conditioning on the initial response (e.g. Wooldridge (2005)).
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We unify a range of models from the statistical and econometrics literatures by using a common
notation and path diagrams, highlight problems with previous implementations and propose
solutions. We point out, to our knowledge for the first time, that robust standard errors should be
used instead of model-based standard errors because the models are known to be misspecified.

In addition to the initial conditions problem, another problem that leads to inconsistent
estimators if ignored is the endogenous covariates problem where the random intercept is not
independent of the covariates. Such endogeneity is due to omitted subject level (time con-
stant) covariates that are correlated with the included covariates or, in other words, unob-
served between-subject confounding. Again, methods for handling this problem for continuous
responses are standard in econometrics (e.g. Mundlak (1978)), but corresponding methods for
binary responses are less well known, particularly in statistics. We therefore discuss methods for
handling endogenous covariates in dynamic or transition models for binary data. As far as we
are aware, the endogenous covariates problem has not previously been considered in the joint
modelling approach to the initial conditions problem. We also discuss, to our knowledge for
the first time, how missing data can be handled. In addition to analysing the wheezing data, we
investigate asymptotic performance and provide practical recommendations.

The plan of the paper is as follows. We first describe the data and research questions in Sec-
tion 2. We then introduce dynamic panel models or transition models for binary responses with
unobserved heterogeneity in Section 3. In Section 4 we describe the initial conditions problem
and review and extend approaches to address it. In Section 5 we discuss the endogenous co-
variates problem and how to handle it in conjunction with the initial conditions problem. The
methods proposed are used to distinguish between state dependence and unobserved hetero-
geneity for children’s wheezing and to investigate the effect of maternal smoking on children’s
wheezing in Section 6. In Section 7 we investigate the asymptotic performance of different ap-
proaches. Finally, we close the paper with a brief discussion in Section 8 where we outline further
extensions.

2. Children’s wheezing: data and research questions

The Harvard six cities study (e.g. Ware et al. (1984), Ferris et al. (1985) and Speizer (1990))
prompted radical revisions to the US Clean Air Act. As part of this study, complete grades
of elementary school children were enrolled at participating schools in each of six commu-
nities in the eastern and midwestern USA and then seen annually for a pulmonary function
examination. At the time of each examination, their parents completed a respiratory illness
questionnaire.

The data set that is used here was provided by Lawal (2003) and is on the history of wheezing
for N =412 white children who were examined annually at ages 7–10 years. The children lived
in Kingston-Harriman, Tennessee, and Portage, Wisconsin: two cities chosen because they have
very different ambient air quality. Kingston-Harriman is influenced by air pollution from several
metropolitan and industrial areas and has high concentrations of fine particulate matter and
acid aerosols whereas Portage has low concentrations.

A diagnosis of persistent wheeze required a positive response to the question

‘Does your child’s chest ever sound wheezy or whistling (1) apart from colds, or (2) most days or
nights?’.

At each occasion we also have self-reported data on the number of cigarettes smoked by the
mother per day.

The missingness patterns for wheezing are shown in Table 1 where we see that 65% of the
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Table 1. Missingness patterns for
wheeze in children’s wheezing data†

Frequency % Pattern

267 65 1 1 1 1
35 9 · 1 1 1}
26 6 1 1 · ·

6 2 1 1 · 1
19 5 1 1 1 ·}
12 3 · · 1 1

4 1 1 · 1 1
4 1 · 1 1 ·

16 4 · · · 1
14 3 1 · · ·

9 2 (other)

412 100

†Dots denote missing and 1 denotes
non-missing.

children have complete data. The 373 children with patterns above the horizontal line have at
least two contiguous non-missing values of wheezing and therefore contribute to the analysis if
previous wheezing status is required. The patterns that are connected by braces are equivalent
if previous wheezing status is required. Note that different children have their initial response
at different occasions depending on the missingness pattern.

A strong association has been reported between children’s respiratory infections over time
(e.g. Fuhlbrigge et al. (2001)). One explanation of this dependence is that children have varying
susceptibilities for respiratory infections. In practice we would expect that there is unobserved
heterogeneity where unknown characteristics of the children such as their genes and environ-
ment cause wheezing (e.g. Ober and Yao (2011)). A competing explanation is state dependence
where having experienced wheezing makes a child more prone to experience later wheezing. A
possible causal mechanism is that wheezing is an inflammatory response which remodels the
airway structure (e.g. An et al. (2007)). Our first research question concerns to what extent
the within-child dependence of children’s wheezing is due to state dependence and unobserved
heterogeneity.

In cross-sectional studies, a strong association has also been reported between exposure to
maternal smoking and wheezing in childhood (e.g. Gilliland et al. (2001)). However, such associ-
ations are likely to be affected by unobserved between-child confounding. Our second research
question therefore concerns whether there is a within-child effect of maternal smoking on chil-
dren’s wheezing.

3. A dynamic/transition random-intercept model for binary panel data

We use index j for subject and i for occasion or panel wave and consider models for binary
responses yij with time invariant covariates zj (with first element equal to 1) and time-varying
covariates xij. The process started at occasion Sj <0 for subject j and we shall later assume that
the process is observed at occasions i= 0, 1, : : : , T − 1, apart from missing data. We further let
yall

j = .ySjj, : : : , y0j, : : : , yT−1,j/′ and xall
j = .xSjj, : : : , x0j, : : : , xT−1,j/′ contain all responses and
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time-varying covariates respectively, from the inception of the process at occasion Sj to the end
of observation at occasion T −1.

The following type of Markov chain is considered:

Pr.yij|yi−1,j, : : : , ySj ,j, zj, xall
j , ζj/=Pr.yij|yi−1,j, zj, xij, ζj/, .1/

where ζj is a random subject-specific intercept. This is a first-order Markov chain where the
current response yij depends on the lag 1 response yi−1,j but not on yi−2,j, : : : , ySj ,j, for given
yi−1,j, : : : , ySj ,j, zj, xall

j and ζj. The Markov chain is non-stationary, since it is driven by time-
varying covariates xij.

We treat the covariates zj and xall
j as random variables because this is natural in observational

studies such as the wheezing study where maternal smoking is one of the covariates. The time-
varying covariates xij are strictly exogenous given yi−1,j, : : : , ySj ,j, zj and ζj, meaning that only
the current values xij of the time-varying covariates appear on the right-hand side of equation
(1), although xall

j appears in the conditioning set on the left. We assume that ζj is independent of
the covariates, which is an assumption that will be relaxed in Section 5 on handling endogenous
covariates.

We consider the following parametric dynamic/transition random-intercept model for the
Markov chain in equation (1):

Pr.yij =1|yi−1,j, zj, xij, ζj/=h−1.z′
jγz +x′

ijγx +βyi−1,j + ζj/: .2/

Here ζj ∼N.0,ψ/, γz and γx are the coefficient vectors for zj and xij respectively and β is the
coefficient of the lagged response yi−1,j. Since there is no occasion index for β, the Markov chain
is time homogeneous and we hence implicitly assume that the time interval between occasions
is approximately constant. h.·/ is a link function, which is invariably taken as the logit, h.pij/=
ln{pij=.1−pij/}, in (bio)statistics and as the probit, h.pij/=Φ−1.pij/, in econometrics, where
pij =Pr.yij =1|yi−1,j, zj, xij, ζj/ and Φ.·/ is the standard normal cumulative density function.

Model (2) can alternatively be written by using a latent response formulation, where a linear
model for latent responses yÅ

ij,

yÅ
ij = z′

jγz +x′
ijγx +βyi−1,j + ζj + "ij, .3/

is combined with a threshold model connecting the observed responses to the latent responses,

yij =
{

1 if yÅ
ij > 0,

0 otherwise.

The level 1 error "ij is assumed to have zero expectation, variance θ, and to be independent of
yi−1,j, : : : , ySj ,j, zj, xall

j and ζj. Defining the ‘total error’ for the latent responses as vij =ζj +"ij,
model (3) implies that the total errors for different occasions have correlations ψ=.ψ+ θ/. For
logit models, "ij has a standard logistic distribution with θ=π2=3 and, for probit models, "ij is
standard normal with θ=1.

