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IV. Longitudinal data and alternatives to multilevel modelling (slide 95)
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I. Random intercept models

◮ Clustered data, unobserved heterogeneity and dependence

◮ Random intercept models

◮ Intraclass correlation

◮ Example: GHQ test-retest data

◮ Estimation, testing and confidence intervals

◮ Empirical Bayes prediction and shrinkage

◮ Fixed versus random effects
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Clustered data

◮ An important assumption in linear regression and logistic regression
is that units (usually people) are independent (given covariates x)

◮ An important violation is due to clustered data with responses yij on
units i grouped in clusters j:

• Students i clustered in schools j

• Siblings i clustered in families j

• Repeated observations i clustered in people j
(longitudinal, repeated measures, or panel data)
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◮ General terms: level-1 units i clustered in level-2 units j
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Unobserved heterogeneity

◮ Could not hope to explain all variability between clusters (e.g.
schools) using observed covariates x

• For instance, the school atmosphere, parents’ involvement,
teachers’ enthusiasm and competence, etc., cannot all be
measured

◮ Therefore there is unobserved heterogeneity (= unexplained
variability) between clusters

◮ Means that two observations in same cluster are correlated and more
similar than observations in different clusters

• Students in one school tend to have better test results, even after
controlling for covariates, than students in another school
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Heterogeneity and dependence

◮ Example: No covariates, two units i = 1, 2 per cluster j with
responses yij :

yij = β + ξij , ξij is a residual
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Cluster j

• is y1j

◦ is y2j

– is the mean 1
2 (y1j + y2j)

◮ Residuals ξij for same cluster usually have same sign, corresponding
to within-cluster correlations or dependence
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Variance-components model

◮ Model between-cluster heterogeneity:

yij = β + ζj + ǫij︸ ︷︷ ︸
ξij

• Total residual ξij split into level-2 residual ζj (shared by all
members of cluster) and level-1 residual (unit-specific) ǫij

• ζj , random intercept for cluster j
⋄ deviation of true cluster-mean β + ζj from overall mean β
⋄ independent of ζj′ for other clusters j′

⋄ mean zero and variance ψ (a model parameter)

• ǫij , the level-1 residual
⋄ deviation of yij from its true cluster mean β + ζj

⋄ independent of ǫi′j′ for other i′ or j′ and of ζj and ζj′

⋄ mean zero and variance θ (a model parameter)
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Illustration of variance components model
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c©Rabe-Hesketh&Skrondal – p.8



Variance components

◮ Total residual or error:

ξij = ζj + ǫij

• Can view ζj and ǫij as error components

◮ Total residual variance:

var(ξij) = var(ζj) + var(ǫij) =

between︷︸︸︷
ψ +

within︷︸︸︷
θ

• Variances add up because ζj and ǫij are independent

• ψ and θ are therefore variance components

◮ Total variance of yij :

var(yij) = var(β + ξij) = var(ξij) = ψ + θ
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Conditional independence

◮ Responses conditionally independent given random intercept

◮ Zero covariance and correlation between measurements on two units
i and i′, given the random intercept ζj ,

Cor(yij , yi′j |ζj) = 0
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Intraclass correlation

◮ Covariance between responses on two units i and i′ for the same
cluster j (not conditioning on ζj)

Cov(yij , yi′j) = E[(yij− β︸︷︷︸
E(yij)

)(yi′j− β︸︷︷︸
E(yi′j)

)] = E[(ζj+ǫij)(ζj+ǫi′j)] = E[ζ2j ] = ψ

◮ Corresponding intraclass correlation is covariance divided by
product of standard deviations

Cor(yij , yi′j) =
Cov(yij , yi′j)√

Var(yij)
√

Var(yi′j)
=

ψ√
ψ + θ

√
ψ + θ

=
ψ

ψ + θ
= ρ

◮ Proportion of total variance shared among units in same cluster and
therefore due to clusters (similar to coefficient of determination R2)

ρ =
Var(ζj)
Var(yij)

=
ψ

ψ + θ
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Distributional assumptions

