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The likelihood for generalized linear models with covariate measurement error cannot in general be
expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is
regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose
an improved regression calibration approach, a general pseudo maximum likelihood estimation method
based on a conveniently decomposed form of the likelihood. It is both consistent and computationally
efficient, and produces point estimates and estimated standard errors which are practically identical to
those obtained by maximum likelihood. Simulations suggest that improved regression calibration, which
is easy to implement in standard software, works well in a range of situations.
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1. Introduction

Generalized linear models (e.g., McCullagh & Nelder, 1989) are the workhorses in many
applications of statistical methods. A tacit assumption in these models is that all covariates are
perfectly measured without error. Violation of this assumption will produce inconsistent estima-
tors unless the measurement error problem is addressed. A body of research has hence evolved
to allow at least approximate inference in generalized linear models with covariate measurement
error (see Carroll, Ruppert, Stefanski, & Crainiceanu, 2006, and Buonaccorsi, 2010, for compre-
hensive overviews; we will discuss some of this literature in more detail later).

In this article, we consider structural covariate measurement error models, where a para-
metric distribution is specified for the erroneously measured covariates. An obvious approach
to estimation is then maximum likelihood which produces consistent estimates if the model is
correctly specified (e.g., Schafer, 1987; Schafer & Purdy, 1986; Higdon & Schafer, 2001). Un-
fortunately, the joint likelihood of the response and the measures cannot in general be expressed
in closed form and computationally intensive methods based on numerical integration or simula-
tion must be used. The computational burden involved in a full likelihood analysis is, therefore,
often considerable.

Regression calibration has been proposed as a computationally efficient approach to estimat-
ing generalized linear models with covariate measurement error (e.g., Armstrong, 1985; Rosner,
Willett, & Spiegelman, 1989; Rosner, Spiegelman, & Willett, 1990; Carroll & Stefanski, 1990).
It is based on an approximation of the likelihood function where the basic idea is to plug in
“best” predictions for the covariates measured with error and proceed in estimating the gener-
alized linear model as if the predictions were covariates measured without error. Unfortunately,
estimates of the regression parameters from regression calibration are, in general, inconsistent.
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The inconsistency is typically small when the true effects of the covariates measured with error
are moderate and/or the measurement error variances are small, but more pronounced when these
conditions do not hold.

In this article, we propose a pseudo maximum likelihood approach, called improved regres-
sion calibration (IRC), which simultaneously addresses the computational challenge in likelihood
analysis and the inconsistency problem in conventional regression calibration. The basic idea is
to consider a decomposed form of the likelihood where one component is expressed in closed
form and trivial to maximize, and the second component is accurately maximized using crude
and fast numerical integration. In contrast to conventional regression calibration, where predicted
covariates measured with error are treated as fixed in point estimation, the stochastic nature of
the predictions is handled by using predictive densities of the covariates measured with error as
mixing distributions.

2. Generalized Linear Models with Covariate Measurement Error

Let yi be the outcome variable for unit i, i = 1, . . . ,N , xi an m × 1 vector of covariates
or “exposures” measured with error by the measures wi , and zi a vector of perfectly measured
covariates, including a constant 1.

Following Clayton (1992), we can view a generalized linear model with covariate measure-
ment error as composed of three parts: (i) an outcome model g(yi |xi , zi;ϑO), (ii) a measurement
model g(wi |xi , zi;ϑM), and (iii) an exposure model g(xi |zi;ϑE), where g(·|·) are conditional
density functions and ϑO, ϑM, and ϑE the corresponding parameter vectors. We define the com-
plete parameter vector as ϑ = (ϑ ′

O,ϑ ′
M,ϑ ′

E)′. Throughout, we make the standard assumption of
“nondifferential measurement error” that yi and wi are independent conditional on (xi , zi ).

2.1. Outcome Model g(yi |xi , zi;ϑO)

The outcome model is a generalized linear model (e.g., McCullagh & Nelder, 1989) with
three parts: (i) a linear predictor, which in the present context takes the form ηi ≡ z′

iβz + x′
iβx ,

(ii) a link function g(·) that links the linear predictor to the conditional expectation of the re-
sponse, given the covariates, E(yi |xi , zi ) = g−1(ηi), and (iii) a conditional distribution for the
response, given the covariates, taken from the exponential family,

g(yi |xi , zi;ϑO) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
.

Here, θi = θi(xi , zi;ϑO) is the canonical or natural parameter, φ = φ(ϑO) is the scale or dis-
persion parameter, and b(·) and c(·) are functions depending on the member of the exponential
family. The most common nonlinear instance of this is the binary logistic model where yi fol-
lows a Bernoulli distribution and θi = ηi = log{E(yi)/[1 − E(yi)]}. For this model, φ = 1 and
ϑO = β = (β ′

z,β
′
x)

′. Due to its popularity, we will consider a logistic outcome model in our
simulations and data analysis.

2.2. Measurement Model g(wi |xi;ϑM)

The form of the measurement model depends on the nature of the available data. Here we
focus on the case of replication data, where at least a subsample of subjects provides several
measures for each fallibly measured covariate. The main alternative is validation data where
both xi and wi are observed for a subsample, in which case the proposed estimation procedures
can be modified in a straightforward manner.
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FIGURE 1.
Graph of generalized linear model with covariate measurement error.

In general, the measurements wi may depend on the covariates zi measured without error
as well as on xi , similarly to differential item functioning in item response theory. This would
be straightforward to handle in our suggested approach, but here we omit zi for simplicity and
consider measurement models of the form g(wi |xi;ϑM).

The vector xi is measured by fallible measures wi = (w′
1i , . . . ,w′

mi)
′, where each wli =

(wli1, . . . ,wlinli
)′ is a vector of nli replicate measurements. For the moment, consider balanced

data where nli = nl . A general multidimensional measurement model for m sets of congeneric
measures (e.g., Jöreskog, 1971) can be expressed as

wi = ν + �xi + δi , δi ∼ N(0,�) (1)

where � ≡ Cov(xi ), � ≡ Cov(δi ), and it is assumed that Cov(xi , δi ) = 0. The matrix � is
partitioned as

� =

⎛
⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 0 λm

⎞
⎟⎟⎟⎠ , (2)

where λl is a vector of scale parameters for the measures of covariate l. Further constraints are
often imposed on the parameters of the measurement model, e.g., to obtain tau-equivalent or
parallel models.

2.3. Exposure Model g(xi |zi;ϑE)

The dependence between the exposures measured with error xi and the covariates measured
without error zi is specified as

xi = 
zi + ζ i , (3)

where 
 is a regression parameter matrix, ζ i ∼ N(0,�), and Cov(zi , ζ i ) = 0. As the scale of xi

is not identifiable from (1) and (3), some standard identification restrictions are imposed on the
parameters. The parameter vector ϑM then consists of the unique elements of ν, � and �, and
ϑE of the unique elements of 
 and � .

A generalized linear model with covariate measurement error is shown graphically in Fig-
ure 1 for the simple case of an exposure xi fallibly measured by two measures wi1 and wi2,
and a covariate zi measured without error. A common identifiability constraint for this case is
to assume ν1 = ν2 = 0 and λ1 = λ2 = 1, which give the “classical” measurement error model
wij = xi + δij .