Model (2), which is assumed to be the data-generating mechanism until Section 5, is shown
graphically in Fig. 1(a). Here the circle represents an unobserved or latent variable and the
squares represent observed variables. The longer arrows represent logit or probit regressions,
the short arrows represent Bernoulli variability and the curved double-headed arrows represent
correlations. To avoid clutter, we have not included a time constant covariate zj in any of the
diagrams in this paper (such a variable would have arrows pointing to each of the responses with
coefficient γz and have double-headed arrows connecting it to all time-varying covariates xij).
For the same reason, the subject index j is omitted from all variables. Fig. 1 shows the observed
process at four occasions (i=0, 1, 2, 3). The process has been on going since Sj <0, as indicated
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(a) (b)

γx γxγxγx

β βββ

ζ

y0 y1 y2 y3

x0 x1 x2x2 x3

1111

γxγxγx

βββ

ζ

y0 y1 y2 y3

x1 x2x2 x3

111

Fig. 1. (a) Data-generating mechanism and (b) naive model

by the arrow pointing to y0j from the preceding (presample) response. The presample responses
and their dependence on ζj and the presample covariates are not shown.

4. Initial conditions problem and solutions

If the process were observed from occasion Sj and there were no missing data, the likelihood
contribution for subject j would be

Pr.yall
j |zj, xall

j /=
∫

Pr.ySjj|zj, xSjj, ζj/

{
T−1∏

i=Sj+1
Pr.yij|yi−1,j, zj, xij, ζj/

}
φ.ζj/dζj,

whereφ.ζj/ is a normal density with expectation 0 and varianceψ. The corresponding likelihood
for a sample of N subjects becomes

Lall =
N∏

j=1
Pr.yall

j |zj, xall
j /:

4.1. The initial conditions problem
In practice, we usually have on-going process data where observation begins at a later occasion
i=0 than the start of the process at i=Sj < 0 and this precludes inference based on Lall. Here
we let the data be observed at occasions i=0, : : : , T −1, but we shall also discuss how missing
data should be handled.

Estimating the dynamic/transition model with a random intercept (2) from on-going process
data appears straightforward: just analyse the observed responses and include the lagged res-
ponse yi−1,j as an additional covariate in a standard logit or probit random-intercept model.
This means that only the responses y+

j = .y1j, : : : , yT−1,j/′ after the initial response y0j are
modelled since the lagged response y−1,j is missing for y0j. This naive approach assumes that
ζj and y0j are independent and the corresponding model is shown as a path diagram for four
occasions in Fig. 1(b). (The correlations between the variables x1j, x2j, x3j and y0j that enter
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the model only as covariates are shown because they are not assumed to be 0, but they are not
explicitly modelled.)

The likelihood contribution for the naive model is

Pr.y+
j |zj, x+

j , y0j/=
∫ {

T−1∏
i=1

Pr.yij|yi−1,j, zj, xij, ζj/

}
φ.ζj/dζj,

where x+
j = .x1j, : : : , xT−1,j/′. The corresponding likelihood

Lnaive =
N∏

j=1
Pr.y+

j |zj, x+
j , y0j/

is then maximized to estimate β, γz, γx and ψ. Unfortunately, this estimator is inconsistent
because the endogenous initial response is treated as exogenous by assuming that the conditional
density of the random intercept given y0j is the same as the marginal density φ.ζj/, giving rise
to the initial conditions problem.

Endogeneity arises because the initial response y0j is affected by ζj and the presample response
y−1,j which is missing. For example, if wheezing at occasion 1 is associated with initial wheezing
at occasion 0 because of both unobserved heterogeneity and positive state dependence, but the
model allows for only the latter, then the coefficient β of the lagged response, which is assumed
to be constant over time, will tend to be overestimated. Consequently, ψ will be underestimated
and the coefficients of covariates that correlate with yi−1,j, given the other covariates, will be
underestimated (in absolute value) as a consequence of overcontrolling for yi−1,j.

The initial conditions problem is not a major problem for long panel data with a large number
of occasions or panel waves, since the effect of misspecification for the initial response is then
swamped by the large number of responses that are correctly modelled. Indeed, consistent
estimators are obtained from Lnaive as T →∞ and N →∞ (e.g. Hsiao (2002)). However, naive
modelling is prone to produce severely biased estimators for short panels as shown in several
Monte Carlo studies (e.g. Aitkin and Alfo (1998), Fotouhi (2005), Arulampalam and Stewart
(2009) and Akay (2012)).

Two principal approaches have been proposed to address the initial conditions problem in
dynamic/transition random-intercept models for binary panel data: using joint models that
treat y0j as a response variable and using conditional models that condition on y0j, taking into
account the dependence between ζj and y0j. As we shall see, the implied models are intractable in
practice and approximate models must be used instead that we shall refer to as ‘working models’.

Since the working models per construction are misspecified generalized linear mixed mod-
els, consistent estimation is unlikely. The aim is therefore merely to produce almost consistent
estimators as N →∞ for fixed T . By ‘almost consistent’ we mean that the probability limit of an
estimator is sufficiently close to the parameters of interest for practical purposes. Because of the
misspecification, interval estimation should be based on robust standard errors from a sandwich
estimator (e.g. White (1982)) instead of model-based standard errors. Rather remarkably, we
are not aware of any previous work using robust standard errors in this context.

4.2. Joint working models
A joint model is specified for all observed responses yj, comprising the initial response y0j and
the subsequent responses y+

j , as follows:

Pr.yj|zj, xj/=
∫

Pr.y0j|zj, x0j, ζj/

{
T−1∏
i=1

Pr.yij|yi−1,j, zj, xij, ζj/

}
φ.ζj/dζj, .4/

where xj = .x0j, : : : , xT−1,j/′. The corresponding likelihood function is
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Ljoint =
N∏

j=1
Pr.yj|zj, xj/:

Unlike the probabilities Pr.yij|yi−1,j, zj, xij, ζj/ for the responses from occasion 1 onwards, the
probability Pr.y0j|zj, x0j, ζj/ of the initial response is not conditional on the previous response
because it is missing. The initial response probability can in principle be obtained by marginaliz-
ing the joint distribution of the initial response and all presample responses .ySj ,j, : : : , y−1,j, y0j/,
given the corresponding covariates and the random intercept, over all presample responses
.ySj ,j, : : : , y−1,j/ and presample covariates. Such marginalization is feasible in linear models
(e.g. Bollen and Curran (2004)), but only if we know exactly when the process started and the
value of the initial response. If the process is believed to have started long before observation
began and |β| < 1, a good approximation can be obtained by considering just a few previous
occasions. However, for binary data, Heckman (1981a) noted that the required marginalization
is ‘somewhat computationally forbidding’ even for a probit model without covariates.

4.2.1. Types of joint working models
The basic idea of Heckman (1981a) is to consider an approximation of the marginalized (or
‘reduced form’) distribution Pr.y0j|zj, x0j, ζj/. The link function for the initial response y0j is
taken to be that specified in model (2), which is an approximation since the link function for the
marginalized probability is generally different from the original link. A model is then specified
for the initial response that is different from that for the subsequent responses with a separate
set of parameters.

4.2.1.1. The Heckman model. Following Heckman (1981a), we write his probit model in
latent response form:

yÅ
ij = z′

jγz +x′
ijγx +βyi−1,j + ζj + "ij, i=1, : : : , T −1,

yÅ
0j ≈ z′

jgz +x′
0jgx + "0j:

We see that Heckman’s model for the subsequent responses is simply a probit version of model
(3), with correlations ψ=.ψ+1/ for the total errors vij = ζj + "ij. In the equation for the initial
response, the coefficients for the covariates are allowed to differ from those for the subsequent
responses. To obtain a good approximation, Heckman suggested that the model for the initial
response could also contain general functions (such as polynomials) of the current covariates as
well as presample time-varying covariates if they happen to be available. Importantly, Heckman
allowed the error term "0j for the initial response to be ‘freely correlated’ with the vij (i > 0),
interpreted to mean that there is a free correlation ρ0i between "0j and each vij (e.g. Hyslop
(1999)).

