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Introduction

Nominal variables include unordered polytomous
variables and permutations. An unordered poly-
tomous response is one among a set of categories
whereas a permutation is an ordering of cate-
gories. The categories are nominal in the sense
that they do not possess an inherent ordering
shared by all units as is assumed for ordinal vari-
ables. Using decision terminology, we will refer to
the categories as alternatives, unordered polyto-
mous responses as discrete choices and permuta-
tions as rankings.

In this paper we analyze data from the British
Election Panel Study 1987-1992. The central out-
come is the voter’s choice of party (Labour, Con-
servatives or Liberals). We will also utilize addi-
tional information enabling us to derive rankings
of the parties.

The standard statistical model for discrete
choices and rankings is logistic regression. In
biostatistics it is often not recognized that these
models can be derived from a random utility
perspective. In econometrics and psychometrics
this perspective naturally leads to the inclusion
of alternative-specific covariates such as the dis-
tances between a voter and the parties on the left-
right political continuum in addition to covariates
not varying over alternatives such as the voter’s
age. Furthermore, it becomes clear that the alter-
native sets can vary between units as necessary if
some parties do not have candidates in some con-
stituencies, and how to handle rankings with tied
alternatives.

However, the standard model must be extended

for hierarchical or multilevel data like the elec-
tion data where voting occasions (level 1) are
nested in voters (level 2) who are nested in con-
stituencies (level 3). We therefore include latent
variables varying at different levels to represent
unobserved heterogeneity and induce dependence
among lower level units in the same higher level
unit. The latent variables are of two types: ran-
dom effects (intercepts and coefficients) and com-
mon factors.

Dependence structures previously considered
have generally been more restrictive, typically in-
cluding latent variables varying only at a sin-
gle level and not combining random effects and
factors. Furthermore, models treated in the
multilevel literature have neither accommodated
alternative-specific explanatory variables, nor al-
ternative sets varying across units nor factor
structures (cf. Goldstein, 2003; Raudenbush &
Bryk, 2002) in models for discrete choices. Con-
tributions on rankings appear to be missing in the
multilevel literature.

The models considered here are special cases
of the generalized linear latent and mixed model
(GLLAMM) framework (Rabe-Hesketh, Skrondal
& Pickles, 2004; Skrondal & Rabe-Hesketh, 2004)
and subsume a wide range of models proposed
in the psychometric, econometric, (bio)statistical
and marketing literatures. Maximum likelihood
estimation, empirical Bayes prediction and simu-
lation can be performed using the gllamm soft-
ware1. As far as we are aware, gllamm is the
only program implementing adaptive quadrature
for truly multilevel models (Rabe-Hesketh, Skro-
ndal & Pickles, 2002).

1Downloadable from
www.iop.kcl.ac.uk/iop/departments/biocomp/programs/gllamm.html
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Logistic Regression

Let Ai =
{

a1
i , .., a

Ai
i

}
be the set of Ai alternatives

available for unit i and V a
i a linear predictor for

unit i and alternative a.

Discrete Choice
Letting ci be the choice, a logistic model is usually
specified as

Pr(ci | Ai) =
exp(V ci

i )∑Ai

s=1 exp(V s
i )

, (1)

where V a
i is a linear predictor.

An alternative specification of the logistic re-
gression model, based on random utility models,
is often used in econometrics. Here, the model
is usually derived by introducing random utilities
Ua

i for each unit i and alternative a. The utilities
are modelled as

Ua
i = V a

i + εa
i ,

where εa
i is a random term, assumed to be inde-

pendently distributed across both units and alter-
natives with a Gumbel distribution

g(εa
i ) = exp {−εa

i − exp(−εa
i )} .

The probability of a choice can be viewed as
utility maximization and expressed in terms of bi-
nary utility comparisons where the utility of the
chosen alternative U ci

i is larger than the utilities of
all other alternatives. Remarkably, the logistic re-
gression model (1) arises if and only if the random
utilities are Gumbel distributed (e.g. McFadden,
1973).