The method that we propose below is not dependent on this specific combination of mea-
surement and outcome models, but applies also more generally. Looking ahead to the rest of
the paper, other study designs, and corresponding changes to measurement and outcome models,
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affect only Stage 1 of our two-stage estimation. For example, a situation where the number of
replicate measurements is not the same for all units i is accounted for by the selection matrix Ci

included in Equation (8), and the case where yi is not observed for some units by omitting these
from the log-likelihood component �2(ϑO,ϑME) in (5). If a validation sample rather than repli-
cation data are available, Stage 1 of the estimation could be done by modeling the conditional
moments of xi given wi and zi (Equations (11) and (12)) directly rather than via the exposure
and measurement models; in this case, the formulas of the variance estimation in the appendix
would also be simplified.

3. Estimation Methods

We now consider different approaches to estimation of generalized linear models with co-
variate measurement error. We start by briefly describing maximum likelihood (ML) estimation,
then proceed by developing our suggested approach of improved regression calibration (IRC)
before contrasting this with conventional regression calibration (RC). We then conclude this sec-
tion by a discussion of previous literature on these approaches to measurement error modeling.
Throughout, we consider likelihoods for the response yi and the measures wi conditional on the
perfectly measured covariates zi .

3.1. Maximum Likelihood (ML) Estimation

The likelihood contribution for a single unit i is

g(yi,wi |zi;ϑ) =
∫

g(yi |xi , zi;ϑO)g(wi |xi;ϑM)g(xi |zi;ϑE)dxi , (4)

the log-likelihood contribution is �i(ϑ) = logg(yi,wi |zi;ϑ), and the log-likelihood
�(ϑ) = ∑N

i=1 �i(ϑ). When � is diagonal, as is often assumed, g(wi |xi;ϑM) =∏m
l=1

∏nli

j=1 g(wlij |xi;ϑM). The ML estimator ϑ̂ is obtained by maximizing �(ϑ) with respect
to ϑ .

Unfortunately, the joint likelihood of generalized linear models with covariate measure-
ment error cannot generally be expressed in closed form and requires integration, typically ac-
complished by Gaussian quadrature. In general, the performance of Gaussian quadrature de-
pends on the smoothness of the integrand. According to the fundamental theorem of Gaussian
quadrature (e.g., Davis & Rabinowitz, 1984; Thisted, 1988, Theorem 5.3-1), ordinary Gaus-
sian quadrature is exact if the function in the integrand is a 2R − 1 order polynomial (where R

is the number of quadrature points). However, a likelihood component including a product of
conditional response distributions for continuous responses, such as

∏m
l=1

∏nli

j=1 g(wlij |xi;ϑM)

above, tends to produce a peaked integrand in the marginal likelihood (a tendency exac-
erbated as the number of measures and their intraclass correlation increases). Such likeli-
hood contributions are poorly approximated by low-degree polynomials, and ordinary Gauss–
Hermite quadrature does not work well for this situation (e.g., Albert & Follmann, 2000;
Lesaffre & Spiessens, 2001). This is illustrated in the left panel of Figure 2 where we see that all
quadrature points completely miss the integrand.

Therefore, more computationally demanding adaptive Gaussian quadrature methods that
align the quadrature points under the integrand are recommended when continuous responses
are involved (e.g., Rabe-Hesketh, Skrondal, & Pickles, 2005). A limitation of the full likelihood
approach is, hence, that it becomes computationally intensive.
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3.2. Improved Regression Calibration (IRC)

As an alternative to full ML we propose to break the estimation problem into two parts,
allocating as many parameters as possible to a likelihood component that is easy to maximize.
This is an instance of a general two-stage approach to estimation known as pseudo maximum
likelihood (PML) estimation (Gong & Samaniego, 1981).

Letting ϑME = (ϑ ′
M,ϑ ′

E)′, we first re-express g(wi |xi;ϑM)g(xi |zi;ϑE) in (4) as g(xi |wi , zi;
ϑME)g(wi |zi;ϑME), and the log-likelihood as

�(ϑ) =
N∑

i=1

logg(yi |wi , zi;ϑO,ϑME) +
N∑

i=1

logg(wi |zi;ϑME) ≡ �2(ϑO,ϑME) + �1(ϑME) (5)

where

g(yi |wi , zi;ϑO,ϑME) =
∫

g(yi |xi , zi;ϑO) g(xi |wi , zi;ϑME)dxi . (6)

In Stage 1 of IRC, we estimate the combined measurement and exposure model
g(wi |zi;ϑME) by maximizing just �1(ϑME), to obtain estimates ϑ̂ME. These are not full ML
estimates because they omit the typically small amount of information about of ϑME contained

in yi . In Stage 2, these estimates from Stage 1 are then treated as known, and estimates ϑ̂
IRC
O

for the parameters of primary interest ϑO are obtained by maximizing �2(ϑO, ϑ̂ME). A detailed
description of the two stages is provided in the next section.

The basic idea of IRC is that maximizing the approximate decomposed likelihood is con-
siderably less demanding than maximizing the joint likelihood. In Stage 1, the component
g(wi |zi;ϑME) is in closed form and trivial to maximize. In Stage 2, the mixing distribution
in the integral (6) is the predictive density g(xi |wi , zi; ϑ̂ME) of the covariates measured with er-
ror, given their observed measures and covariates measured without error, which is also trivial to
obtain.

The dimensionality of integration (the number of covariates measured with error) in Stage 2
is the same as for full ML. At first glance, there does, hence, not appear to be any computational
benefits to be reaped from using IRC. However, the integrand is now the single logistic function
g(yi |xi , zi;ϑO), which due to its smoothness is well approximated by a low order polynomial.
For instance, the seminal work on nonlinear factor analysis by McDonald (1967) demonstrated
that a cubic function sufficed for approximating the normal ogive (which is very close to the
logistic function). We therefore expect that crude and fast ordinary Gauss–Hermite quadrature,
using just a few quadrature points, would work well for IRC. This is illustrated in the right panel
of Figure 2, where all three quadrature points nicely cover the logistic integrand, in contrast to
the case for the likelihood in the left panel.

It is likely that direct maximization of the full likelihood expressed as (5) could also be
based on more crude Gauss–Hermite quadrature than what is required for the standard form (4).
In this article, however, we focus on the two-stage approach to (5), since it is straightforward to
implement in publicly available software.

The savings compared to ML are especially pronounced in three settings and their combi-
nations: (i) large datasets, (ii) when the relative number of parameters allocated to the easily
maximized likelihood component is large (a large number of measures and/or realistically com-
plex measurement models), and (iii) when the same predictive distributions can be used in several
models, so that the Stage-1 likelihood components need only be maximized once.

3.3. Conventional Regression Calibration (RC)

Conventional regression calibration is also a two-stage method which can be seen as an
approximation of pseudo-ML (IRC) estimation. Stage 1 is the same as for IRC, but estimation in
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FIGURE 2.
Illustration of integrand and quadrature points (locations and weights) for 3-point ordinary Gauss–Hermite quadrature.
Maximum likelihood in left panel and improved regression calibration in right panel.

Stage 2 is based on the further approximation

g(yi |wi , zi;ϑO, ϑ̂ME) ≈ g(yi |̃ξ i , zi;ϑO) (7)

where g(yi |̃ξ i , zi;ϑO) is of the same form as the outcome model g(yi |xi , zi;ϑO), now with
the “predictive mean” ξ̃ i = E(xi |wi , zi; ϑ̂ME) used in the place of xi . RC thus carries only ξ̃ i

forward from Stage 1 to Stage 2 of the estimation, whereas IRC takes the whole predictive
density g(xi |wi , zi; ϑ̂ME) into account in Stage 2. In contrast to IRC, RC is generally inconsistent
because it employs the approximation (7) of the likelihood function (6).