A challenge of the Heckman (1981a) approach is that T -dimensional integration is required
to obtain Pr.yj|xj, zj/, since the probability cannot in general be simplified as in model (4). The
likelihood Ljoint can still be maximized by using for instance simulated maximum likelihood
(e.g. Train (2009)), but the standard approach is to consider alternative models with one or two
random effects that restrict the correlation structure for the latent responses (e.g. Rabe-Hesketh
and Skrondal (2001)) and to perform the required lower dimensional integration in model (4)
by some form of Gaussian quadrature.

4.2.1.2. Factor models. One alternative to Heckman’s model is a one-factor model or item
response model for binary responses with occasion-specific factor loadings or discrimination
parameters λi (e.g. Bock and Lieberman (1970)):
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Pr.yij =1|yi−1,j, zj, xij, ζj/=h−1.z′
jγz +x′

ijγx +βyi−1,j +λiζj/, i=1, : : : , T −1,

Pr.y0j =1|zj, x0j, ζj/≈h−1.z′
jgz +x′

0jgx +λ0ζj/, .5/

where ζj ∼N.0, 1/. The corresponding latent response formulation is

yÅ
ij = z′

jγz +x′
ijγx +βyi−1,j +λiζj + "ij, i=1, : : : , T −1,

yÅ
0j ≈ z′

jgz +x′
0jgx +λ0ζj + "0j,

with the common factor ζj ∼N.0, 1/ assumed to be independent of the unique factors "ij, which
are themselves independent across occasions i = 0, : : : , T − 1. The total errors λiζj + "ij have
covariances λiλi′ and variances λ2

i +θ.
An advantage of this model is that the number of latent variables for subject j is reduced

from T to 1, leading to dramatic computational savings when T is not small. Arulampalam
and Stewart (2009) described the one-factor probit model as a simplified implementation of the
Heckman (1981a) model, but the model generally implies a more restrictive covariance structure
for the total errors and is not equivalent to Heckman’s model unless T = 3 (the model is not
identified for T =2).

Since model (2) is assumed to be the data-generating mechanism, there is no need to allow
for different correlations of the total errors vij and vi′j among subsequent responses i, i′ > 0. It
is therefore natural to use a restricted version of the one-factor model (5) that has loading λ0
for the initial response and λi =1 for the subsequent responses:

Pr.yij =1|yi−1,j, zj, xij, ζj/=h−1.z′
jγz +x′

ijγx +βyi−1,j + ζj/, i=1, : : : , T −1,

Pr.y0j =1|zj, x0j, ζj/≈h−1.z′
jgz +x′

0jgx +λ0ζj/, .6/

where ζj ∼N.0,ψ/. Such a model with a logit link was proposed by Aitkin and Alfo (2003), who
also suggested the use of non-parametric maximum likelihood estimation to leave the random-
intercept distribution unspecified (e.g. Laird (1978)). The structure of the restricted one-factor
model (6) is shown in Fig. 2(a). The model is attractive because it is parsimonious yet seems
tailor made for the desired flexibility.

(a) (b)

γxγxγxgx

βββ

ζ

y0 y1 y2 y3

x0 x1 x2x2 x3

111λ0

γxγxγxgx

βββ

ζ

y0 y1 y2 y3

x0 x1 x2x2 x3

111λ0

Fig. 2. Joint working model (restricted one-factor model for all responses): (a) exogenous covariate; (b)
endogenous covariate
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The factor working models are not generalized linear mixed models because of the model
parameters λi, but they are special cases of generalized linear latent and mixed models (Rabe-
Hesketh et al., 2004a) and can be estimated by maximum likelihood with adaptive quadrature
using the gllamm software (Rabe-Hesketh et al., 2005). gllamm can also be used for non-
parametric maximum likelihood estimation (Rabe-Hesketh et al., 2003) and provides robust
standard errors (Rabe-Hesketh and Skrondal, 2006). Multi-dimensional factor models could
also be used for T > 3 to mimic the correlation structure that was used by Heckman (1981a);
see the appendix of Heckman (1981c).

Arulampalam and Stewart (2009) and Akay (2012) performed simulations to investigate the
finite sample performance of factor working models with probit links (referred to as ‘Heckman’
in both papers). Following Heckman (1981b), both Arulampalam and Stewart (2009) and Akay
(2012) considered a Nerlove process (Nerlove (1971), page 367) for xall

j , and we now highlight
some simulation results for this process. Arulampalam and Stewart (2009) used the unrestricted
factor model (5) and found substantial bias for β when T =3 and N =200 (estimated as −13%
with β= 0:5) but acceptable bias (less than 3%) when T > 3. Akay (2012) used the restricted
factor model (6) and obtained better results for T =3 and N =200, namely an estimated bias of
5% (also with β=0:5), that decreased to 4% for T =4 and to 1% for T > 4. In our experience,
convergence problems frequently occur when attempting to fit factor working models with
T =3.

4.2.1.3. Models with two correlated random intercepts. Orme (2001) and Fotouhi (2005)
used models with two correlated random intercepts, ζ0j for the initial response and ζj for all
other responses:

Pr.yij =1|yi−1,j, zj, xij, ζj/=h−1.z′
jγz +x′

ijγx +βyi−1,j +σζj/, i=1, : : : , T −1,

Pr.y0j =1|zj, x0j, ζ0j/≈h−1.z′
jgz +x′

0jgx + ζ0j/:

In Orme (2001), σ is a free parameter and .ζ0j, ζj/′ have a bivariate standard normal distribution
with correlation ρo. In Fotouhi (2005), σ=1 and .ζ0j, ζj/′ is bivariate normal with variances set
equal (denoted τ2) and with correlation ρf . Unfortunately, it turns out that both formulations
imply implausible restrictions for the correlations between the total errors v0j = ζ0i + "0j and
vij =σζj + "ij in the latent response formulation. With Orme’s parameterization,

corr.v0j, vij/=ρo

√{
σ2

2.σ2 +1/

}
=ρo

√{
corr.vij, vi′j/

2

}
, i> 0, i′ �= i:

It follows that, in general,

corr.v0j, vij/< 2−1=2

and, if corr.vij, vi′j/> 1
2 , that

corr.v0j, vij/< corr.vij, vi′j/:

Arulampalam and Stewart (2009) incorrectly described Orme’s model as having a bivariate
normal distribution for ζ0j and ζ1j with unstructured covariance matrix, but such a model is
not identified. Fotouhi’s (2005) parameterization implies that

corr.v0j, vij/= ρf τ
2

√
.τ2 +1/

<
τ2

√
.τ2 +1/

= corr.vij, vi′j/,

which is a restriction that is implausible.
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Because of the undesired restrictions that were uncovered above, we recommend against
using joint working models with two correlated random intercepts. A further disadvantage,
compared with using one-factor models, is that the dimension of integration is doubled from
1 to 2.

4.2.1.4. Models with a single random intercept. The most restrictive model that has been
proposed includes just a common random intercept ζj ∼ N.0,ψ/, so λ0 =λi = 1 in model (5).
This model, which was used by Crouchley and Davies (2001), is easy to estimate but may provide
a poor approximation.

4.2.1.5. Recommendation. We recommend use of the one-factor model (6) of Aitkin and
Alfo (2003) which has one free factor loading for the initial response. The model appropriately
allows for different parameters for the initial response, requires only one random effect and
does not impose implausible restrictions for the correlations between the latent responses given
the covariates.