◮ Assume that ζj ∼ N(0, ψ)

◮ Assume that ǫij ∼ N(0, θ)

◮ Hierarchical, two-stage model, reflecting two-stage sampling:

• ζj ∼ N(0, ψ) =⇒ determines β+ζj

• ǫij ∼ N(0, θ) =⇒ determines yij = β+ζj+ǫij

 

 

ǫ1jǫ2j

ζj

y2j y1jβ
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Parameter estimation ( β, ψ, θ)

◮ Maximum likelihood estimation (ML)

• If variances were known, would use GLS (generalised least
squares) ⇒ IGLS (Iterative GLS), iterating between estimation of
fixed and random part

• EM (Expectation-Maximization) algorithm: Treat random effects
as missing values

◮ Restricted maximum likelihood estimation (REML)

• ML gives downward biased estimate of random intercept variance

• If cluster size is constant, nj = n, REML gives unbiased
estimates (if estimates allowed to be negative)

• REML is ML applied to ‘residuals’

◮ Software: MLwiN, HLM, SPSS: MIXED, Stata: xtmixed,
SAS: MIXED, R: lmer (all give identical estimates)
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Hypothesis testing and confidence intervals

◮ Inference for β

• Wald test : Use estimated standard error ŜE(β̂) for test statistic
(and confidence interval)

H0 : β = µ0, z =
β̂ − µ0

ŜE(β̂)

◮ Test for zero between-cluster variance H0 : ψ = 0

• Likelihood ratio test (DO NOT USE WALD TEST)
⋄ Compare log-likelihood L1 for random-intercept model with

log-likelihood L0 for ordinary regression model (no ζj)
⋄ Test statistic G2 = 2(L1 − L0)

⋄ Asymptotic sampling distribution under H0 not χ2(1) because
null hypothesis is on boundary of parameter space since ψ ≥ 0

⋄ Solution: assume χ2(1) distribution, but divide p-value by 2
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Example: GHQ test-retest data

◮ General Health Questionnaire (GHQ) to measure psychological
distress

◮ Sum of 12 items, each scored 0,1, or 2

◮ Completed twice by 12 clinical psychology students, 3 days apart

◮ Variables:

• Subject id j

• Occasion (1:test, 2:retest) i

• GHQ score yij
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Graph for GHQ data
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Maximum likelihood estimates for GHQ data

Est (SE)

Fixed part

β 10.17 (1.68)

Random part
√
ψ 5.65

√
θ 1.91

Log-likelihood −67.13

c©Rabe-Hesketh&Skrondal – p.17

Exercises: GHQ data

◮ Calculate the estimated intraclass correlation

ψ̂

ψ̂ + θ̂
=

5.652

5.652 + 1.912
= 0.897

◮ Consider the Pearson correlation between test and retest. Is this
different than the intraclass correlation? If so, why?

Unlike ICC, Pearson correlation r does not assume equal means and
equal standard deviations for test and retest

r =
1

J − 1

∑
j(y1j − y1)(y2j − y2)

s1s2
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Assigning values to random effects:
Empirical Bayes prediction

◮ ζj is a residual like ǫij

◮ ζj is a random variable, not a model parameter

◮ As in ordinary regression, sometimes want to predict residuals

◮ Reasons for predicting ζj :

• Residual diagnostics

• Inference for cluster-mean β + ζj or ζj
⋄ Measurement (e.g., GHQ): β + ζj is “true score”
⋄ Institutional performance: ζj is “value added”

• Model interpretation
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Assigning values to random effects:
Empirical Bayes prediction

◮ Treat parameter estimates β̂, ψ̂ and θ̂, as known parameter values

◮ For cluster j, empirical Bayes combines

1. Prior distribution of ζj , knowledge about ζj before seeing data
for the cluster

Prior(ζj)
[

normal density g(0, ψ̂)
]

2. Likelihood , knowledge about ζj provided by the data yj (and Xj)

Likelihood(yj |ζj)
[

nj∏

i=1

g(β̂ + ζj , θ̂)