3.4. ML, PML, and RC in the Measurement Error Literature

The books by Carroll et al. (2006) and Buonaccorsi (2010) provide excellent summaries of
methods of estimation in measurement error modeling. The use of full ML estimation has been
advocated in a series of papers by Daniel Schafer and coauthors. Schafer (1993), for binary pro-
bit models, and Schafer and Purdy (1986), for normal linear models, consider cases where the
likelihood can be evaluated in a closed form. For cases where this is not possible, such as binary
logistic regression, Schafer (1987) uses a closed-form approximation to avoid numerical integra-
tion, while Higdon and Schafer (2001) employ ordinary Gauss–Hermite quadrature to evaluate
the likelihood. Rabe-Hesketh, Skrondal, and Pickles (2003) propose using more accurate adap-
tive quadrature in this setting. Another possibility is to estimate the models in a Bayesian frame-
work, using simulation-based MCMC methods (e.g., Stephens & Dellaportas, 1992; Richardson
& Gilks, 1993; Kuha, 1997; Gustafson, 2004).

Key references for regression calibration include Armstrong (1985), Rosner et al. (1989,
1990), Carroll and Stefanski (1990), and Gleser (1990), and the overview in Carroll et al. (2006).
Buonaccorsi (2010) points out that regression calibration is also a “pseudo-type” two-stage
method, which can be viewed as an approximation of PML estimation.

The possibility of PML estimation for regression models with covariates measured with er-
ror was noted early, for example, by Carroll, Spiegelman, Lan, Bailey, and Abbott (1984), who
apply it for a binary probit model, and Armstrong (1985). PML estimation has been suggested
for some specific models where its implementation is relatively straightforward, such as probit
models with a single covariate (Burr, 1988), linear mixed models (Buonaccorsi, Demidenko, &
Tosteson, 2000) and linear structural equation models with latent variables (Skrondal & Laake,
2001). For other models, however, the approach has not been developed, perhaps because of
a perception that its implementation requires “specialized programming” (Buonaccorsi, 2010,
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p. 227). The IRC method proposed here provides a general approach to PML for covariate mea-
surement models which largely avoids such programming.

4. The Anatomy of Improved Regression Calibration

We will now have a closer look at each of the stages of IRC.

4.1. Stage 1: Estimation of the MIMIC Model g(wi |zi;ϑME)

We can view (1) as representing the measurement model for a possibly hypothetical com-
plete set of replicate measurements wi , where the numbers of measurements in wli are nl for
each unit i. The numbers of actually observed replicates may in fact be nli < nl for some i, l,
due to design and/or nonresponse. The most common case of unbalanced data by design is one
where replicate measurements are only collected for a subsample, so that nli = 1 outside the
subsample. Defining ni = ∑

l nli and n = ∑
l nl , the model for such possibly incomplete mea-

surements is obtained by multiplying the right-hand side of (1) by an ni × n selection matrix Ci .
We will henceforth include Ci where appropriate in the formulae since this is required for ob-
taining correct results in the unbalanced case where the nli are not constant.

Together, the measurement and exposure models constitute a multiple-indicator multiple-
cause (MIMIC) model (e.g., Robinson, 1974; Jöreskog & Goldberger, 1975). To obtain
g(wi |zi;ϑME), we substitute the exposure model into the measurement model, producing the
reduced form MIMIC model

wi = Ci (ν + �
zi + �ζ i + δi ), (8)

for which the conditional first and second order moments are

μi ≡ E(wi |zi ) = Ci (ν + �
zi ) and (9)


i ≡ COV(wi |zi ) = Ci

(
���′ + �

)
C′

i . (10)

The density for the measures, given the perfectly measured covariates, becomes wi |zi ∼
N(μi ,
i ), and the log-likelihood �1(ϑME) for the combined measurement and exposure model
can be expressed in closed form.

The estimates ϑ̂ME that maximize �1(ϑME) can be obtained in a very computationally effi-
cient manner using standard methods for moment structure modeling (e.g., Bentler, 1983). The
estimates are consistent as N → ∞ for fixed ni under mild regularity conditions, not requir-
ing the normality assumptions imposed above (e.g., Shapiro, 2007). They remain consistent also
when measurements are missing at random (MAR) in the sense of Rubin (1976), although MAR
is slightly more restrictive here than for full ML since yi is not a part of the Stage-1 likeli-
hood.

4.2. Stage 2: Estimation of the Model g(yi |wi , zi;ϑO, ϑ̂ME)

Under the models (1) and (3) assumed in Stage 1, the predictive density of the covariates
measured with error given their observed measures and the covariates measured without error
becomes xi |wi , zi ∼ N(ξ i ,�i ), with the conditional mean and variance matrix

ξ i ≡ E(xi |wi , zi;ϑME) = 
zi + ��′C′
i


−1
i (wi − μi ) and (11)

�i ≡ Cov(xi |wi , zi;ϑME) = � − ��′C′
i


−1
i Ci��, (12)
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where we note the role of the selection matrix Ci . Substituting estimates ϑ̂ME for the parameters
in (11) and (12), we obtain empirical Bayes (EB) predictions ξ̃ i for xi for each unit i, and their
predictive variances �̂i (e.g., Skrondal & Rabe-Hesketh, 2004, Chap. 6, and 2009). The EB
predictions are identical to the empirical best linear unbiased predictions (EBLUP), which do
not hinge on distributional assumptions (e.g., Robinson, 1991).

We finally estimate the parameters of primary interest ϑO. Note that, conditional on (wi , zi )

and given the estimates ϑ̂ME, we can write xi = ξ̃ i + ui where ui ∼ N(0, �̂i ), independent of wi

and zi . Substituting this into (6) gives

g(yi |wi , zi;ϑO, ϑ̂ME) =
∫

g(yi |xi , zi;ϑO) g(xi |wi , zi; ϑ̂ME)dxi

=
∫

g∗(yi |̃ξ i , zi ,ui;ϑO) g(ui; �̂i )dui (13)

where g∗(yi |̃ξ i , zi ,ui;ϑO) is a generalized linear model of the same kind as g(yi |xi , zi;ϑO), but
with the linear predictor

ηi = z′
iβz + (̃ξ i + ui )

′βx = z′
iβz + ξ̃

′
iβx + u′

iβx, (14)

which includes the vector of random effects ui . For the case of a single covariate xi measured
with error, the linear predictor can be expressed as ηi = z′

iβz +βxξ̃i +βxui , where ui ∼ N(0, ω̂i)

and ω̂i = �̂i is a scalar.
Model (13) is a special case of a generalized linear latent and mixed model (GLLAMM),

see, for instance, Rabe-Hesketh, Skrondal, and Pickles (2004a) and Skrondal and Rabe-Hesketh
(2004, 2007). It differs from a conventional generalized linear mixed model (GLMM) in several
regards. First, the model is for single-level data instead of multilevel or clustered data. The model
is identified because the covariance matrix �̂i of ui is treated as known from Stage 1, and βx

is constrained to be equal to the coefficients of ξ̃ i (a model simply introducing level-1 random
effects with a free variance matrix, without any parameter restriction, is not identified). Second,
the mixing distribution is the predictive density of the unobserved xi . Third, the random effects
are multiplied by unknown parameters. An important practical merit of IRC is that model (13)
can be estimated using the gllamm program (e.g., Rabe-Hesketh, Skrondal, & Pickles, 2004b;
Rabe-Hesketh & Skrondal, 2012).