When there are missing data, it is possible to analyse the data for all occasions i for which
yij and xij are not missing for a subject. The easiest approach is to treat each occasion that
follows an occasion with missing data as an ‘initial’ occasion and to assume that the model in
the second line of expression (6) holds for all ‘initial’ responses. For instance, in Table 1, the
initial occasions are 0 for the first pattern (1111), 1 for the second pattern (·111) and 0 and 3 for
the fourth pattern (11·1). If the process started long before observation began, it is reasonable
to assume that the same model, with the same parameter values, holds for all initial responses.
If there are sufficient data, it is also possible to allow the parameters of the model for the initial
responses to depend on the occasion number i. Another way to relax the assumption is to analyse
only subjects with data at occasion 0 and to discard all data following an occasion with missing
data. We expect these approaches to work well if data are missing at random.

4.3. Conditional working models
A conditional model is specified for the subsequent responses, given the initial response and the
covariates zj and xj,

Pr.y+
j |y0j, zj, xj/=

∫ {
T−1∏
i=1

Pr.yij|yi−1,j, zj, xij, ζj/

}
g.ζj|y0j, zj, xj/dζj, .7/

and inferences are based on the likelihood function

Lcond =
N∏

j=1
Pr.y+

j |y0j, zj, xj/:

The term g.ζj|y0j, zj, xj/ in model (7) represents the conditional distribution of the random
intercept given the initial response and the covariates. The challenge in using the conditional
modelling approach is that the conditional distribution g.ζj|y0j, zj, xj/ is different from the
marginal random-intercept distribution φ.ζj/ that is used in the naive approach. The means
and variances of the conditional distribution vary according to the values of the condition-
ing set in contrast to the marginal random-intercept distribution which has zero mean and is
homoscedastic.

The required conditional density is

g.ζj|y0j, zj, xj/∝φ.ζj/Pr.y0j|zj, xj, ζj/,
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where

Pr.y0j|zj, xj, ζj/= ∑
y−1,j∈{0, 1}

Pr.y0j|y−1,j, zj, x0j, ζj/Pr.y−1,j|zj, xj, ζj/

is a two-component mixture of conditional probabilities Pr.y0j|y−1,j, zj, x0j, ζj/ that depend
on zj and x0j. If the process started at Sj < −1, then Pr.y−1,j|zj, xj, ζj/ is a two-component
mixture of probabilities Pr.y−1,j|y−2,j, zj, xj, ζj/ with weights Pr.y−2,j|zj, xj, ζj/. However,
Pr.y−1,j|y−2,j, zj, xj, ζj/ does not have a simple form because xj does not include x−1,j, so we
must integrate Pr.y−1,j|y−2,j, zj, x−1,j, ζj/ over the conditional density f.x−1,j|zj, xj, ζj/ and
similarly for Pr.y−2,j|zj, xj, ζj/ (which is also a two-component mixture if Sj <−2, and so on).
If the xall

j are not independent over time, f.x−1,j|zj, xj, ζj/ �=f.x−1,j|zj, ζj/, so g.ζj|y0j, zj, xj/

depends on xj via the presample probabilities Pr.y−1,j|zj, xj, ζj/. In addition, g.ζj|y0j, zj, xj/

depends directly on zj and x0j via Pr.y0j|y−1,j, zj, x0j, ζj/.
To derive the conditional densities and to show their dependence on x0j, we let the process

start at Sj =−1 with Pr.y−1,j|zj, xj, ζj/=0:5. In this case

g.ζj|y0j, zj, xj/∝ 1
2

∑
y−1,j∈{0, 1}

φ.ζj/Pr.y0j|y−1,j, zj, x0j, ζj/,

where the normalizing constant can be obtained by integrating the above expression over ζj by
using adaptive quadrature (Rabe-Hesketh et al., 2005). Fig. 3 shows the conditional densities

0
.0

5
.1

.1
5

.2
.2

5

−10 −5 0 5 10

Random intercept ζj
Fig. 3. Conditional densities g.ζj jy0j , x0j / for a dynamic/transition random-intercept logit model with one
time-varying binary covariate xij and parameters γx D2, βD2, ψD4, and no intercept, where the model for
y0j is the same as that for yij with i>0 and Pr.y�1,j jxj , ζj /D0:5 (curves on the left are for y0j D0 and curves
on the right are for y0j D1): , true conditional density, x0j D1I , true conditional density, x0j D0;

, approximating normal densities with the same means and variances
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(black curves) and normal approximations (grey curves) for a logit model with one time-varying
binary covariate xij and parameters γx = 2, β= 2 and ψ= 4, and no intercept (using 50-point
adaptive quadrature for the integral). The conditional densities depend on whether x0j =1 (full
curves) or x0j =0 (broken curves) and on whether y0j =0 (curves on the left) or y0j =1 (curves
on the right). We see that the conditional means depend strongly on x0j and y0j (ranging from
−2:39 to 0:89), but the conditional variances are not very different (ranging from 2:29 to 2:85).
The conditional densities are well approximated by the normal densities (in grey) with the same
means and variances. Similar patterns were found with other sets of parameter values.

It is important to note that conditioning on the initial response y0j implies that g.ζj|y0j, zj, xj/

�=g.ζj|y0j/, even under the assumption of level 2 exogeneity, g.ζj|zj, xj/=g.ζj/.

4.3.1. Types of conditional working models
Davies and colleagues (e.g. Davies and Crouchley (1985) and Davies and Pickles (1986)), Aitkin
and Alfo (1998) and Wooldridge (2005) suggested (apparently independently) approximating
the conditional distribution of the random intercept given y0j and the covariates by a working
model.

4.3.1.1. Wooldridge’s solution. Wooldridge (2005) suggested an auxiliary model for the con-
ditional random-intercept distribution in which the mean depends on the initial response and
covariates:

ζj ≈ δyy0j + z′
jδz +x+′

j δx+ +uj, .8/

where x+
j = .x1j, : : : , xT−1, /′ as before. Here uj ∼ N.0,ω/ is independent of y0j, zj and x+

j . Sub-
stituting approximation (8) in the latent response version of the dynamic random-intercept
model (3), we obtain the following working model for i=1, : : : , T −1:

Pr.yij =1|yi−1,j, y0j, zj, xj, uj/≈h−1{z′
j.γz +δz/+x′

ijγx +x+′
j δx+ +βyi−1,j + δyy0j +uj}:

.9/

This reduced form model is a standard random-intercept model with a larger set of covariates
and is therefore easy to estimate by using standard software for random-intercept logit or probit
modelling.

Wooldridge (2005) showed that consistent estimators of γx and β are obtained if the auxiliary
model is correct. However, the model is known to be only an approximation of the correct model,
so it is assumed that estimation will be almost consistent if the auxiliary model is almost correct.
Arulampalam and Stewart (2009) found that Wooldridge’s solution produced smaller finite sam-
ple bias forβwhen N =200 and T =3 than the joint approach with an unrestricted factor working
model. For T > 3, both estimators produced similar, insubstantial, bias (see also Rabe-Hesketh
and Skrondal (2013)).

4.3.1.2. Constrained Wooldridge solution. Wooldridge’s solution requires a separate param-
eter vector for the time-varying covariates at each occasion, i.e. x1j, x2j, up to xT−1,j. The model
therefore becomes large if the number of occasions and/or the number of time-varying covariates
is not small. Also, when there are missing data, Wooldridge’s solution requires complete-case
analysis (or listwise deletion) because a complete set of covariate values is required across all
occasions. Perhaps for this reason, Michaud and Tatsiramos (2011) and others replace x+

j by
the subject means x̄·j of the time-varying covariates, where the mean includes the initial values
x0j and presumably contributions from all occasions for which data are available. The auxiliary
model then becomes
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ζj ≈ δyy0j + z′
jδz + x̄·jδx̄ +uj: .10/

Rabe-Hesketh and Skrondal (2013) show that this approach is problematic because the initial
values of the time-varying covariates have an additional effect on ζj, after allowing for the effect
of xj via the presample response variable y−1,j. It is therefore unreasonable to constrain the
coefficients of x0j to be the same as the coefficients of xij, for i> 0. Akay (2012) found that the
constrained Wooldridge solution in approximation (10) leads to severe finite sample bias for β
when N = 200 for several processes for xall

j (except the Nerlove process) unless T is large (the
estimated bias for T =4 was between 9% and 15% for β=0:5, depending on the process for xall

j ).

