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Abstract

In conventional structural equation models, all latent variables and
indicators vary between units (typically subjects) and are assumed to be
independent across units. The latter assumption is violated in multilevel
settings where units are nested in clusters, leading to within-cluster de-
pendence. Different approaches to extending structural equation models
for such multilevel settings are examined. The most common approach
is to formulate separate within-cluster and between-cluster models. An
advantage of this set-up is that it allows software for conventional struc-
tural equation models to be ‘tricked’ into estimating the model. However,
the standard implementation of this approach does not permit cross-level
paths from latent or observed variables at a higher level to latent or ob-
served variables at a lower level, and does not allow for indicators varying
at higher levels. A multilevel regression (or path) model formulation is
therefore suggested in which some of the response variables and some of
the explanatory variables at the different levels are latent and measured
by multiple indicators. The Generalized Linear Latent and Mixed Model-

ing (GLLAMM) framework allows such models to be specified by simply
letting the usual model for the structural part of a structural equation
model include latent and observed variables varying at different levels.

Models of this kind are applied to the U.S. sample of the Program for
International Student Assessment (PISA) 2000 to investigate the relation-
ship between the school-level latent variable ‘teacher excellence’ and the
student-level latent variable ‘reading ability’, each measured by multiple
ordinal indicators.
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1 Introduction

The popularity of multilevel modeling and structural equation modeling (SEM)
is a striking feature of quantitative research in the medical, behavioral and so-
cial sciences. Although developed separately and for different purposes, SEM
and multilevel modeling have important communalities since both approaches
include latent variables or random effects to induce, and therefore explain, cor-
relations among responses.

Multilevel regression models are used when the data structure is hierarchical
with elementary units at level 1 nested in clusters at level 2, which in turn may
be nested in (super)clusters at level 3, and so on. The latent variables, or ran-
dom effects, are interpreted as unobserved heterogeneity at the different levels
which induce dependence among all lower-level units belonging to a higher-level
unit. Random intercepts represent heterogeneity between clusters in the over-
all response and random coefficients represent heterogeneity in the relationship
between the response and explanatory variables.

Structural equation models are used when the variables of interest cannot be
measured perfectly. Instead, there are either sets of items reflecting a hypotheti-
cal construct (e.g. depression) or fallible measurements of a variable (e.g. calory
intake) using different instruments. The latent variables, or factors, are inter-
preted as constructs, traits or ‘true’ variables, underlying the measured items
and inducing dependence among them. The measurement model is sometimes
of interest in its own right, but relations among the factors or between factors
and observed variables (the structural part of the model) are often the focus of
investigation.

Importantly, multilevel structural equation modeling, a synthesis of multilevel
and structural equation modeling, is required for valid statistical inference when
the units of observation form a hierarchy of nested clusters and some variables
of interest are measured by a set of items or fallible instruments. Multilevel
structural equation modeling also enables researchers to investigate exciting
research questions which could not otherwise be validly addressed. For instance,
in this chapter we will consider an important question in education: does student
ability (a student-level latent trait) depend on teacher excellence (a school-level
latent trait)?

Multilevel structural equation models could be specified using either mul-
tilevel regression models or structural equation models as the vantage point.
An advantage of using the multilevel regression approach taken here is that the
data need not be balanced and missing data are easily accommodated.

2 Response Types

2.1 Continuous responses

Structural equation models were originally developed for continuous responses.
In this case the ‘response model’ or ‘measurement model’ for subject j, relat-
ing the observed response vector yj of manifest variables or indicators to the
latent variables ηj , the observed covariates xj , and the error terms ǫj (usually
representing ‘unique factors’), has the general form

yj = νj + ǫj , ǫj ∼ N(0,Θ).
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Here νj are functions of ηj and xj (see Section 3) and Θ is the covariance
matrix of ǫj , usually specified as diagonal.

2.2 Non-continuous responses

2.2.1 Latent response formulation

When the responses are dichotomous or ordinal, the same model as above can be
specified for latent continuous responses y∗

j underlying the observed responses
yj . A threshold model links the observed response for the ith indicator to the
corresponding latent response,

yij = s if κis < y∗ij ≤ κi,s+1, s = 0, . . . , S − 1, κi0 = −∞, κiS = ∞.