5. Properties of Improved Regression Calibration

The IRC estimator ϑ̂
IRC
O is the value of ϑO which maximizes the second-stage log-likelihood

�2(ϑO, ϑ̂ME), where ϑ̂ME is a consistent estimator of ϑME obtained by maximizing �1(ϑME) in
the first stage. This is an instance of a general approach to estimation where the parameters
of a model are divided into two sets, one of which contains the parameters of interest and the
other involves only nuisance parameters. The nuisance parameters are first estimated by some
consistent and computationally convenient estimators, and the parameters of interest are then
estimated by maximizing an appropriate objective function with the estimates of the nuisance
parameters from the first step treated as known. This is known as pseudo maximum likelihood
(PML) estimation when, as here, the second-stage objective function is a likelihood (Gong &
Samaniego, 1981), and more generally as quasi generalized extremum estimation (Gourieroux &
Monfort, 1995).

It is well known that such two-stage estimators are consistent and asymptotically normally
distributed under very general regularity conditions. The conditions and a proof of the consis-
tency are given by Gourieroux and Monfort (1995, Sects. 24.2.4 and 24.2.2). In the notation of
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our problem, denote the true parameter value by ϑ∗ = (ϑ∗′
O ,ϑ∗′

ME)′. Then ϑ̂
IRC
O is consistent for

ϑ∗
O if, first, standard regularity conditions hold so that the ML estimator of the whole of ϑ is

itself consistent for ϑ∗ and, second, if (i) ϑO and ϑME can vary independently of each other, and
(ii) ϑ̂ME is consistent for ϑ∗

ME. All of these conditions are satisfied in the case considered here.
Let u(ϑ) = ∂�(ϑ)/∂ϑ be the score function, partitioned as

u(ϑ) =
(

∂�(ϑ)

∂ϑ ′
O

,
∂�(ϑ)

∂ϑ ′
ME

)′
= (

uϑO(ϑ)′, uϑME(ϑ)′
)′
,

and define the mean score as ū(ϑ) = (ūϑO(ϑ)′, ūϑME(ϑ)′)′ = N−1 u(ϑ). Define the Fisher infor-
mation matrix

I
(
ϑ∗) = lim

N→∞ Eϑ∗
[
−∂ū(ϑ)

∂ϑ ′

∣∣∣∣
ϑ=ϑ∗

]
=

[
IO,O

IME,O IME,ME

]

with partitions corresponding to ϑO and ϑME. For the asymptotic normality of ϑ̂
IRC
O , it is further

supposed that

N1/2
[

ūϑO(ϑ∗
O,ϑ∗

ME)

ϑ̂ME − ϑ∗
ME

]
L−→ N

(
0,

[
IO,O

VME,O VME,ME

])
. (15)

Then

N1/2 (
ϑ̂

IRC
O − ϑ∗

O

) L−→ N(0,Ξ) (16)

where

Ξ = I−1
O,O + I−1

O,O I ′
ME,O VME,ME IME,O I−1

O,O. (17)

The relatively simple form of (17) follows from the fact that for PML estimators VME,O = 0 in
general, so terms involving VME,O disappear from the expression (Parke, 1986). The asymptotic
covariance matrix of the IRC estimator, which also takes into account the uncertainty of the

Stage-1 estimates, is then given as ACOV(ϑ̂
IRC
O ) = N−1 Ξ .

In (17), N−1 I−1
O,O is the asymptotic covariance matrix of ϑ̂

IRC
O if ϑME were known. An

estimate of it is obtained as a by-product of fitting model (13), and an estimate of N−1VME,ME

similarly from fitting (8). The remaining part of (17) is IME,O, which we estimate by

ÎME,O = N−1
N∑

i=1

uϑME,i

(
ϑ̂

IRC)
uϑO,i

(
ϑ̂

IRC)′ (18)

where uϑO,i (ϑ̂
IRC

) and uϑME,i (ϑ̂
IRC

) are the gradients of the log-likelihood �i(ϑ) for unit i, eval-

uated at the parameter estimates ϑ̂
IRC = (ϑ̂

IRC′
O , ϑ̂

′
ME)′. How to obtain the required gradients is

demonstrated in the appendix.
In summary, the difference between ML and IRC does not concern consistency, as both es-

timators are consistent. Rather, the difference is the loss of efficiency, compared to ML, which is
incurred by IRC when it discards the data on yi in estimating ϑME in the first stage. However, we
would expect this inefficiency to be slight because very little information about ϑME is contained
in the yi in the sample. This is examined further in the next section.
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6. Simulations

We use a simulation study to compare the performance of maximum likelihood (ML), im-
proved regression calibration (IRC) and conventional regression calibration (RC) estimators.
This is done in two parts, comparing first ML and IRC—which turn out to be virtually identical—
and then IRC with RC.

For the exposure model we simulate a covariate measured with error as xi = 0.3zi + ζi , with
zi ∼ N(0,1), independently distributed of ζi ∼ N(0,ψ), where ψ = 1. For the measurement
model we consider ni = 2 measures wij of xi for each i, and simulate from a parallel or classical
linear measurement model wij = xi + δij , where δij ∼ N(0, θ). Finally, for the outcome model
we simulate from the logistic regression model logit{Pr(yi = 1|xi, zi)} = β0 + βzzi + βxxi .

Three values of the coefficient βx of the fallibly measured covariate are considered: a mod-
erate magnitude βx = 0.5, a high magnitude βx = 1, and a very high magnitude βx = 1.5, which
correspond respectively to odds ratios of 1.65, 2.72, and 4.48 for one standard deviation change
in x. The very high magnitude case is included in the spirit of Buzas and Stefanski (1995, p. 546)
to provide a tough test. For the measurement error variance θ , we use values θ = 1 and θ = 0.33.
These give two different values for the reliabilities ρ = ψ/(ψ + θ), a moderate reliability case
where ρ = 0.5 and a high reliability case where ρ = 0.75. The parameters βz and β0 are fixed
at 0.5 and −2, respectively, throughout all simulations. We consider the sample sizes N = 200,
N = 1000, and N = 5000. For each setting, 1000 replications of datasets are simulated.

ML estimation was carried out using numerical integration with 8 point adaptive quadrature.
For IRC we used 3 point ordinary Gaussian quadrature, motivated by the earlier discussion of
crude and fast quadrature approximation in this setting. There were, however, a handful of cases
where the latter was not accurate enough, indicated by clearly divergent estimates from ML and
IRC. To rectify this, we re-estimated the models using adaptive quadrature whenever the IRC
estimate of βx or βz was larger than 3 in absolute value, which was required for only four data
sets in one simulation setting. This decision rule is straightforward to apply also in the analysis
of real data, since the ML estimates need not be known.

We first compare ML and IRC estimators, and also assess the performance of estimators of
the variance (17) of the IRC estimator. These results are reported in Tables 1 and 2. It is clear
that the estimates of the regression coefficients from IRC are almost identical to those from ML,
regardless of the sample size and the parameter values. This is the case not only on average, but
also for nearly every individual data set. As a result, the simulation standard deviations of the
estimators are also very similar. There thus appears to be virtually no loss of efficiency from the
two-stage method of estimation employed by IRC.

On the other hand, computing times for the two approaches can be very different. On a
desktop PC with a 2.4 GHz Intel Core 2 processor and 2 GB RAM, estimation for one dataset
of sample sizes 200, 1000, and 5000, respectively, took around 15, 45, and 360 seconds for ML,
and around 1, 3, and 15 seconds for IRC. It thus appears that the relative advantage in computing
time of IRC over ML increases as the sample sizes increase. The same is true when the number
of replicate measurements wij is increased. In tests with ni = 3 replicates (not shown here), the
computing times for IRC were essentially unchanged, while the times for ML increased to about
17, 55, and 520 seconds for N = 200, 1000, and 5000, respectively.