4.3.1.3. Models without covariates. Aitkin and Alfo (1998) approximated the conditional
distribution g.ζj|y0j, zj, xj/ by a normal distribution:

ζj ≈ δyy0j +uj,

where uj ∼N.0,ω/ is independent of y0j (see also Mandel and Betensky (2008)). The reduced
form model is a random-intercept model for binary responses that simply includes the initial
response y0j as an additional covariate. The model is a special case of a model considered
by Fotouhi (2005) which allows the variance of the conditional random-effects distribution to
depend on the initial response:

ζj ≈ δyy0j +u1jy0j +u0j.1−y0j/,

where u1j ∼N.0,ω1/ is independent of u0j ∼N.0,ω0/, and both u1j and u0j are independent of
y0j.

Unfortunately, it is not recognized that the conditional distribution of the random intercept
also depends on the covariates zj and xj in these models as shown in Fig. 3 for Sj = −1.
Davies and Crouchley (1985) and Aitkin and Alfo (1998) advocated the use of non-parametric
maximum likelihood estimation for conditional working models. However, Aitkin and Alfo
assumed the same non-parametric distribution for ζj regardless of the values taken by y0j and
the covariates, apart from a location shift δy determined by y0j. Davies and Crouchley allowed
for different non-parametric distributions according to the values taken by y0j, but not according
to the covariate values.

4.3.1.4. Recommendation. We suggest approximating the conditional distribution g.ζj|y0j,
zj, xj/ with a normal distribution, using the auxiliary model

ζj ≈ δyy0j + z′
jδz +x′

0jδx0 + x̄′
·jδx̄ +uj, .11/

where uj ∼N.0,ω/ is independent of y0j, zj, x0j and x̄·j.
This model has the advantage that it takes into account dependence of the distribution on

the covariates and can be used without requiring complete-case analysis when there are missing
data. In contrast with the constrained Wooldridge solution (10), which implicitly constrains the
coefficients of the time-varying covariates xij at all occasions i to be the same, our recommended
model allows the coefficients of the initial values x0j of the time-varying covariates to be different
from the coefficients for subsequent occasions. This model was proposed by Rabe-Hesketh and
Skrondal (2013), who showed that the substantial finite sample bias that was found by Akay
(2012) for the constrained Wooldridge solution becomes negligible (and similar to the bias for
Wooldridge’s solution) when x0j are included as additional covariates. The structure of the
working model is shown in Fig. 4, where the short arrow pointing to ζj represents an additive
normally distributed error. For simplicity, we have omitted the coefficients for the paths from the
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Fig. 4. Conditional working model: random-intercept model for subsequent responses, conditioning on the
initial response y0j , the initial value x0j and mean Nx�j of the time-varying covariate xij , and the time constant
covariate zj (not shown)

xij to ζj. When the number of occasions is small and there are little missing data Wooldridge’s
solution can also be used.

We now consider approaches for handling missing data. Isolated observations (preceded and
succeeded by missing data) cannot be used. However, it is possible to utilize several sequences
of non-missing data for a subject (e.g. 11 ·11). In this case, the ‘initial’ values of the response and
time-varying covariates change between sequences (for example, for 11 ·11, the initial response is
y0j for the first sequence and y3j for the second sequence). It is possible to let the parameters of the
auxiliary model differ depending on which occasion is the initial occasion. Another possibility
is to analyse only those contiguous sequences of non-missing data that start at occasion 0,
i.e. to discard subjects with patterns such as · · 11. In these somewhat ad hoc approaches, the
missing values of xij are implicity imputed by x̄ij and the responses are assumed to be missing
at random.

5. The endogenous covariates problem and solutions

In the statistical literature, the covariates zj and xj are usually either treated as fixed (e.g. Verbeke
and Molenberghs (2000)) or implicitly assumed to be independent of the random intercept
ζj. As pointed out by Snijders and Berkhof (2008), if treated as fixed, the random-intercept
distribution is assumed not to depend on the covariates. In both statistics and econometrics,
it is typically assumed that there is level 1 exogeneity in the sense that the level 1 error "ij in
the latent response formulation (3) is independent of the covariates (or its distribution does not
depend on the covariates if covariates are treated as fixed).

However, these assumptions may be unrealistic in observational studies. The random intercept
represents the combined effect of omitted time constant covariates. If these omitted covariates,
and therefore the random intercept, are associated with the covariates in the model, we have level
2 endogeneity, which we also refer to as between-subject confounding. This kind of endogeneity
could be represented in Fig. 1(a) by including curves with double arrowheads connecting each
of the time-varying covariates xij with the random intercept ζj. The level 1 errors "ij in the
latent response formulation represent the combined effects of omitted time-varying covariates
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and, if these are not independent of the included covariates, we have level 1 endogeneity or
within-subject confounding.

We conjecture that the problem of inconsistent estimation due to level 2 endogeneity disap-
pears as T → ∞, since the ‘random-effects estimator’ of γx in this case may converge to the
fixed effects estimator which is consistent as N →∞ (see, for example, Blundell and Windmeijer
(1997) for the case of linear random-intercept models). Once again, naive modelling can produce
severe inconsistency for the short panels that we focus on in this paper.

We assume in what follows that there is level 1 exogeneity, although level 1 endogeneity can in
principle be addressed if credible instrumental variables are available. To relax level 2 exogeneity
in standard random-intercept logit models (without lagged responses), econometricians typi-
cally use conditional maximum likelihood estimation (e.g. Chamberlain (1980)). This approach
produces consistent estimators for γx even if there is level 2 endogeneity. No estimates are pro-
duced for γz and ψ, but these parameters cannot generally be consistently estimated anyway
if there is endogeneity. Fixed effects approaches for dynamic logit models have been developed
by Honoré and Kyriazidou (2000) and Bartolucci and Nigro (2010). The first approach has
many limitations (e.g. Wooldridge (2005)) whereas the latter is more promising. Unfortunately,
a conditional likelihood cannot be constructed for probit models.

In practice, level 2 endogeneity in static logit or probit random intercept models is addressed
by specifying an auxiliary model where the random intercept is regressed on the time-varying
covariates (e.g. Chamberlain (1980, 1984) or vice versa (e.g. Neuhaus and McCulloch (2006)).
Surprisingly, there seems to be no previous reference discussing these approaches for joint
working models.

5.1. Joint working models
To allow for level 2 endogeneity of the time-varying covariates xj in the restricted one-factor
model (6), we propose to use the auxiliary model

ζj = x̄′
·jδx̄ +uj, .12/

where uj ∼N.0,ω/ is independent of x̄·j.
For probit random-intercept models, Chamberlain (1980) suggested a variant where x̄·j is

replaced by xj with coefficients δx. In linear random-intercept models, the auxiliary equation is
just a device to obtain an appropriate linear predictor for consistent estimation (e.g. Mundlak
(1978)). In that case, uj need neither be normal nor homoscedastic and it is immaterial whether
x̄·j or xj are included (Chamberlain, 1982). In contrast, for logit or probit random-intercept
models, the auxiliary equation represents a proper statistical model which must be correctly
specified to ensure consistency (Chamberlain, 1984). Using x̄·j in place of xj now restricts
the correlations between the random intercept and the time-varying covariates to be constant
over time, a point that appears to have been overlooked by Arulampalam and Stewart (2009).
However, using the subject means x̄·j is often the only viable option in practice, especially when
xij has missing values or is not low dimensional, or T is not small. When there are missing data,
we believe that the means x̄·j should be based only on those occasions for which yij contributes
to the analysis. The xij − x̄·j for occasions that contribute to the analysis are then correlated
with xij but uncorrelated with ζj, and hence instrumental variables per construction.

Substituting equation (12) in equation (6), we obtain

Pr.yij =1|yi−1,j, zj, xj, uj/=h−1.z′
jγz +x′

ijγx + x̄′
·jδx̄ +βyi−1,j +uj/, i=1, : : : , T −1,

Pr.y0j =1|zj, xj, uj/≈h−1.z′
jgz +x′

0jgx + x̄′
·jλ0δx̄ +λ0uj/: .13/
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A graphical representation of this model is given in Fig. 2(b). Note that γz will no longer be
consistently estimated when xj is endogenous and should hence not be interpreted.