The threshold parameters κis (apart from κi0 and κiS) can all be estimated if
the mean and variance of y∗

j are fixed. Alternatively, two thresholds can be
fixed (typically κi1 = 0 and κi2 = 1) for each response variable to identify the
means and variances of y∗

j .
Grouped or interval censored continuous responses can be modeled in the

same way by constraining the threshold parameters to the limits of the censoring
intervals. By allowing unit-specific right-censoring, this approach can be used
for discrete time durations.

An advantage of the latent response formulation is that conventional mod-
els can be specified for the underlying continuous responses. By changing the
distribution of ǫj , the latent response formulation can also be used to specify
logit models. Models for comparative responses such as rankings or pairwise
comparisons can be formulated in terms of latent responses conceptualized as
utilities or utility differences (e.g., Skrondal and Rabe-Hesketh, 2003).

2.2.2 Generalized linear model formulation

Unfortunately, the latent response formulation cannot be used to specify Poisson
models for counts. Instead, a generalized linear model formulation is typically
used where the conditional expectation of the response yij for indicator i given
xj and ηj is ‘linked’ to the linear predictor νij via a link function g(·),

g(E[yij |xj ,ηj ]) = νij . (1)

The linear model given above for continuous responses uses an identity link
whereas the latent response model for dichotomous responses can be expressed
as a generalized linear model with a probit or logit link. Other possible links
are the log, reciprocal and complementary log-log.

The final component in the generalized linear model formulation is the con-
ditional distribution of the response variable given the latent and explanatory
variables. The conditional distribution is a member of the exponential family of
distributions; a normal distribution is typically used for continuous responses, a
Bernoulli distribution for dichotomous responses and a Poisson distribution for
counts. In structural equation models with several latent variables, the mea-
surement models for different latent variables may require different links and/or
distributions.

For ordinal responses, the generalized linear model formulation is modified
so that the link function is applied to cumulative probabilities instead of expec-
tations,

g(P[yij > s|xj ,ηj ]) = νij − κi,s+1.

3



The threshold parameters κi,s+1 could alternatively be viewed as part of category-
specific linear predictors νs

ij (treating multinomial responses as multivariate),
but this will not be done here.

In structural equation modeling with categorical (dichotomous or ordinal)
manifest variables, the latent response formulation is predominant. In contrast,
item response models are invariably specified via the generalized linear model
formulation (e.g., Mellenbergh, 1994). Although Takane and de Leeuw (1987)
and Bartholomew (1987) pointed out the equivalence of the two formulations
for many models, the literatures are still quite separate.

In the remainder of this chapter, we will use the generalized linear model
formulation because it handles more response types. In most cases we are pri-
marily interested in the form of the linear predictors νij and view the choice
of link functions and distributions as of secondary interest. For response types
that can be modeled via a latent response formulation, the model for the latent
responses can be written as νij + ǫij .

3 Multilevel Measurement Models

3.1 Single-level factor models

Conventional single-level factor models can be specified as

νj = β + Ληj , ηj ∼ N(0,Ψ).

For observed or latent continuous responses it follows that

y∗

j = β + Ληj + ǫj , ǫj ∼ N(0,Θ). (2)

Here νj and y∗

j are I-dimensional vectors with elements corresponding to the
indicators, β is a vector of intercepts, Λ a matrix of factor loadings, ηj a m-
dimensional vector of common factors and ǫj a vector of unique factors. The
covariance structure of the latent responses becomes

Σ ≡ Cov(y∗

j ) = ΛΨΛ′ + Θ, (3)

which is called a ‘factor structure’. The factor model can be specified either
directly as in (2) or via the above covariance structure.

An example of an ‘independent clusters’ two-factor model (where each indi-
cator measures one and only one common factor) for I=6 is
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where the first factor is measured by the first three indicators and the second
factor by the remaining indicators.

A path diagram for this model is given in Figure 1 where circles represent
latent variables and rectangles observed variables. For continuous observed
responses the long arrows represent linear relations between the responses and
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the common factors and the short arrows represent linear relations between the
responses and the unique factors. For other response types the long arrows
represent possibly nonlinear relations depending on the link function and the
short arrows represent residual variability, following for instance a Bernoulli or
Poisson distribution.
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Figure 1: Independent clusters two-factor model

Factor models have a similar structure to random coefficient models as has
been pointed out in the context of growth curve models (Skrondal, 1996), item
response models (Rijmen et al., 2003; De Boeck and Wilson, 2004) and more
generally in Skrondal and Rabe-Hesketh (2004). A two-level random coefficient
model can be written as

νj = Xjβ + Zjηj ,

where the design matrix of known constants Zj (varying over clusters j) takes
the place of the parameter matrix of unknown factor loadings Λ (constant over
clusters j).