The estimated standard errors of the IRC estimates, taking into account uncertainty from
both stages of the estimation, are obtained by estimating (17) as shown in the appendix. It can be
seen that this approach performs well. In the most difficult cases, with small sample size, large
effects and low reliability of measurement, the standard errors somewhat underestimate the true
sampling variation. This is mainly due to right-skewed sampling distributions of the estimates in
these cases, which is also reflected in a small upward bias of both ML and IRC estimates. The
tails of the sampling distribution do not affect the coverage of the Wald-based 95 % confidence
intervals for the parameters, which is 93.6–97.1 % across all the simulations.
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TABLE 1.
Simulation results for maximum likelihood (ML) and improved regression calibration (IRC) estimators of regression
parameter βx for covariate measured with error under different measurement reliabilities ρ, true values of βx , and
sample sizes N . In each case, the true value of the other regression coefficient βz is 0.5. The results are based on 1000
replications. The table shows the simulation mean and standard deviation (SD) of the point estimates β̂x , mean of their
estimated standard errors (m(SE)), and coverage percentage of 95 % confidence intervals (C95). For IRC estimates, also
shown are coverage of 95 % intervals based on a naive estimated standard error which ignores the first-stage uncertainty
(C95-2), and the average percentage that this uncertainty contributes to the full standard errors (%-1).

βx N ML IRC
Mean SD m(SE) C95 Mean SD m(SE) C95 C95-2 %-1

ρ = 0.75
0.5 200 0.520 0.253 0.248 96.0 0.520 0.253 0.253 96.2 96.0 2.0

1000 0.507 0.110 0.107 94.9 0.507 0.110 0.107 95.0 94.9 0.5
5000 0.500 0.047 0.047 95.5 0.500 0.047 0.047 95.6 95.5 0.2

1.0 200 1.051 0.294 0.284 96.0 1.051 0.294 0.289 96.2 95.9 2.2
1000 1.018 0.122 0.121 95.3 1.018 0.123 0.121 95.4 95.3 0.8
5000 1.001 0.053 0.053 94.9 1.001 0.053 0.053 94.8 94.8 0.5

1.5 200 1.592 0.371 0.353 97.0 1.592 0.371 0.359 97.1 96.8 2.4
1000 1.519 0.144 0.147 96.5 1.519 0.144 0.148 96.6 96.4 1.3
5000 1.502 0.064 0.065 94.8 1.502 0.064 0.065 94.7 94.5 1.0

ρ = 0.5
0.5 200 0.533 0.310 0.296 96.7 0.533 0.310 0.301 97.0 96.2 2.8

1000 0.509 0.130 0.124 94.0 0.509 0.130 0.124 94.2 93.6 1.3
5000 0.500 0.054 0.055 95.5 0.500 0.054 0.055 95.5 95.4 1.0

1.0 200 1.088 0.409 0.368 96.9 1.089 0.411 0.375 96.9 96.6 4.7
1000 1.006 0.148 0.146 95.9 1.007 0.148 0.147 95.9 95.4 3.3
5000 1.005 0.065 0.065 95.4 1.005 0.065 0.065 95.5 95.0 3.0

1.5 200 1.666 0.586 0.519 96.7 1.664 0.584 0.523 96.9 96.5 6.4
1000 1.527 0.189 0.193 96.4 1.528 0.190 0.194 96.4 95.1 5.4
5000 1.509 0.083 0.084 95.5 1.510 0.083 0.085 95.5 94.0 5.1

The last two columns of Tables 1 and 2 examine a simplified estimate of the standard errors
of the IRC estimates that is obtained by using only the first term on the right-hand side of (17),
and omitting the second. In other words, this simply ignores the uncertainty in the estimated
parameters of the exposure and measurement models from the first stage. Such an approach
would be very convenient in practice because it entails using the estimated standard errors from
the second-stage model directly, without any further adjustment. In the cases considered here,
this simplification would do us little harm since the coverage of the confidence intervals (shown
in the column “C95-2” of the tables) is still quite satisfactory. The reason for this is indicated by
the last column of the tables, which shows the average percentage that the second term of (17)
contributes to the full estimated standard error. This is mostly around 2 %, rising to 6.4 % in the
most challenging configuration considered here.

Tables 3 and 4 compare the simulation results for IRC and RC estimators, omitting the full
ML estimators because they are so similar to IRC. The focus here is on the finite-sample means
and variabilities of the estimators, to examine their relative performances in different settings.
We note also that computing times for IRC and RC were very similar, typically around 10 %
higher for IRC.

The results show that best performances occur in different circumstances for the two estima-
tors. IRC (and ML) estimators have an upward bias in small samples, due to the right-skewness
of their sampling distributions, but the bias disappears in larger samples because these estimators
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TABLE 2.
Simulation results for maximum likelihood (ML) and improved regression calibration (IRC) estimators of regression
parameter βz for perfectly measured covariate under different measurement reliabilities ρ, true values of the other re-
gression coefficient βx , and sample sizes N . In each case, the true value of βz is 0.5. The results are based on 1000
replications. The columns of the table are the same as in Table 1.

βx N ML IRC

Mean SD m(SE) C95 Mean SD m(SE) C95 C95-2 %-1

ρ = 0.75
0.5 200 0.508 0.237 0.236 95.8 0.508 0.237 0.239 95.8 95.8 1.2

1000 0.509 0.105 0.103 94.1 0.509 0.105 0.103 94.1 94.1 0.3
5000 0.498 0.045 0.045 95.8 0.498 0.045 0.045 95.9 95.8 0.1

1.0 200 0.514 0.234 0.236 96.2 0.514 0.234 0.239 96.5 96.2 1.4
1000 0.511 0.104 0.102 94.4 0.511 0.104 0.103 94.6 94.3 0.4
5000 0.497 0.044 0.045 95.8 0.497 0.044 0.045 95.8 95.8 0.2

1.5 200 0.513 0.255 0.244 96.1 0.513 0.255 0.247 96.1 95.9 1.5
1000 0.507 0.109 0.105 94.4 0.507 0.109 0.105 94.7 94.4 0.6
5000 0.499 0.047 0.047 94.1 0.499 0.047 0.047 94.1 93.9 0.4

ρ = 0.5
0.5 200 0.507 0.242 0.241 96.1 0.507 0.242 0.244 96.3 95.7 1.6

1000 0.508 0.107 0.104 93.6 0.508 0.107 0.105 93.6 93.5 0.6
5000 0.497 0.045 0.046 95.2 0.497 0.045 0.046 95.2 95.2 0.3

1.0 200 0.514 0.246 0.247 97.0 0.514 0.246 0.250 96.9 96.3 2.4
1000 0.504 0.108 0.105 93.6 0.504 0.108 0.105 93.6 93.4 1.4
5000 0.500 0.047 0.047 95.4 0.500 0.047 0.047 95.4 94.9 1.1

1.5 200 0.514 0.281 0.266 96.4 0.514 0.280 0.269 96.7 96.0 3.5
1000 0.506 0.114 0.111 94.6 0.506 0.114 0.111 94.9 94.1 2.4
5000 0.501 0.048 0.049 95.1 0.502 0.048 0.049 95.1 94.5 2.2

are consistent. In contrast, RC estimators have a bias due to their approximate nature, which is
largest when the reliability of measurement is low or when the regression coefficients are large.
Taking into account both the biases and sampling variances, root mean squared errors tend to
be smaller for RC when the sample size is small or moderate, and for IRC when the sample
size is reasonably large. The bias of RC means that in the most difficult cases the coverage of
confidence intervals based on them is substantially below the nominal level, while for IRC the
coverage levels are always adequate.