Model (13) imposes the restriction that the coefficients λ0δx̄ of x̄·j for the initial response are
λ0 times the corresponding coefficients δx̄ for the subsequent responses. We can either impose
this restriction in the estimation or simply ignore it by specifying a separate coefficient vector
δx̄0 for the initial response. Whichever approach is taken, we can then maximize the likelihood
aiming to obtain almost consistent estimators of β and γx.

5.2. Conditional working models
The conditional working model (11), which was proposed in Section 4.3.1 to handle the initial
conditions problem, already accommodates level 2 endogeneity by including the cluster means
x̄·j. As for the joint working models (and for the same reason), we believe that x̄·j should be based
only on those occasions for which yij contributes to the analysis. Hence, no extra remedies are
required for conditional working models, unless one of the auxiliary models without covariates
is used.

6. Analysis of children’s wheezing data

6.1. Model specification
To address the research questions that were stated in Section 2, we consider a logit version of
model (2) for children j =1, : : : , 412 and occasions i=1, 2, 3:

logit{Pr.yij =1|yi−1,j, zj, xij, ζj/}=γz0 +γz1zj +γx1x1ij +γx2x2i +βyi−1,j + ζj: .14/

Here yij is a binary response variable taking the value 1 if child j is wheezing at occasion i and 0
otherwise, zj is an indicator variable taking the value 1 if residency was in Kingston-Harriman
and 0 for Portage, x1ij represents the number of cigarette packs smoked by the mother of child
j at occasion i, and x2i represents the age at occasion i (which is the same for all children at a
given occasion).

For the joint modelling approach, we model the initial response at i=0 as

logit{Pr.y0j =1|zj, x0j, ζj/}=gz0 +gz1zj +gx1x10j +gx2x20j +λ0ζj:

To handle level 2 endogeneity, we use the auxiliary model

ζj = δx̄1 x̄1·j + δx̄2 x̄2·j +uj:

All available data are analysed, specifying an identical model for all initial responses that have
no observed lagged response. For this reason, age at the initial occasion, x20j, is not con-
stant and can be included in the model. The subject means x̄1·j and x̄2·j include contribu-
tions from only those occasions where the corresponding yij contributes to the analysis. The
subject mean of age therefore varies between children and can be included in the auxiliary
model.

For the conditional approach, we use the auxiliary model

ζj = δy0y0j + δx10x10j + δx20x20j + δx̄1 x̄1·j + δx̄2 x̄2·j +uj,

where we note that level 2 endogeneity of x1ij is accommodated. The first (and here only)
contiguous sequence of at least two non-missing responses for each child is analysed. As for the
joint approach, the subject means x̄1·j and x̄2·j are based on the sets of occasions for which the
response variable contributes to the analysis.
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6.2. Results
Table 2 gives estimates from the naive approach that ignores both the initial conditions and
endogenous covariates problems, the joint working model (assuming either exogeneity or level
2 endogeneity for smoking and age) and the conditional working model.

According to the naive estimates, the longitudinal within-child dependence is wholly due to
state dependence, with the odds of wheezing estimated to be as much as exp.2:34/=10:38 times
as high if wheezing was experienced at the previous occasion as if it was not, and an estimated
random-intercept variance of 0.00.

In contrast, the estimates for the joint working models suggest that the longitudinal
dependence is due to both state dependence and unobserved heterogeneity. For the model with
exogenous smoking and age, the estimated odds ratio for previous wheezing is considerably
reduced to exp.0:89/ = 2:43, with a 95% confidence interval of .1:14, 5:17/, and the estimated
random-intercept variance is 3.17. The intraclass correlation of the latent responses yÅ

ij, given the
observed covariates, is estimated as 3:17=.3:17 +π2=3/ = 0:49. The estimates are very similar
for the joint model where level 2 endogeneity of smoking and age is accommodated. Here,
testing the null hypothesis δx̄1 = δx̄2 = 0 can be viewed as testing the hypothesis of level 2
exogeneity. The estimates of these coefficients are minute and far from significant, suggest-

Table 2. Estimated parameters and robust standard errors for dynamic/transition random-intercept logit
models for children’s wheezing data: the naive model NC that ignores initial conditions and endogenous xij ,
joint working models AJ and RJ with exogenous and endogenous xij , and the conditional working model RC
that accommodates endogenous xij †

Parameter Estimate for Estimate for joint models Estimate for
naive model NC conditional

model RC
Exogenous xij Endogenous xij

(model AJ) (model RJ)

Structural parameters
β 2.34 (0.21) 0.89 (0.39) 0.86 (0.39) 0.81 (0.37)
γz0 −1.57 (0.97) −1.62 (1.18) −1.66 (2.88) −5.90 (3.96)
γz1 [City] 0.41 (0.18) 0.82 (0.33) 0.83 (0.33) 0.61 (0.30)
γx1 [Smoke] 0.01 (0.01) 0.02 (0.01) 0.01 (0.02) −0.06 (0.03)
γx2 [Age] −0.09 (0.10) −0.14 (0.13) −0.15 (0.13) −0.21 (0.14)
ψ 0.00 3.17

Nuisance parameters
gz0 −γz0 −0.22 (1.89) −0.15 (1.90)
gz1 −γz1 −0.05 (0.42) −0.07 (0.42)
gx1 −γx1 0.00 (0.02) −0.01 (0.02)
gx2 −γx2 0.07 (0.24) 0.06 (0.25)
λ0 −1 0.17 (0.46) 0.11 (0.44)
δy0 −γz0 2.40 (0.56)
δx10 −γx1 −0.08 (0.04)
δx20 −γx2 −0.40 (0.50)
δx̄1 0.01 (0.02) 0.16 (0.06)
δx̄2 0.00 (0.33) 0.85 (0.62)
ω 3.37 2.52

Number of 373 412 412 373
children

Log-likelihood −402.5 −620.0 −619.9 −385.1

†Estimated standard errors are given in parentheses.
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ing that smoking and age are level 2 exogenous. For the conditional working model, which
accommodates level 2 endogeneity of smoking and age, the estimated odds ratio for previous
wheezing status is similar to those for the joint working models.

We also investigated whether the extent of state dependence varies according to the covariates,
but none of these interactions are significant at the 5% level. No significant relationship is found
between the number of packs of cigarettes smoked by the mother and wheezing with any of the
approaches that were used. This result persists when exposure to smoking is represented by a
time-varying dummy variable for whether the mother smokes any cigarettes at each occasion.

Regarding the included confounders, age appears to have a negative linear relationship with
the log-odds of wheezing. To assess the possibility of a non-linear relationship we also included
quadratic and cubic components of age but these are not significant. As would be expected, the
estimate γ̂z1 from the joint model with exogenous xij implies that residing in highly polluted
Kingston-Harriman is associated with more wheezing than residing in Portage. In the naive
approach γz1 is severely underestimated because β is overestimated and z1j is highly correlated
with yi−1,j given xij. Note that γz1 cannot be consistently estimated by the joint endogenous
or conditional approaches. For parameters that can be almost consistently estimated by several
approaches, such as β and γx1 , we recommend comparing the estimates as a sensitivity analysis.

Causal inferences based on these data should be made with considerable caution. We have
access to only a subset of the Harvard six cities study and the study itself has many limitations.
Using self-reported maternal smoking as a proxy for children’s postnatal smoke exposure is
problematic and using the nicotine in the child’s hair as a biomarker would have been preferable
(e.g. Nafstad et al. (1997)). In vitro exposure to smoking was not obtained in the study, which
is unfortunate since it is more strongly associated with wheezing than postnatal exposure (e.g.
Gilliland et al. (2001)). We also lack information on respiratory syncytial virus bronchiolitis
which has been shown to be associated with wheezing (e.g. Stein et al. (1999)). Although we
have extended previous analyses to handle unobserved between-child confounding, there could
still be unobserved within-child confounding (level 1 endogeneity). We have also assumed that
the missing data are missing at random. Finally, the concept of wheezing, how to measure it and
its relationship to other respiratory outcomes such as asthma remain controversial in respiratory
epidemiology (e.g. Dundas and McKenzie (2006)).