Generalized linear latent and mixed models (GLLAMMs) (Rabe-Hesketh et
al., 2004) unify factor models and random coefficient models by allowing each
latent variable to multiply a term of the form Zjλ, where Zj is a design matrix
and λ a parameter vector. The GLLAMM formulation of the independent
clusters two-factor model discussed previously is as follows:
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where Z1j and Z2j are design matrices containing only fixed constants whereas
λ1 and λ2 are vectors of factor loadings. If the factor loadings are known con-
stants, the products Z1jλ1 and Z2jλ2 become column vectors, giving a random
coefficient model.

When viewing factor models as similar to random coefficient models, it is
useful to describe the indicators as level-1 units and the subjects as level-2 units
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(or clusters). In the remainder of this chapter, we will therefore denote higher
levels in which subjects are nested as level-3, level-4, etc.

3.2 Two-level factor models

Multilevel factor models are typically required if the subjects of interest are
clustered in some way, for instance students clustered in schools.

3.2.1 Within and between formulation

The two-level factor model for subjects j in clusters k is often formulated in
terms of the within-cluster and between-cluster covariance matrices, ΣW and
ΣB, respectively (e.g., Longford & Muthén, 1992; Poon & Lee, 1992; Longford,
1993; Linda, Lee & Poon 1993).

For continuous observed or latent responses, the following two-stage formu-
lation can be used

y∗

jk ∼ N(µk,ΣW )

µk ∼ N(µ,ΣB). (4)

Here, µ is the overall intercept and µk are cluster-specific intercepts. Factor
structures of the form in (3) are then specified for the two covariance matrices

ΣW = Λ(2)Ψ(2)Λ(2)′ + Θ(2),

and
ΣB = Λ(3)Ψ(3)Λ(3)′ + Θ(3).

Here we have used the superscript (2) to denote subject-level variables and
parameters and (3) to denote the cluster-level counterparts. For consistency
with the literature, we call the model a two-level factor model although we
think of items as level-1 units, subjects as level-2 units and clusters as level-3
units.

The two-level factor model can alternatively be expressed more explicitly
using a two-stage formulation with a within-model and a between-model:

y∗

jk = µk + Λ(2)η
(2)
jk + ǫ

(2)
jk

µk = µ + Λ(3)η
(3)
k + ǫ

(3)
k . (5)

The first equation for the latent responses y∗

jk represents a common factor model
which includes random intercepts µk that vary over clusters k. The second
equation represents a common factor model for the random intercepts µk.

For the case of a single common factor at each level, a path diagram re-
flecting the above specification is given in Figure 2. Following the conventions
used by Muthén and Muthén (2004), the models for the within and between co-
variance matrices are labeled ‘within’ and ‘between’. The within-model shows
the relationship between the observed responses and the common factor η

(2)
1 at

the subject level. The solid circles attached to the responses indicate that the
intercepts µk of these responses vary randomly in the between-model. In the
between-model, these random intercepts are shown as circles labeled with the
names of the corresponding responses. These are modeled using a common and
unique factors at the cluster level.
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3.2.2 Reduced-form formulation

Substituting from the second line of (5) for µk in the first line, we obtain the
reduced form

y∗

jk = µ + Λ(3)η
(3)
k + ǫ

(3)
k

︸ ︷︷ ︸

µ
k

+Λ(2)η
(2)
jk + ǫ

(2)
jk .

A path diagram reflecting the reduced form is given in the left panel of
Figure 3. Following the conventions in Rabe-Hesketh et al. (2004), nested frames
represent the nested levels; variables located within the outer frame labeled
‘cluster k’ vary between clusters and have a k subscript and variables also inside
the inner frame labeled ‘unit j’ vary between units within clusters and have both
the j and k subscripts. Only common factors are enclosed in circles.