In summary, the simulation study suggests, first, that we can generally replace ML with
pseudo-ML (IRC) estimation, with essentially no loss in efficiency of estimation but with a sub-
stantial gain in computational speed. Second, when comparing IRC with RC, we find that the
preferred estimator can depend on the circumstances of the analysis. RC tends to perform best
with smaller samples and relatively mild measurement error problems, whereas IRC does best
when the sample sizes are large, measurement error is severe or the effects being estimated are
strong. The choice between RC and IRC is not informed by speed of computation, which is
essentially the same for both of them.

7. Empirical Illustration: Ability and High Earnings

To illustrate covariate measurement error modeling in practice, we apply the investigated
methods to a dataset on 935 non-black men from the 1980 wave of the Young Men’s Cohort
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TABLE 3.
Simulation results for improved regression calibration (IRC) and conventional regression calibration (RC) estimators of
regression parameter βx for covariate measured with error under different measurement reliabilities ρ, true values of
βx , and sample sizes N . In each case, the true value of the other regression coefficient βz is 0.5. The results are based
on 1000 replications. The table shows the simulation mean, % bias, and root mean squared error (RMSE) of the point
estimates of βx , and coverage percentage of 95 % confidence intervals (C95).

βx N IRC RC
Mean % Bias RMSE C95 Mean % Bias RMSE C95

ρ = 0.75
0.5 200 0.520 4.0 0.254 96.2 0.515 3.0 0.247 96.2

1000 0.507 1.4 0.111 95.0 0.504 0.8 0.109 94.9
5000 0.500 0.0 0.047 95.6 0.497 −0.5 0.046 95.6

1.0 200 1.051 5.1 0.299 96.2 1.020 2.0 0.268 95.3
1000 1.018 1.8 0.124 95.4 0.993 −0.7 0.114 94.2
5000 1.001 0.1 0.053 94.8 0.978 −2.2 0.054 92.4

1.5 200 1.592 6.2 0.382 97.1 1.492 −0.6 0.301 95.3
1000 1.519 1.3 0.145 96.6 1.439 −4.1 0.137 91.9
5000 1.502 0.1 0.064 94.7 1.426 −4.9 0.092 72.5

ρ = 0.5
0.5 200 0.533 6.6 0.312 97.0 0.518 3.7 0.288 95.9

1000 0.509 1.9 0.131 94.2 0.502 0.4 0.125 93.8
5000 0.500 0.1 0.054 95.5 0.494 −1.1 0.053 95.5

1.0 200 1.089 8.9 0.421 96.9 1.005 0.5 0.308 94.9
1000 1.007 0.7 0.148 95.9 0.954 −4.6 0.135 92.4
5000 1.005 0.5 0.065 95.5 0.954 −4.6 0.072 85.3

1.5 200 1.664 11.0 0.607 96.9 1.415 −5.7 0.341 92.4
1000 1.528 1.9 0.192 96.4 1.354 −9.7 0.198 79.0
5000 1.510 0.7 0.084 95.5 1.345 −10.3 0.166 26.8

of the U.S. National Longitudinal Survey (NLS), previously analyzed by Griliches (1976) and
Blackburn and Neumark (1992), among others.

The binary outcome yi we consider here is being a high earner, defined as having a salary
above the 90 % percentile of the sample distribution. The covariate of main interest is ability
xi , also denoted [Ability], which is measured with error. Three covariates which are assumed
measured without error are also included: working experience in years zi1 [Exper] (sample mean
11.6, s.d. 4.4), a dummy variable for living in an urban area zi2 [Urban] (71.8 % of the sample),
and a dummy variable for being black zi3 [Black] (12.8 %).

Under the standard assumptions previously stated, the outcome model is

logit
{
Pr(yi = 1|xi, zi1, zi2, zi3)

} = βz0 + βz1zi1 + βz2zi2 + βz3zi3 + βxxi,

and the exposure model is

xi = γ0 + γ1zi1 + γ2zi2 + γ3zi3 + ζi, ζi ∼ N(0,ψ).

The mens’ abilities are measured by two fallible measures. The first measure is an IQ test wi1
[IQ], collected as part of a survey of the respondents’ schools conducted in 1968. Since a wide
variety of IQ tests were used in different states, these were recoded into “IQ equivalents” by the
Center for Human Resources Research at the Ohio State University which administers the NLS.
The second measure is a test of “Knowledge of World of Work” wi2 [Know], which examines
respondents’ knowledge of the labor market, covering the duties, educational attainment, and
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TABLE 4.
Simulation results for improved regression calibration (IRC) and conventional regression calibration (RC) estimators of
regression parameter βz for perfectly measured covariate under different measurement reliabilities ρ, true values of the
other regression coefficient βx , and sample sizes N . In each case, the true value of βz is 0.5. The results are based on
1000 replications. The columns of the table are the same as in Table 3.

βx N IRC RC

Mean % Bias RMSE C95 Mean % Bias RMSE C95

ρ = 0.75
0.5 200 0.508 1.5 0.237 95.8 0.505 0.9 0.236 95.9

1000 0.509 1.8 0.105 94.1 0.506 1.2 0.105 94.1
5000 0.498 −0.5 0.045 95.9 0.495 −1.0 0.045 95.7

1.0 200 0.514 2.9 0.234 96.5 0.502 0.3 0.228 96.4
1000 0.511 2.2 0.104 94.6 0.499 −0.2 0.102 94.1
5000 0.497 −0.5 0.044 95.8 0.486 −2.7 0.045 94.5

1.5 200 0.513 2.7 0.256 96.1 0.485 −3.1 0.241 95.6
1000 0.507 1.4 0.109 94.7 0.481 −3.8 0.105 94.2
5000 0.499 −0.3 0.047 94.1 0.473 −5.3 0.052 90.3

ρ = 0.5
0.5 200 0.507 1.4 0.242 96.3 0.500 −0.1 0.240 95.9

1000 0.508 1.7 0.107 93.6 0.502 0.4 0.106 93.8
5000 0.497 −0.5 0.045 95.2 0.492 −1.7 0.046 95.0

1.0 200 0.514 2.9 0.247 96.9 0.485 −3.1 0.232 96.1
1000 0.504 0.8 0.108 93.6 0.479 −4.3 0.106 93.3
5000 0.500 −0.0 0.047 95.4 0.475 −5.0 0.051 91.2

1.5 200 0.514 2.8 0.281 96.7 0.451 −9.9 0.248 95.1
1000 0.506 1.3 0.115 94.9 0.450 −9.9 0.114 90.5
5000 0.502 0.3 0.048 95.1 0.447 −10.6 0.068 78.8

relative earnings of ten occupations. It is intended to reflect both the quantity and quality of
schooling, intelligence, and motivation (curiosity about the outside world). The seminal paper by
Griliches (1976) provides a lucid discussion of the data, variables and specification issues.

We use versions of the two fallible measures standardized to have sample mean 0 and vari-
ance 1. Denoting these standardized variables by wi1 and wi2, we consider the classical mea-
surement model

wij = xi + δij , δij ∼ N(0, θ), j = 1,2.

This is obtained from the general model (1) for a scalar xi by assuming λ1 = λ2 = 1, and then
setting ν1 = ν2 = 0 and θ1 = θ2 = θ because the marginal means and variances of wi1 and wi2
are equal. Note that for identifiability the model thus specifies that the two measures have equal
loadings, i.e., that on the scale of the standardized measures they are equally discriminating
measures of ability. This assumption could be relaxed if more than two fallible measures were
available.