The children’s wheezing data and a Stata ‘do file’ to perform the analyses presented here can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

7. Asymptotic performance

Since the aim of using working models is to produce almost consistent estimators, it is of interest
to compare the asymptotic performance of the various estimators and to investigate how close
to consistent they turn out to be in different situations.

To study asymptotic performance, we use an approach that was proposed by Rotnitzky and
Wypij (1994) and also used by Heagerty and Kurland (2001). The idea is to create ‘population
data’ in which each possible response pattern y0j, : : : , yT−1,j occurs with a relative frequency
equal to the joint probability that is implied by the assumed model for each set of covariate values.
In practice, this can be achieved by simulating data for a huge sample and making estimation
feasible by using categorical covariates and collapsing the data so that there is one observation for
each combination of covariate–pattern and response–pattern. The corresponding frequencies
are then used to weight the log-likelihood contributions from these covariate–response patterns.

Maximum likelihood estimates for a misspecified model minimize the Kullback–Leibler
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divergence, and the differences between these estimates and the parameter values represent
the inconsistencies of the estimators (e.g. White (1982)). The standard errors can be viewed as
asymptotic standard errors for a sample size equal to the sum Ns of the absolute frequencies
used to weight the log-likelihood contributions. To obtain standard errors for a given desired
sample size Nd, these standard errors are multiplied by a factor

√
.Ns=Nd/. The corresponding

robust standard errors can be viewed as the true asymptotic sampling standard deviations which
can be compared with the model-based asymptotic standard errors.

7.1. Design
Following Heckman (1981a), we consider a process that has been on going for 25 occasions
i=−25, −24, : : : , −1 before it is observed at occasions i=0, : : : , T −1. The process starts as

Pr.y−25,j =1/=0:5

and then progresses as

Pr.yij =1|zj, xij, yi−1,j, ζj/= logit−1.γz0 +γz1zj +γxxij +βyi−1,j +ζj/, i=−24, : : : , T −1:

The covariates zj and xij are binary, taking values −1 and 1, with zero means, unit standard
deviations, correlations corr.xij, xi′j/=0:5 for each pair of occasions i �= i′ and corr.zj, xij/=0:1
for each occasion i. ζj ∼N.0, 4/ and corr.ζj, xij/ is either 0 or 0.5 for each occasion i, i.e. xij is
either exogenous or level 2 endogenous. The coefficients are γz0 =0, γz1 =2 and β=1.

Data were simulated for N = 10 million subjects and T = 4, 5, 6 observed occasions. After
deleting the presample data, the remaining data were collapsed to 512 unique covariate–response
patterns of zj, x0j, x1j, x2j, x3j, y0j, y1j, y2j and y3j for T =4 (1024 and 2048 patterns for T =5
and T = 6 respectively). The corresponding frequency weights were used to weight the log-
likelihood contribution from each covariate–response pattern.

We used several versions of the joint and conditional modelling approaches to estimate the
target parameters γx and β. For the joint modelling approach, we used our recommended model
(6) when xij is assumed to be exogenous. Since λ0 cannot be estimated in standard software, we
also fitted the model with the constraint λ0 =1, as in Crouchley and Davies (2001). To allow for
endogenous xij, we used model (13) which assumes that δx̄0 = δx̄λ0. We also considered three
alternative versions of this model, with

(a) δx̄0 estimated freely (relaxing the constraint δx̄0 = δx̄λ0),
(b) x̄·j replaced by xj with constraint δx0 =λ0δx and
(c) x̄·j replaced by xj and with δx0 estimated freely.

For the conditional modelling approaches, we used working model (11), with different re-
placements for x0j and x̄·j. To consider a case analogous to assuming exogeneity in the joint
modelling approach, we used only x0j, based on the assumption that the conditional distribu-
tion of ζj given y0j and x0j does not depend greatly on xij at other occasions i > 0. As a naive
alternative, we also excluded x0j from the auxiliary model. We also considered four alternatives
with x0j and x̄·j replaced by

(a) xj,
(b) x+

j = .x1j, : : : , xT−1,j/′ as in Wooldridge (2005),
(c) x̄·j as in Akay (2012) and
(d) x̄+

·j = .x1j +: : :+xT−1,j/=.T −1/.

All models were estimated by using gllamm (Rabe-Hesketh et al., 2004b, Rabe-Hesketh and
Skrondal, 2012) with 20-point adaptive quadrature.
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7.2. Results
We start by discussing the results for T =4. When xij is exogenous, the naive approach severely
overestimates the lag parameter as β̂=2:08 (the true value is 1) and underestimates the random-
intercept variance as ψ̂=0:86 (the true value is 4) as expected. The coefficients of the time-varying
and time invariant covariates are underestimated as γ̂x =1:49 (the true value is 2) and as γ̂z1 =1:27
(the true value is 2). This underestimation is likely to be due to overcontrolling for the lagged
response because β is overestimated, since the lagged response is strongly associated with xij

(through direct dependence on xi−1,j which is correlated with xij) and with zj.
In contrast, the joint modelling approach assuming exogeneity and with a free parameter

λ0 gives estimates of these parameters within 1% of the true values when xij is exogenous.
The conditional modelling approaches also produce almost consistent estimates of β and
γx, underestimating the parameters by 3% when only x0j is included in the auxiliary model
(in addition to y0j) and producing estimates that differ no more than 2% from the true values
for the models that include both x0j and x̄·j or xj or x+

j . However, the asymptotic standard
errors of β̂ are up to 20% greater for the conditional approaches, whereas the standard errors
for γ̂x differ by no more than 5% between the different methods.

Graphs of the point estimates of β and γx for several of the estimation methods are given in
Fig. 5 for T =4, where the horizontal lines represent the true parameter values. The x-axis labels
denote the simulation conditions (exogenous and endogenous xij), and different line styles are
used for the different estimation methods. In the line styles, long dashes correspond to assuming
exogenous xij and short dashes correspond to allowing for endogenous xij (handled by including
x̄·j in the models). The line styles with dots represent less constrained models (λ0 and δx̄0 are
not constrained in the joint exogenous and endogenous approaches respectively, and x0j is not
excluded in the conditional approaches).

Fig. 5(a) shows the estimates of β by using joint modelling approaches. Assuming that xij is
exogenous (lines with long dashes) leads to severe inconsistency when this assumption is violated.
In contrast, constraining λ0 =1 when exogeneity is assumed or δx̄0 = δx̄λ0 when endogeneity is
allowed for by including x̄·j in the model (comparing lines without dots with lines with dots)
makes little difference (the absolute difference in point estimates is at most 0.05). Fig. 5(c)
shows that assuming exogeneity (lines with long dashes) leads to inconsistency also for γx when
the assumption is violated, but much less severe as a percentage of the true value than for β.
Constraining λ0 =1 (the line with long dashes and dots) makes this inconsistency considerably
larger. The overall conclusion appears to be that the models allowing for endogeneity produce
almost consistent estimators, regardless of whether the constraint δx̄0 = δx̄λ0 is used. Using xj

instead of x̄·j gives nearly identical estimates (which are not shown in Fig. 5). The standard errors
are smaller when the constraints δx̄0 = δx̄λ0 or δx0 =δxλ0 are used but, with these constraints,
whether xj or x̄·j are used makes little difference to the standard errors (less than 1%).