3.3 Variance components factor model

Instead of specifying separate factor models for the two levels, we could think
of a single factor model defined for subjects in which the common factors have
random intercepts varying between the clusters. In the unidimensional case,

with a single common factor η
(2)
jk at level 2, the measurement model for this

factor is combined with a structural model of the form

η
(2)
jk = η

(3)
k + ζ

(2)
jk . (6)

Such a variance components factor model is analogous to a MIMIC (‘Multiple-
Indicator Multiple-Cause’) model (e.g., Jöreskog & Goldberger, 1975) except
that the common factor is not regressed on observed covariates but on a random
intercept representing the effects of unobserved covariates at a higher level. An
obvious application is in item response models if, for example, children’s mean
latent abilities vary randomly between schools (see e.g., Fox & Glas, 2001).

This model is a special case of the two-level factor model with the same
number of common factors at both levels, no unique factors at level 3 and with
factor loadings set equal across levels, Λ(2) = Λ(3). Using the conventions of
Muthén (e.g., Muthén and Muthén, 2004) the unidimensional variance com-
ponents factor model would be depicted as in Figure 2 but without the short
arrows in the ‘between’ model. Using our conventions, a natural representation
is that given in Figure 3 (b).

The cluster-level unique factors in the two-level factor model can be thought
of as representing differential item functioning between clusters. In Longford
and Muthén’s (1992) application to test scores in eight areas of mathematics for
students nested in classes, the unique factors were interpretable as representing
the variability in emphases between classrooms, partly due to tracking.

Note that if the factor loadings are set to 1 the model simply becomes a
multilevel regression model. Such a model has been used by Raudenbush &
Sampson (1999).

4 Multilevel Structural Equation Models

Just as for the single-level case, multilevel measurement models are sometimes of
interest in their own right. However, it is often the nature of the relationships
between latent variables at different levels that is the primary focus of the
investigation.
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4.1 Single-level models

The M latent variables ηj are defined via a measurement model as described in
Section 3. The structural model for the latent variables then allows these latent
variables to be regressed on each other and on observed covariates. This model
often has the form (e.g., Jöreskog, 1973; Muthén, 1984)

ηj = Bηj + Γwj + ζj . (7)

Here B is a regression parameter matrix for the relations among the latent
variables ηj , wj is a vector of covariates, Γ is a parameter matrix for the
regressions of the latent variables on the covariates, and ζj is a vector of errors
or disturbances. The relationships among the latent variables are recursive if
the B matrix is strictly upper (or lower) diagonal.

4.2 Multilevel structural equation models

Multilevel structural equation models can be specified in a number of differ-
ent ways. The most common approach is the traditional two-stage approach
described for factor models in Section 3.2.1. In this case separate structural
equation models are specified for the within and between covariance matrices
(e.g., Muthén, 1994; Lee & Shi, 2001). A recent application of this approach in
education is described by Everson and Millsap (2004). In contrast, the approach
advocated here is based on including latent variables in random coefficient or
generalized linear mixed models.

One possibility is to specify a conventional random coefficient model but
let the response variable be a latent variable, for instance ability. The intercept
and possibly effects of covariates are then specified as varying randomly between
clusters (e.g., Fox and Glas, 2001). This is an extension of the unidimensional
variance components factor model to include covariates and possibly random co-
efficients of covariates. The model includes direct paths from cluster-level latent
variables to subject-level latent variables as shown for the variance components
factor model in Figure 3b. While equivalent models can often be specified via
separate models for the within and between covariance matrices, they require
a large number of constraints, including nonlinear constraints (Rabe-Hesketh
et al., 2004). Furthermore, the simpler structure would not be apparent from
separate diagrams for the within and between-models.

Remaining within the random coefficient framework, we can also let co-
variates be latent variables. If these covariates are cluster-specific, the model
includes responses varying at different levels. This situation is accommodated
within the framework suggested by Goldstein and McDonald (1988) and Mc-
Donald and Goldstein (1989) for continuous responses. Fox and Glas (2003)
describe a model where both subject-level and cluster-level covariates are latent
and where the measurement models are item response models. Unfortunately,
the traditional two-stage formulations described in Section 3.2.1 cannot handle
responses varying at different levels. This is a rather severe limitation for a
multilevel structural equation model.