Estimates from ML, IRC, and RC are shown in Table 5. The parameter estimates for the
outcome model are practically identical for ML and IRC, whereas the estimates from RC are
smaller, as expected. In particular, the estimate for the parameter of main interest βx from IRC,
β̂x = 2.50, is essentially identical to the ML estimate, whereas the estimate from RC is β̂x =
2.35.

The estimated standard errors of estimates of β are practically identical for ML and IRC,
apart from numerical differences. This indicates that the loss of efficiency in estimating the pa-
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TABLE 5.
Ability and high earnings: Estimates for logistic regression with covariate measurement error based on maximum like-
lihood (ML), improved regression calibration (IRC), and conventional regression calibration (RC). For IRC, SE are
estimated standard errors based on asymptotic covariance matrix derived in this article and SE-2 are naive estimated
standard errors ignoring uncertainty in Stage-1 estimates.

Parameter Covariate ML IRC RC
Est (SE) Est (SE) (SE-2) Est (SE)

Outcome model:
βz0 −3.68 (0.57) −3.68 (0.56) (0.55) −3.29 (0.45)
βz1 [Exper] 0.02 (0.03) 0.02 (0.03) (0.03) 0.02 (0.03)
βz2 [Urban] 0.50 (0.34) 0.50 (0.33) (0.33) 0.45 (0.31)
βz3 [Black] 0.52 (0.76) 0.52 (0.74) (0.73) 0.48 (0.68)
βx [Ability] 2.49 (0.50) 2.50 (0.51) (0.47) 2.35 (0.42)

Exposure model:
γ0 0.20 (0.08) 0.20 (0.08) (0.08) 0.20 (0.08)
γ1 [Exper] −0.02 (0.01) −0.02 (0.01) (0.01) −0.02 (0.01)
γ2 [Urban] 0.20 (0.06) 0.20 (0.06) (0.06) 0.20 (0.06)
γ3 [Black] −1.00 (0.07) −1.00 (0.07) (0.07) −1.00 (0.07)
ψ 0.29 (0.03) 0.29 (0.03) (0.03) 0.29 (0.03)

Measurement model:
θ 0.58 (0.03) 0.59 (0.03) (0.03) 0.59 (0.03)
Log-likelihood � = −2738.38 � = −2738.41

rameters of the exposure and measurement models from only Stage 1 of IRC is effectively nill;
indeed, estimates of these parameters and associated estimated standard errors are identical to the
full ML results to at least three decimal places. Uncertainty from Stage 1, i.e., the second term of
the variance matrix (17), contributes around 8 % of the estimated standard error of β̂x for IRC.
We also note that the sum of the maximized log-likelihood components for IRC of � = −2738.41
is very close to the maximum of the log-likelihood � = −2738.38.

From the estimated exposure model, the ability measure is significantly associated with ur-
banity, race and working experience. Its conditional variance given these covariates is ψ̂ = 0.29.
The estimated measurement error variance is θ̂ = 0.58, and the conditional reliability of the
measures (given the covariates) is thus ψ̂/(ψ̂ + θ̂ ) = 0.33.

Regarding the outcome model, there is a strong estimated association between the ability
measure and high earnings when controlling for working experience, urbanity, and race. The
estimated coefficient of β̂x = 2.50 translates to an odds ratio of 3.8 for being a high earner
corresponding to an increase of one conditional standard deviation in ability. The other covariates
are retained in the model, but they could possibly also have been omitted because they do not
have statistically significant associations with high earnings at the 5 % level. It is worth noting
that if the model was simplified by omitting some control variables, we could still choose to use
the predicted values ξ̃i and variances ω̂i conditional on all of them, without re-calculating these
predictions. This only requires the modification that in the calculation of the standard errors (as
shown in the appendix) the corresponding elements of βz are set to 0.

8. Discussion

In this article, we have proposed an improved regression calibration approach to the estima-
tion of generalized linear models with covariate measurement error, a pseudo maximum likeli-
hood method that simultaneously addresses the computational challenge of maximum likelihood
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and the inconsistency of conventional regression calibration. A decomposed form of the likeli-
hood was exploited, where the component for the measurement and exposure models is in closed
form and trivial to maximize, and the component for the outcome model is accurately maximized
using crude and fast numerical integration.

Our simulations show that improved regression calibration produces parameter estimates
that are practically indistinguishable from those produced by maximum likelihood. Interval esti-
mation based on the asymptotic covariance matrix for improved regression calibration that was
derived in this article has excellent performance. Even interval estimation based on the naive
estimator of the asymptotic covariance matrix (ignoring the uncertainty incurred in the first step)
usually performs well. Compared to conventional regression calibration, improved regression
calibration offers little or no advantage when sample sizes are small, but performs best when
samples are reasonably large and especially when the measurement error or the effects are not
small.

Both the fallibly measured covariates and their measures are continuous in the models con-
sidered here. Improved regression calibration can also be used when the observed measures are
categorical, in which case categorical factor models would be used as measurement models.
Since the predictive distributions are then no longer normal, it is not obvious that improved re-
gression calibration would work well. If both the fallibly measured covariates and their measures
are categorical, the problem is one of misclassification where integration is replaced by summa-
tion and maximum likelihood estimation becomes computationally straightforward.
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Appendix: Obtaining ÎME,O in (18)

Here we describe the calculation of the estimate (18) of the matrix IME,O, which is used

in the calculation of the variance matrix (17) of ϑ̂
IRC
O . Let us first introduce some convenient

shorthand notation for the logarithm of the likelihood contribution (6):

logg(yi,wi |zi;ϑ)︸ ︷︷ ︸
≡gi

= log
∫ ≡gyi︷ ︸︸ ︷

g(yi |xi , zi;ϑO)

≡gxi︷ ︸︸ ︷
g(xi |wi , zi;ϑME) dxi︸ ︷︷ ︸

≡g1i

+ logg(wi |zi;ϑME)︸ ︷︷ ︸
≡g2i

.

Here gxi and g2i are multivariate normal density functions with parameters θ1i = (ξ ′
i ,vec(�i )

′)′
and θ2i = (μ′

i ,vec(
i )
′)′ respectively, as defined by (11)–(12) and (9)–(10). These in turn are

functions of the parameters χ = (ν′,vec(�)′,vec(�)′,vec(
)′,vec(�)′)′, and ϑME are the dis-
tinct, unknown elements of χ .

The required gradients for (18) are

uϑO,i (ϑ) = ∂ loggi

∂ϑO
= 1

g1i

∂g1i

∂ϑO
and (A.1)

uϑME,i (ϑ) = ∂ loggi

∂ϑME
= 1

g1i

(
∂g1i

∂θ ′
1i

∂θ1i

∂χ ′
∂χ

∂ϑ ′
ME

)′
+

(
∂ logg2i

∂θ ′
2i

∂θ2i

∂χ ′
∂χ

∂ϑ ′
ME

)′
, (A.2)
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where

g1i =
∫

gyigxi dxi , (A.3)

∂g1i

∂ϑO
=

∫
∂gyi

∂ϑO
gxi dxi , and (A.4)

∂g1i

∂θ ′
1i

=
∫

gyi

∂gxi

∂θ ′
1i

dxi . (A.5)

Estimated values for these quantities, and thus for the estimated matrix ÎME,O given by (18), are

obtained by substituting estimates ϑ̂
IRC

of the parameters.
Starting with (A.2), we note that each element of χ is either a known constant or equal to a

single element of ϑME; for illustration, consider � as shown in (2). Suppose that χ is of length
t and ϑME of length u. Then ∂χ/∂ϑ ′

ME is a t × u matrix whose (i, j)th element is 1 if the ith
element of χ is equal to the j th element of ϑME, and 0 otherwise.