Ranking
Let rs

i be the alternative given rank s and Ri ≡
(r1

i , r2
i , . . . , rAi

i ) the ranking of unit i.
The probability of a ranking can be construed

as utility ordering and expressed in terms of bi-
nary utility comparisons, where the utility of the
alternative ranked first is larger than the utility
of that ranked second, which is larger than that
ranked third and so on. Under the Gumbel spec-
ification of random utility this leads to the closed
form “exploded logit” specification

Pr(Ri | Ai) =
Ai−1∏
s=1

exp(V rs
i

i )
∑Ai

t=s exp(V rt
i

i )
. (2)

The model is often denoted the “exploded logit”
(Chapman & Staelin, 1982) since the ranking
probability is written as a product of choice prob-
abilities for successively remaining alternatives.
That such an explosion results was proven by Luce
& Suppes (1965).

Importantly, an analogous explosion is not ob-
tained under normally distributed utilities. The
Gumbel model is not reversible in the sense that
successive choices starting with the worst alterna-
tive would lead to a different ranking probability.
It is also worth noting that the ranking probabil-
ity given above has the same form as the partial
likelihood contribution for a stratum in Cox re-
gression with “surviving” alternatives correspond-
ing to risk sets and choices corresponding to fail-
ures. Exploiting this duality, alternatives given
the same rank can be handled in the same way as
tied survival times in Cox regression.

The task of providing a complete ranking of a
full set of alternatives can be simplified by either
presenting different subsets of alternatives to dif-
ferent individuals (using incomplete experimental
designs) or by requiring only a top-ranking where
for instance the three most preferred alternatives
are ranked. Both situations are easily accommo-
dated.

Modeling Heterogeneity

We now discuss the form of the linear predictor,
including covariates to model observed hetero-
geneity and latent variables to model unobserved
heterogeneity. The latent variables can vary at
each of the three levels: voting occasion i (level
1), voter j (level 2) and constituency k (level 3).
Latent variables at level 1 induce cross-sectional
dependence between utilities of different parties
at the same occasion for a voter. Latent variables
at level 2 induce longitudinal dependence between
utilities for different voting occasions for the same
voter. Finally, latent variables at level 3 induce
dependence between utilities for different voters
within the same constituency. Note that latent
variables at a given level induce dependence at all
lower levels. We consider two types of latent vari-
ables, random coefficients and common factors.



Observed heterogeneity: Fixed Effects
We let the fixed effects be structured as

V a
ijk = xa′

ijkb + x′ijkga,

where xa
ijk is a covariate vector which varies over

alternatives and may also vary over units and/or
clusters whereas the vector xijk (often includ-
ing a one for the alternative-specific intercepts)
varies over units and/or clusters but not alterna-
tives. The corresponding fixed coefficient vectors
are b and ga, respectively. Note that the effects
b are assumed to be the same on all utilities, so
that this part of the model simply represents lin-
ear relationships between the utilities and alter-
native (and possibly unit and/or cluster)-specific
covariates. For some alternative and unit and/or
cluster-specific variables the effect may differ be-
tween alternatives. Such effects can be accom-
modated by including interactions between these
variables and dummy variables for the alternatives
in xa

ijk. In the election example, the covariate xijk

could be the age of voter j at voting occasion i in
constituency k with different effects ga on the util-
ities for different parties. For identification, the
first alternative typically serves as ‘base alterna-
tive’ with g1 =0. The party-specific covariate xa

ijk

could be a measure of the distance on the left-right
political dimension between the ath party and the
jth voter at occasion i in constituency j.

Random Coefficients
Covariates not varying over alternatives
For covariates zijk not varying over alternatives,
we can have alternative-specific random effects
γ

a(2)
jk and γ

a(3)
k at levels 2 and 3, giving a linear

predictor of the form

V a
ijk = z′ijk(ga + γ

a(2)
jk + γ

a(3)
k ) + . . . .

Again we treat the first alternative as a base-
alternative with γ1(`) = 0. The supervectors γ(`))
containing the random coefficient vectors γ2(`) to
γA(`) at a given level ` have multivariate normal
distributions,

γ(`) ∼ N(0,Ψ(`)
γ )

and are independent across levels. In the election
example, γ

a(2)
1jk would be a voter and party-specific

random intercept if z1ijk =1. Daniels & Gatsonis
(1997) considered such a model for two-level data.