Rabe-Hesketh et al. (2004) develop the Generalized Linear Latent and Mixed
Modeling (GLLAMM) framework consisting of a response model and a struc-
tural model. The response model has the form described in Section 3.1 but with
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where we have omitted the indices for units at different levels for notational
simplicity. This model allows specification of random coefficient models, mea-
surement models or both, as well as hybrid models. The structural model has
the same form as (7) for single-level models but is specified for the vector ηj

of all latent variables for subject j. This allows lower-level latent variables to
be regressed on same or higher-level latent and observed variables. This frame-
work permits specification of random coefficient models with latent responses or
covariates at different levels. In addition, models in the two-stage formulation
can also be specified. One limitation is that it is not possible to have a ran-
dom coefficient of a latent covariate as this would correspond to a (cross-level)
interaction among latent variables.

In Section 6 we will apply a model of the kind shown in Figure 4. A subject-
level latent variable is regressed on a cluster-level latent variable and has a
cluster-level random intercept. Moreover, the subject-level latent variable is
regressed on covariates.

5 Estimation

5.1 Continuous responses

5.1.1 Maximum likelihood

For the continuous case, McDonald and Goldstein (1988, 1989) and Lee (1990)
derived theory and succinct expressions for the likelihood, allowing two-level
structural equation models to be estimated. For unbalanced multilevel designs
with missing items, Longford and Muthén (1992) proposed a Fisher scoring
algorithm whereas Raudenbush (1995) and Lee and Poon (1998) suggested EM
algorithms.
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5.1.2 Ad-hoc methods

Because these approaches require specialized software, several two-stage alter-
natives have been proposed. Muthén (1989) suggests an approach which cor-
responds to maximum likelihood for balanced data where all clusters have the
same size n. In this case, the empirical covariance matrix SW of the cluster-
mean centered responses is a consistent and unbiased estimator for ΣW ,

E(SW ) = ΣW .

In contrast, the expectation of the empirical covariance matrix SB of the cluster
means is

E(SB) = ΣB +
1

n
ΣW .

Within and between structural equation models are specified for ΣW and ΣB .
Since ΣW contributes to both E(SB) and E(SW ), both models must be fitted
jointly to the empirical covariance matrices SB and SW . This can be accom-
plished by treating the two matrices as if they corresponded to different groups
of subjects and performing two-group analysis with the required constraints.
If there are only a relatively small number of different cluster sizes, a multiple
group approach (with more than two groups) can be used to obtain maximum
likelihood estimates. These approaches as well as an ad-hoc solution for the
completely unbalanced case are described in detail in Muthén (1994) and Hox
(2002).

Goldstein (1987, 2003) suggests using multivariate multilevel modeling to
estimate ΣW and ΣB consistently by either maximum likelihood or restricted
maximum likelihood. Structural equation models can then be fitted separately
to each estimated matrix. Advantages of this approach are that unbalanced data
and missing values are automatically accommodated, and that it is straightfor-
ward to extend to more hierarchical levels and to models where levels are crossed
instead of nested.

An alternative ad-hoc approach, similar to the work by Korn and Whitte-
more (1979) was proposed by Chou et al. (2000). Here, a factor or structural
equation model is estimated separately for each cluster. The estimates are sub-
sequently treated as responses in a between-model, typically a regression model
with between-cluster covariates and an unstructured multivariate residual co-
variance matrix. This approach allows, and indeed requires, all parameters to
vary between clusters, including factor loadings.

A common feature of these two-stage procedures is that standard errors
provided from the second stage are incorrect since they treat the output from
the first stage as data or as empirical covariance matrices.

5.2 Non-continuous responses

For models with noncontinuous responses maximum likelihood estimation or
Bayesian methods are typically used. Although computationally demanding,
these methods automatically handle lack of balance and missing data and are
straightforward to extend to include for instance mixed responses and nonlinear
relations among latent variables. We note in passing that the ad-hoc approaches
of Goldstein (1987, 2003) and Chou et al. (2000) discussed above can also be
used for non-continuous responses.
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5.2.1 Maximum likelihood estimation

The major challenge in maximum likelihood estimation of multilevel latent vari-
able models for noncontinuous responses is to integrate out the latent variables
since closed form results typically do not exist. Thus, integration usually pro-
ceeds by either by Monte Carlo simulation or using numerical methods.