Next, the elements of ∂θ2i/∂χ ′ in (A.2) are

∂μi

∂ν′ = Ci ,

∂μi

∂vec(�)′
= (
zi )

′ ⊗ Ci ,

∂μi

∂vec(�)′
= 0,

∂μi

∂vec(
)′
= z′

i ⊗ (Ci�),

∂μi

∂vec(�)′
= 0,

∂vec(
i )

∂ν ′ = 0,

∂vec(
i )

∂vec(�)′
= [

(Ci��) ⊗ Ci

] + [
Ci ⊗ (Ci��)

]
Krm,

∂vec(
i )

∂vec(�)′
= Ci ⊗ Ci ,

∂vec(
i )

∂vec(
)′
= 0,

∂vec(
i )

∂vec(�)′
= (Ci�) ⊗ (Ci�),

and the elements of ∂θ1i/∂χ ′ are

∂ξ i

∂ν ′ = ∂ξ i

∂μ′
i

∂μi

∂ν ′ ,



PSYCHOMETRIKA

∂ξ i

∂vec(�)′
= {[

C′
i


−1
i (wi − μi )

]′ ⊗ �
}
Krm

+ ∂ξ i

∂μ′
i

∂μi

∂vec(�)′
+ ∂ξ i

∂vec(
−1
i )′

∂vec(
−1
i )

∂vec(
i )′
∂vec(
i )

∂vec(�)′
,

∂ξ i

∂vec(�)′
= ∂ξ i

∂vec(
−1
i )′

∂vec(
−1
i )

∂vec(
i )′
∂vec(
i )

∂vec(�)′
,

∂ξ i

∂vec(
)′
= z′

i ⊗ Im + ∂ξ i

∂μ′
i

∂μi

∂vec(
)′
,

∂ξ i

∂vec(�)′
= [

�′C′
i


−1
i (wi − μi )

]′ ⊗ Im

+ ∂ξ i

∂vec(
−1
i )′

∂vec(
−1
i )

∂vec(
i )′
∂vec(
i )

∂vec(�)′
,

∂vec(�i )

∂ν ′ = 0,

∂vec(�i )

∂vec(�)′
= −{[(

��′C′
i


−1
i Ci

) ⊗ �
]
Krm + [

� ⊗ (
��′C′

i

−1
i Ci

)]}

+ ∂vec(�i )

∂vec(
−1
i )′

∂vec(
−1
i )

∂vec(
i )′
∂vec(
i )

∂vec(�)′
,

∂vec(�i )

∂vec(
)′
= 0,

∂vec(�i )

∂vec(�)′
= ∂vec(�i )

∂vec(
−1
i )′

∂vec(
−1
i )

∂vec(
i )′
∂vec(
i )

∂vec(�)
,

∂vec(�i )

∂vec(�)′
= Im2 − (Im2 + Kmm)

[(
��′C′

i

−1
i Ci�

) ⊗ Im

]

+ ∂vec(�i )

∂vec(
−1
i )′

∂vec(
−1
i )

∂vec(
i )′
∂vec(
i )

∂vec(�)
,

where

∂ξ i

∂μ′
i

= −��′C′
i


−1
i ,

∂ξ i

∂vec(
−1
i )′

= (wi − μi )
′ ⊗ (

��′C′
i

)
,

∂vec(�i )

∂vec(
−1
i )′

= −(
��′C′

i

) ⊗ (
��′C′

i

)
,

∂vec(
−1
i )

∂vec(
i )′
= −
−1

i ⊗ 
−1
i ,
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and vec(·) denotes the column-by-column vectorization operator, ⊗ the Kronecker product, Im

an m × m identity matrix, and Krm an rm × rm commutation matrix. The formulas are obtained
through repeated application of rules of matrix differentiation (see, e.g., Lütkepohl, 1996).

In the second term of (A.2), the elements of ∂ logg2i/∂θ ′
2i are ∂ logg2i/∂μ′

i = (wi −
μi )

′
−1
i and ∂ logg2i/∂vec(
i )

′ = vec[
−1
i (wi − μi )(wi − μi )

′
−1
i − 
−1

i ]′/2.
The remaining elements of (A.1) and (A.2) depend also on the outcome model for yi .

For the logistic model, which is predominant in applications of generalized linear models
with covariate measurement error, and which is also used in our simulations and example,
gyi = π

yi

i (1 − πi)
1−yi where πi = exp(ηi)/[1 + exp(ηi)] and ηi = z′

iβz + x′
iβx . For this

model we employ the well-known closed-form approximation g1i ≈ (π∗
i )yi (1 − π∗

i )1−yi , where

π∗
i = exp(η∗

i )/[1 + exp(η∗
i )], η∗

i = η1iη
−1/2
2i , η1i = z′

iβz + ξ ′
iβx , η2i = 1 + dβ ′

x�iβx , and
d = 1/1.72 (e.g., Liang & Liu, 1991). For this approximation,

∂g1i

∂ϑO
= (−1)1−yi π∗

i

(
1 − π∗

i

)
η

−1/2
2i

(
z′
i , ξ

∗′
i

)′
and

∂g1i

∂θ ′
1i

= (−1)1−yi π∗
i

(
1 − π∗

i

)
η

−1/2
2i

[
β ′

x,−(d/2)η1iη
−1
2i

(
β ′

x ⊗ β ′
x

)]
,

where ξ∗
i = ξ i − η1iη

−1
2i d�iβx . These formulas complete explicit expressions for (A.1) and

(A.2).
In our data analysis, we also apply a similar idea for the conventional regression calibration

estimate of ϑO, which uses the first-order approximation g1i ≈ (πRC
i )yi (1 − πRC

i )1−yi where
πRC

i = exp(η1i )/[1 + exp(η1i )]. We estimate its variance matrix analogously to (17)–(18), using
in (A.1) and (A.2) ∂g1i/∂ϑO = (∂g1i/∂η1i )(z′

i , ξ
′)′ and ∂g1i/∂θ ′

1i = (∂g1i/∂η1i )[β ′
x,0′], where

∂g1i/∂η1i = (−1)1−yi πRC
i (1 − πRC

i ).
For other, less popular models, we must evaluate the integrals involved in (A.3)–(A.5). Note

first that the partial derivatives ∂gxi/∂θ ′
1i are given by

∂gxi

∂ξ ′
i

= (xi − ξ i )
′�−1

i gxi and

∂gxi

∂vec(�i )′
= (1/2)vec

[
�−1

i (xi − ξ i )(xi − ξ i )
′�−1

i − �−1
i

]′
gxi .

Substituting these into (A.5), we see that each of the integrals there, and also in (A.3) and (A.4),
are of the form

∫
hi(xi )gxi dxi for some function hi(xi ) of xi , integrated over the multivari-

ate normal density gxi = g(xi |wi , zi;ϑME). This suggests that the integrals can be evaluated
through Monte Carlo integration, by first generating M independent draws xij , j = 1, . . . ,M ,
from g(xi |wi , zi; ϑ̂ME), and then approximating the integrals by the averages M−1 ∑M

j=1 hi(xij )

for each of the hi(·). Only one set of random draws is needed for all the observations i, if we first
generate M uncorrelated m-vectors uj of standard normal random variates and then calculate
xij = ξ̃ i + Biuj , where �̂i = BiB′

i .
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