Alternative-specific covariates

For alternative-specific covariates za
ijk, often

called attributes of the alternatives, we could have
random coefficients β

(1)
ijk, β

(2)
jk β

(3)
k at levels 1, 2

and 3 giving a linear predictor of the form

V a
ijk = za′

ijk(β + β
(1)
ijk + β

(2)
jk + β

(3)
k ) + . . .

where
β(`) ∼ N(0,Ψ(`)

β )

are independent across levels.
The coefficient of a given attribute za

ijk can be
interpreted as the importance attached to that
attribute, referred to as ‘taste’ by Hausman and
Wise (1978). Allowing the coefficient to vary ran-
domly therefore allows for heterogeneity in tastes.
Note that we can have a random coefficient of za

ijk

at level 1 since za
ijk varies within each level-1 unit

so that the concept of a level-1 specific slope of
za
ijk makes sense. This is in contrast to covariates

zijk not varying over alternatives.

Common Factors
We can introduce common factors at each of the
levels as follows:

V a
ijk = λa(1)η

(1)
ijk + λa(2)η

(2)
jk + λa(3)η

(3)
k + . . .

where
η(`) ∼ N(0, ψ(`)

η )

η(`) is a factor at level `, λa(`) are the correspond-
ing factor loadings and εa

ijk are unique factors
(independent Gumbel as before) at the voting-
occasion level. The factors are independent across
levels. There are no unique factors at levels 2 and
3, but these could be represented by random inter-
cepts γ

a(2)
1jk and γ

a(3)
1k with corresponding covariate

z1ijk set to 1.
There are two interpretations of random utility

factor models. First, λa(`) could be an alternative-
specific effect of an unobserved variable η(`) at
level `. Second, λa(`) could be an unobserved at-
tribute of alternative a with random effect η(`).
The model can easily be extended to multidimen-
sional factors at each level. For single-level rank-
ing data a probit factor model was discussed by
Brady (1989).



Estimation and Prediction
All models considered in this paper can be esti-
mated using the program gllamm (Rabe-Hesketh,
Pickles & Skrondal, 2001). This program, writ-
ten in Stata (StataCorp, 2003), implements max-
imum likelihood estimation and empirical Bayes
prediction for many kinds of generalized linear
mixed models with latent variables. Numerical in-
tegration by adaptive Gauss-Hermite quadrature
(Rabe-Hesketh, Skrondal & Pickles, 2002) is used
to integrate out the latent variables and obtain
the marginal log-likelihood. This log-likelihood is
maximized by Newton-Raphson using numerical
first and second derivatives. Empirical Bayes pre-
dictions are posterior means of the latent variables
given the observed responses with the parameter
estimates plugged in. Both posterior means and
standard deviations are obtained by numerical in-
tegration using adaptive quadrature.

Application
We now analyze data from the 1987-1992 panel of
the British Election Study (Heath et al., 1993).
1608 respondents participated in the panel. We
excluded voting occasions with missing covari-
ates and where the voters did not vote for can-
didates from the major parties. The resulting
data comprised 2458 voting occasions, 1344 vot-
ers and 249 constituencies. The alternatives Con-
servative, Labour, and Liberal (Alliance) are la-
belled as a = 1, 2, 3, respectively. The voters were
not explicitly asked to rank order the alternatives,
but the first choice clearly corresponds to rank 1.
The voters also rated the parties on a five point
scale from “strongly against” to “strongly in fa-
vor”. We used these ratings in assigning ranks
to the remaining alternatives, ordering the par-
ties in terms of their rating. Tied second and
third choices were observed for 394 voting occa-
sions yielding top-rankings.

The fixed part of all models considered includes
the following election and/or voter specific covari-
ates xijk: [1987] and [1992] are dummy variables
representing the elections, [Male] is a dummy for
the voter being male, [Age] represents the age of
the voters in 10 year units, [Manual] is a dummy
for father of voter a manual worker and [Infla-
tion] is a rating of perceived inflation since the
last election on a five point scale. The fixed part

also includes an election, voter and alternative
specific covariate xa

ijk; [LRdist]. This covariate
represents the distance between a voter’s position
on the left-right political dimension and the mean
position of the party voted for. The placements
were constructed from four scales where respon-
dents located themselves and each of the parties
on a 11 point scale anchored by two contrasting
statements (priority should be unemployment ver-
sus inflation, increase government services versus
cut taxation, nationalization versus privatization,
more effort to redistribute wealth versus less ef-
fort).