Lee and Shi (2001) and Lee and Song (2004) use Monte Carlo EM (MCEM)
algorithms, employing Gibbs sampling to evaluate the integrals in the E-step.
Rabe-Hesketh et al. (2004) suggest using Newton-Raphson where the latent
variables are integrated out using adaptive quadrature, see also Rabe-Hesketh
et al. (2005).

5.2.2 Mean posterior estimation

As in other areas of statistics, Markov Chain Monte Carlo (MCMC) methods
have recently attracted considerable interest in multilevel structural equation
modeling. Interestingly, very diffuse priors are almost invariably specified in
practice. The mean of the posterior distribution is in this case often quite close
to the mode of the likelihood. MCMC can thus be viewed as a convenient
and powerful way of implementing maximum likelihood estimation for complex
models.

MCMC methods have been used by Ansari and Jedidi (2000), Fox and Glas
(2001) and Goldstein and Browne (2005) for binary responses and by Song and
Lee (2004) for continuous and ordinal responses.

6 Application:
Student ability and teacher excellence

To investigate whether student ability measured at the student-level depends on
teacher excellence measured at the school-level we analyze data from the Pro-
gram for International Student Assessment (PISA) 2000 Assessment of Reading
(OECD, 2001) using multilevel structural equation modeling.

6.1 Data description

The data consist of student responses to a reading test, a student background
questionnaire and responses to a school questionnaire completed by principals.

At the student level, we focus on a unidimensional latent factor – the ability
to interpret written information. We chose four items for this construct from
the reading unit of the test. Three of the items have dichotomous responses
and one item has ordinal responses. We included four observed covariates from
the student questionnaire: Parents’ education (one or both parents have higher
education = 1, otherwise = 0), Male (male = 1, female = 0), Reading (some
time spent on reading every day = 1, otherwise = 0), and English (English
spoken at home = 1, otherwise = 0).

The school data include ordinal responses from principals to ten school
survey questions measuring teacher excellence: teacher expectations, student-
teacher relations, teacher turnover, teachers meeting individual students’ needs,
teacher absenteeism, teachers’ strictness with students, teachers’ morale, teach-
ers’ enthusiasm, teachers taking pride in the school, and teachers valuing aca-
demic achievement.
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The sample comprises 2484 tenth grade students from 131 U.S. schools.
School-level covariates were not included because this would have drastically
reduced the number of schools due to missing data.

6.2 Model specification

In addition to developing measurement models for student interpretation abil-
ity and teacher excellence, we will estimate a structural equation model where
student interpretation ability is regressed on student-level observed covariates
and the school-level latent covariate teacher excellence. There is some doubt
regarding the validity of the measurement of teacher excellence since this was
based on a questionnaire completed by the principal. If teacher excellence is
found to be predictive of student interpretation ability, this could be seen as
supportive evidence for the validity of both instruments.

6.2.1 Student-level model

The single-level factor model discussed in Section 3.1 is estimated for the student
data, where the common factor represents interpretation ability. The measure-

ment model for interpretation ability η
(2)
1jk can be written in terms of underlying

continuous responses y∗

jk. For item i for student j in school k we have

y∗ijk = βi + λiη
(2)
1jk + ǫijk, i=1, 2, 3, 4. (9)

Here βi are item intercepts and λi factor loadings or discrimination parameters,
and the ǫijk have logistic distributions. Interpretation ability is measured by
three dichotomous items and one ordinal item (item 2). For the dichotomous
items (i = 1, 3 and 4),

yijk =

{
1 if y∗ijk > 0

0 otherwise ,

and for the ordinal item (i = 2), the intercept β2 is set to 0 and the threshold
model is specified as

y2jk =







1 if −∞ ≤y∗2jk< κ1

2 if κ1 ≤y∗2jk< κ2

3 if κ2 ≤y∗2jk< κ3

4 if κ3 ≤y∗2jk<∞.

This is a logistic graded response model (Samejima, 1969) where −βi, i=1, 3, 4,
can be interpreted as the thresholds for the dichotomous items.

We regress student interpretation ability on the four student background
covariates (Parents’ education, Male, Reading and English):

η
(2)
1jk = γ′wjk + ζ

(2)
1jk.