In Figs 5(b) and 5(d) for the conditional modelling approaches, we see that assuming
exogeneity (lines with long dashes) when it is violated leads to the greatest inconsistency.
Excluding x0j (lines without dots) increases the inconsistency in the model assuming exogeneity
when it holds and in the model allowing for endogeneity. Note, however, that excluding x0j

makes little difference when x+
j or x̄+

·j are included instead of x̄·j (which is not shown in Fig. 5)
and gives almost consistent estimates. The reason for the poor performance of the model that
includes x̄·j, but not x0j (short dashed lines without dots), appears to be that, in the model that
includes xj (equivalent to x0j and x+

j ), the estimated coefficient of x0j is quite different from
the coefficients of the xij for i=1, 2, 3 (when exogeneity holds, the coefficient of x0j is negative
and the other coefficients are 0). By including only x̄·j, all coefficients are effectively set equal,
giving poor estimates of the coefficients of xij for i = 1, 2, 3 and therefore inadequate control
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Table 3. 100(asymptotic estimate � parameter value) for the naive approach NC, joint approaches and
conditional approaches†

Condition Parameter NC Results for the following Results for the following
joint approaches: conditional approaches:

CJ AJ RJ EJ EC AC RC WC WÅ
C

Exogenous
T =4 β 108 −5 −2 −5 (0.65) 0 −3 14 −1 (0.71) 1 −1
T =5 63 −4 −1 −3 (0.52) 0 −3 8 −1 (0.55) 0 −1
T =6 38 −4 −1 −3 (0.44) 0 −3 5 −1 (0.46) 0 −1

Endogenous
T =4 β 134 96 97 2 (0.75) 4 46 16 2 (0.76) 3 2
T =5 129 84 88 2 (0.58) 4 42 11 2 (0.59) 3 2
T =6 117 74 78 2 (0.49) 3 38 8 2 (0.50) 2 2

Exogenous
T =3 γx −51 4 −1 −3 (0.46) 0 −6 6 −4 (0.46) −2 −4
T =4 −22 3 −1 −3 (0.37) 0 −6 3 −4 (0.37) −2 −4
T =5 −11 2 −1 −3 (0.32) 0 −5 2 −4 (0.32) −3 −4

Endogenous
T =4 γx 0 32 15 0 (0.42) 4 23 11 3 (0.47) 4 3
T =5 8 37 24 1 (0.35) 4 25 9 3 (0.37) 4 3
T =6 18 39 29 2 (0.30) 4 25 7 3 (0.32) 4 3

†Joint approaches: CJ without x̄j and with λ0 = 1 (Crouchley and Davies, 2001), AJ without x̄j and with free
λ0 (Aitkin and Alfo, 2003), recommended RJ with x̄j and δx̄0 = δx̄λ0 and experimental EJ with x̄j and free δx̄0.
Conditional approaches: EC conditions on x0j and y0j , AC conditions on x̄j and y0 (Akay, 2012), recommended
RC conditions on x̄j , x0j and y0 (Rabe-Hesketh and Skrondal, 2013), WC conditions on x+

j and y0 (Wooldridge,
2005) and WÅ

C conditions on xj and y0. For the recommended approaches, robust standard errors for a sample
size of 100 are given in parentheses.

for the between-subject effect of xij. The overall conclusion appears to be that models allowing
for endogeneity produce almost consistent estimators, as long as the coefficient of x̄+

·j is not
constrained equal to the coefficient of x0j. The standard errors differ by less than 2% between
the different almost consistent approaches that allow for endogeneity.

Comparing the joint and conditional approaches that include x̄·j (with constraint δx̄0 = δx̄λ0
for the joint approach and including x0j in the conditional approach) when xij is endogenous,
the standard errors for the conditional approach are 12% greater for γx, but only 1% greater for
β. For both approaches, the model-based asymptotic standard errors are lower than the true
asymptotic standard errors but only by at most 2%.

Table 3 reports 100 times the difference between the asymptotic estimate and the parameter
value for all the methods described in Section 7.1 for T =4, 5, 6. The naive estimator (denoted NC)
is severely inconsistent forβ and less so forγx. When xj is endogenous, the negative inconsistency
for γx due to the initial conditions problem is cancelled by the positive inconsistency due to
endogeneity. The joint approaches that assume exogeneity of xj (CJ with λ0 = 1 and AJ with
freeλ0) are severely inconsistent when xj is endogenous. The recommended joint and conditional
approaches (RJ and RC) are almost consistent regardless of the number of occasions T , as are
Wooldridge’s solution WC and Wooldridge’s solution with x0j as an additional covariate (WÅ

C).
The recommended conditional approach has a slightly larger asymptotic sampling standard
deviation than the recommended joint approach, but only when xj is exogenous. The constrained
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Wooldridge solution (AC) is substantially inconsistent when T =4 with decreasing inconsistency
as T increases.

8. Discussion

We have clarified, unified and extended methods for estimating dynamic/transition models for
binary data with unobserved heterogeneity. Specifically, we have discussed two approaches to
the initial conditions problem: joint modelling of the initial and subsequent responses and con-
ditional modelling of subsequent responses given the initial response. Both approaches require
approximate working models for which we have made recommendations. We also discussed the
role of robust standard errors, how to handle missing data and extensions of joint working
models to handle endogenous covariates.

To assess how close to consistent the estimators are, we have investigated their asymptotic
performance. When the time-varying covariates are exogenous, or when the working models
allow for level 2 endogeneity, the estimators are almost consistent. In the conditional approach,
it is important not to include the means of time-varying covariates across all occasions (including
the initial occasion) unless the time-varying variables at the initial occasion are also included.

What are the advantages and disadvantages of joint and conditional working models? Under
level 2 exogeneity of all covariates, an advantage of the joint approach is that γz and ψ can
be almost consistently estimated, in addition to γx and β. However, only γx and β can be
estimated almost consistently if there is level 2 endogeneity. As we saw in the children’s wheezing
application, the joint approach allows testing for level 2 endogeneity, unlike the conditional
approach. The joint approach may seem more natural, since the initial response is treated as a
response and not a covariate, but both approaches are based on approximations. An advantage of
joint modelling is that it is slightly more efficient, but the conditional approach is straightforward
to implement in standard software for random-intercept modelling of binary data, whereas the
joint approach requires more specialized software such as gllamm. However, estimation of
robust standard errors is not implemented in standard software.

The class of model that was considered in this paper can be extended in various directions.
Obvious extensions would be to relax the first-order Markov structure by considering further
lags of the response or to specify antedependence models where the lagged response has time-
varying coefficients βi. Francis et al. (1996) and Albert and Follmann (2003) considered models
where both the coefficients of the covariates and the effects of the random intercept depend
on the previous state. Another obvious extension would be to censored, ordinal or nominal
responses, or counts (see Wooldridge (2005) for discussion of the conditional approach for
different response types).

Instead of specifying the dynamics in terms of lags in observed responses yi−1,j, we could
consider latent Markov models (Coleman, 1964) with lags in the latent response yÅ

i−1,j (e.g.
Pudney (2008)). Heckman (1981c) discussed a very general dynamic model for binary responses
that also includes lags for both observed and latent responses. The assumption of longitudinal
independence for the level 1 errors "ij can also be relaxed (e.g. Hyslop (1999), Stewart (2006) and
Hajivassiliou and Ioannides (2007)). More general specifications of unobserved heterogeneity
than a random intercept can be used by considering several random coefficients or common
factors (e.g. Heckman (1981c)). For instance, the auto-regressive latent trajectory model of
Bollen and Curran (2004) can be extended to non-continuous responses.

The models that were considered in this paper can also be viewed as special cases of non-linear
state space models for longitudinal data, such as dynamic generalized linear mixed models (e.g.
Fahrmeir and Tutz (2001), section 8.4). Bayesian inference can also be performed; for instance,
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Hasegawa (2009) discussed different kinds of Markov chain Monte Carlo methods for dynamic
ordered probit models.

The single-equation models that were considered here could be extended to generalized struc-
tural equation models (e.g. Skrondal and Rabe-Hesketh (2004) and Rabe-Hesketh et al. (2004a)).
For instance, a dynamic simultaneous equation model with several non-continuous response
variables was used by Hajivassiliou and Ioannides (2007). Another possibility would be a struc-
tural equation model where the response and/or covariates of the dynamic/transition model are
treated as latent variables measured with error.
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