We consider three types of models for the ran-
dom part: party-specific random intercepts γa(`)

at levels ` = 2, 3 (zijk =1), random slopes β(`) of
political distance [LRdist] at levels ` = 1, 2, 3 and
common factors η

(`)
ijk at levels ` = 1, 2, 3. Skrondal

and Rabe-Hesketh (2003) considered a number of
combinations of these models. Models were esti-
mated twice, comparing adaptive quadrature with
5 and 10 quadrature points per latent dimension
to ensure reliable results. Here, we focus on their
retained model based on rankings, which includes
correlated alternative-specific random intercepts
at the voter and constituency levels.

The estimates are given in Table 1. We see that
the estimated effects of the election and/or voter
specific covariates are in accordance with previ-
ous research on British elections. Being male and
older increases the probability of voting Conserva-
tive, whereas a perceived high inflation since the
last election harms the incumbent party (the Con-
servatives). The impact of social class is indicated
by the higher probability of voting Labour among
voters with a father who is/was a manual worker.
Regarding our election, voter and alternative spe-
cific covariate [RLdist], the estimate also makes
sense: the larger the political distance between
voter and party, the less likely it is that the voter
will vote for the party. The random intercept
variances at the voter level are larger than at the
constituency level consistent with a greater resid-
ual variability between voters within constituen-
cies than between constituencies as would be ex-
pected. The variance of the random intercept
for Labour, representing residual variability in the
utility differences between Labour and Conserva-
tives, is particularly large reflecting the presence



Table 1: Estimates for correlated alternative spe-
cific random intercepts model at voter and con-
stituency levels

Lab vs. Cons Lib vs. Cons
Est. (SE) Est. (SE)

FIXED PART:
ga
1 [1987] 0.77 (0.56) 0.75 (0.37)

ga
2 [1992] 1.28 (0.59) 0.78 (0.39)

ga
3 [Male] -0.99 (0.31) -0.71 (0.20)

ga
4 [Age] -0.74 (0.11) -0.37 (0.07)

ga
5 [Manual] 1.57 (0.34) 0.10 (0.22)

ga
6 [Inflation] 1.31 (0.18) 0.74 (0.13)

b [LRdist] -0.79 (0.04)

RANDOM PART:
Voter Level

ψ
(2)
γa 16.13 (2.05) 6.03 (0.90)

ψ
(2)
γ2,γ3 8.53 (1.15)

Constituency Level

ψ
(3)
γa 4.91 (1.12) 0.60 (0.29)

ψ
(3)
γ2,γ3 1.21 (0.48)

Log-likelihood -2600.90

of a mixture of people with strong residual (unex-
plained) support for the Labour or Conservative
parties. There is a positive correlation between
the random intercepts for the Labour and Liberal
parties suggesting that those who prefer Labour
to the Conservatives, after conditioning on the
covariates, also tend to prefer the Liberal party
to the Conservatives. This is consistent with the
Liberal party being placed between the Labour
and Conservative parties and suggests that the
[LRdist] covariate has not fully captured this or-
dering.

Discussion
There appears to be unobserved heterogeneity at
both voter and constituency levels, but not at the
election level, in our application.

We have employed the gllamm software in the
analyses reported in this article. An important

merit of this software is the generality of the cor-
responding Generalized Linear Latent And Mixed
(GLLAMM) model framework (e.g. Rabe-Hesketh,
Skrondal & Pickles, 2004; Skrondal & Rabe-
Hesketh, 2004), including the models considered
here as special cases. This approach works well in
a wide range of situations (Rabe-Hesketh, Skron-
dal & Pickles, 2002).

Although the framework for multilevel logistic
regression presented here is general, it can be gen-
eralized further. For instance, latent variables can
be regressed on covariates (e.g. Skrondal & Rabe-
Hesketh, 2003) or higher order factors included
to structure the covariance matrices of the latent
variables. There could furthermore be covariates
measured with error (e.g. Rabe-Hesketh, Pickles
& Skrondal, 2003), several sets of discrete choices
(e.g. Bock, 1972) or rankings, and pairwise com-
parisons (e.g. Böckenholt, 2001a). In fact, these
extensions are all accommodated by the GLLAMM
model framework and can be fitted in the gllamm
software. We have not included finite mixtures for
rankings like those proposed by Croon (1989) and
Böckenholt (2001b) in this article. However, the
Croon models are easily fitted in gllamm (Rabe-
Hesketh, Pickles & Skrondal, 2001: Chapter 9).
The gllamm program can also handle other re-
sponse types including continuous, censored, ordi-
nal, dichotomous, counts, discrete and continuous
time durations and mixed responses.
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