Here wjk = [w1jk, w2jk, w3jk, w4jk]′ is a vector of the four covariates, γ =

[γ1, γ2, γ3, γ4]
′ the corresponding regression parameter vector and ζ

(2)
1jk a vector

of student-level disturbances.
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6.2.2 School-level model

Teacher excellence is measured by ten ordinal items, with response categories
‘dissatisfied’, ‘somewhat satisfied’ and ‘satisfied’. The following model was used
for the underlying continuous responses for items i and schools k:

y∗ik = η
(3)
1k + ǫik,

where η
(3)
1k represents teacher excellence and ǫik has a logistic distribution. The

ordinal responses are generated from the threshold model

yik =







1 if −∞≤ y∗ik <α1 + τi1
2 if α1 + τi1≤ y∗ik <α2 + τi2
3 if α2 + τi2≤ y∗ik <∞,

where αs (s=1, 2) is the sth threshold for item 1, whereas τis (i=2, . . . , 10) is
the difference in the sth threshold between item i and item 1. Thus, αs +τis
corresponds to the threshold parameter κis for the ordinal responses as defined
in Section 2.2.1. The model is a one-parameter version of the logistic graded
response model which assumes that all items have the same discrimination.

The structural model is trivial if we do not wish to include school-level
covariates:

η
(3)
1k = ζ

(3)
1k .

6.2.3 Joint model

A joint model for the student data and school survey data combines the student-
level and school-level models. In this example, students are the level-2 units
and schools the level-3 units. Under the general response model in (8), the joint
measurement model combines the item response model for the school survey
data and a variance components factor model as discussed in Section 3.3 for the
student data. A path diagram for this kind of model is shown in Figure 4.

For school k the response model is

y∗

k = Xkβ + η
(2)
1jkZ

(2)
1k λ

(2)
1 + η

(3)
1k Z

(3)
1k λ

(3)
1 + η

(3)
2k Z

(3)
2k λ

(3)
2 .

Specifically, we can write the model for the responses of a student j from school
k and a principal from school k as:



















y∗1jk

y∗2jk

y∗3jk

y∗4jk

y∗1k

...

y∗10,k



















=



















1 0 0

0 0 0

0 1 0

0 0 1

0 0 0

...
...

...

0 0 0
























β1

β3

β4




 + η

(2)
1jk






I4×4

010×4














1

λ
(2)
2

λ
(2)
3

λ
(2)
4









+ η
(3)
1k






04×1

I10×1




 1
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+ η
(3)
2k

[
014×1

]
1 +


















ǫ1jk

ǫ2jk

ǫ3jk

ǫ4jk

ǫ1k

...
ǫ10,k


















.

In the vectors and matrices of the above model, student-level elements are
placed above the horizontal lines and school-level elements below the horizontal

lines. η
(2)
1jk represents student interpretation ability, η

(3)
1k teacher excellence, and

η
(3)
2k the school-level random intercept of interpretation ability. The latter is

multiplied by zero for each item since the random intercept does not affect the
items directly.

In the structural model, teacher excellence becomes an explanatory vari-
able for interpretation ability. Moreover, interpretation ability is regressed on

student-level covariates and the school-level random intercept η
(3)
2k which allows

students’ mean ability to vary randomly between schools. The structural model
can be written as

η = Bη + Γw + ζ.

Specifically,







η
(2)
1jk

η
(3)
1k

η
(3)
2k







=





0 b12 1
0 0 0
0 0 0











η
(2)
1jk

η
(3)
1k

η
(3)
2k







+





γ1 γ2 γ3 γ4

0 0 0 0
0 0 0 0












w1jk

w2jk

w3jk

w4jk








+







ζ
(2)
1jk

ζ
(3)
1k

ζ
(3)
2k






.

In the structural model, the B matrix defines the relationship among the
latent factors at different levels. In particular, the cross-level coefficient b12
represents the effect of school-level teacher excellence on student-level interpre-
tation ability.

6.2.4 Results

Maximum likelihood estimates for the models considered above are given in
Table 1. The estimates were obtained using gllamm (Rabe-Hesketh et al., 2004)
which uses adaptive quadrature (Rabe-Hesketh et al., 2005) and runs in Stata
(StataCorp, 2005).

In the student-level measurement model, the item difficulties for the dichoto-
mous items are −βi/λi. For the ordinal item, the κs represent the thresholds.
Interpretation of these parameters is facilitated by inspecting the item charac-
teristic curves shown in Figure 5.

Overall girls perform slightly better than boys as do students who read
often or speak English at home. However, parents’ education has a negligible
estimated effect on student performance (not significant at the 5% level) which
is somewhat surprising. This could be due to inaccurate reporting of students
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Student model School model Joint model
Parameter Est (SE) Est (SE) Est (SE)
Student-level:
β1 [Item 1, intercept] 1.16 (0.16) 1.15 (0.16)
κ1 [Item 2, threshold 1] -0.22 (0.57) -0.25 (0.58)
κ2 [Item 2, threshold 2] -0.92 (0.61) 0.91 (0.62)
κ3 [Item 2, threshold 3] 2.15 (0.79) 2.16 (0.77)
β3 [Item 3, intercept] 0.23 (0.25) 0.25 (0.23)
β4 [Item 4, intercept] -0.94 (0.23) -0.94 (0.22)

λ1 [Item 1, loading] 1 1
λ2 [Item 2, loading] 5.44 (2.88) 5.07 (2.38)
λ3 [Item 3, loading] 2.05 (0.71) 1.80 (0.59)
λ4 [Item 4, loading] 1.51 (0.54) 1.40 (0.46)

γ1 [Parents’ education] -0.02 (0.05) -0.02 (0.05)
γ2 [Male] -0.11 (0.06) -0.12 (0.06)
γ3 [Reading] 0.16 (0.08) 0.16 (0.08)
γ4 [English] 0.27 (0.13) 0.30 (0.13)

var(ζ
(2)
1 ) [Interpretation ability] 0.20 (0.12) 0.19 (0.10)

School-level:
α1 -1.86 (0.31) -1.86 (0.31)
τ21 -1.30 (0.47) -1.30 (0.47)
τ31 -0.84 (0.44) -0.84 (0.43)
τ41 0.39 (0.37) 0.39 (0.37)
τ51 -0.41 (0.40) -0.41 (0.40)
τ61 -2.54 (0.67) -2.54 (0.67)
τ71 -0.33 (0.40) -0.33 (0.40)
τ81 -2.03 (0.56) -2.03 (0.56)
τ91 -2.29 (0.60) -2.29 (0.60)
τ10,1 -2.30 (0.60) -2.30 (0.60)
α2 1.69 (0.31) 1.69 (0.31)
τ22 0.06 (0.38) 0.06 (0.38)
τ32 -0.56 (0.37) -0.56 (0.37)
τ42 0.86 (0.42) 0.86 (0.42)
τ52 -0.36 (0.37) -0.36 (0.37)
τ62 -1.44 (0.36) -1.43 (0.36)
τ72 0.35 (0.40) 0.35 (0.40)
τ82 0.29 (0.39) 0.29 (0.39)
τ92 -0.67 (0.37) -0.67 (0.37)
τ10,2 -1.79 (0.36) -1.79 (0.36)

b12 [Cross-level coefficient] 0.02 (0.03)

var(ζ
(3)
1 ) [Teacher excellence] 2.19 (0.42) 2.19 (0.42)

var(ζ
(3)
2 ) [Intercept] 0.05 (0.04)

Table 1: Maximum likelihood estimates for reading test data







[Threshold parameters]
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Figure 5: Item characteristic curves for the four interpretation items

on their parents’ education or insufficient reliability for interpretation ability
due to the small number of items.

The school-level model includes threshold parameters for the ten ordinal
items. In category 2 (somewhat satisfied), the principals find “teachers’ strict-
ness with students” (item 6) the easiest to endorse and “teachers meeting in-
dividual students’ needs” (item 4) the most difficult. In category 3 (satisfied),
“teachers valuing academic achievement” (item 10) is the easiest and “teachers
meeting individual students’ needs” is once again the most difficult to endorse.

The school random intercept variance is estimated as .05 which is negli-
gible for a logit model. The teacher excellence variance is estimated as 2.19.
Somewhat surprisingly, the cross-level effect of teacher excellence on student
interpretation ability appears to be negligible. One consequence of this is that
the student-level and school-level parameters in the joint model do not differ
much from those in the individual student and school models. The small esti-
mated regression coefficient casts some doubt on the validity of the principal’s
assessment of teacher excellence based on the school questionnaire.
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