]

◮ To obtain posterior distribution of random intercept (Bayes Theorem)

Posterior(ζj |yj) ∝ Prior(ζj)× Likelihood(yj |ζj)
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Empirical Bayes prediction (cont’d)
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◮ Empirical Bayes prediction ζ̃j = 1.33 is mean of posterior
distribution
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Fixed instead of random effects of clusters

◮ Can view clusters as categories of categorical explanatory variable

◮ Fixed effects of cluster : dummy variable dmj for cluster j
(no intercept)

yij =

αj︷ ︸︸ ︷
J∑

m=1

αmdmj +ǫij , dmj =





1 if m = j

0 if m 6= j
ǫij ∼ N(0, θ)

• αj are fixed parameters, representing clusters’ population means

• ǫij is a random error term, representing within-cluster variability

◮ Random effects of cluster :

yij = β + ζj + ǫij , ζj ∼ N(0, ψ), ǫij ∼ N(0, θ)

• β is a fixed parameter, the population mean

• ζj and ǫij are random error terms
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Fixed effects approach for GHQ data (cont’d)

FE EST (SE)

Fixed part α1 12 (1.35)
α2 7.5 (1.35)
α3 23.0 (1.35)
α4 12.0 (1.35)
α5 9.0 (1.35)
α6 5.0 (1.35)
α7 6.5 (1.35)
α8 5.0 (1.35)
α9 14.0 (1.35)
α10 5.5 (1.35)
α11 3.5 (1.35)
α12 19.0 (1.35)

Random part θ 3.7

RE EB (SE)

β + ζ1 11.9 (1.32)
β + ζ2 7.6 (1.32)
β + ζ3 22.3 (1.32)
β + ζ4 11.9 (1.32)
β + ζ5 9.1 (1.32)
β + ζ6 5.3 (1.32)
β + ζ7 6.7 (1.32)
β + ζ8 5.3 (1.32)
β + ζ9 13.8 (1.32)
β + ζ10 5.8 (1.32)
β + ζ11 3.9 (1.32)
β + ζ12 18.5 (1.32)

θ 3.7

◮ 13 parameters (θ and 12 αj ) for fixed-effects model, compared with
3 parameters (θ, β, ψ) for random-effects model

◮ In random-effects model, use empirical Bayes to assign values to cluster means
β + ζj
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Maximum likelihood estimation
of cluster-specific effects

◮ Estimated coefficients α̂j of dummies are ML estimates of β + ζj

• Maximum likelihood estimates of ζj , maximum of
Likelihood(yj |ζj) with β̂ treated as known

• Also called OLS (Ordinary Least Squares) estimates

• Simply the cluster means of the estimated total residuals ξ̂ij

ξ̂ij = yij − β̂ = ζ̂j+ǫij

ζ̂ML
j =

1

nj

nj∑

i=1

ξ̂ij
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Shrinkage

◮ Empirical Bayes prediction of random intercept can be written as

ζ̃EB
j = R̂j ζ̂

ML
j , R̂j =

ψ̂

ψ̂ + θ̂/nj

• R̂j is estimated ‘reliability’ of ML estimator
(true score variance divided by total variance of ζ̂ML

j )

• R̂j is shrinkage factor , shrinking prediction towards 0
(mean of prior) since 0 ≤ R̂j ≤ 1

• More shrinkage (i.e. greater influence of prior) if
⋄ Small random intercept variance ψ̂ (informative prior)
⋄ Large level-1 residual variance θ̂ (non-informative data)
⋄ Small cluster size nj (non-informative data)
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Illustration: Shrinkage

◮ Cluster with nj = 2 units

◮ Predicted total residuals ξ̂1j = 3 and ξ̂2j = 5

Much shrinkage: Little shrinkage:
ψ̂ = 1, θ̂ = 4 ⇒ R̂j = 0.33 ψ̂ = 4, θ̂ = 1 ⇒ R̂j = 0.89
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Bias/precision trade-off

◮ EB prediction conditionally biased towards zero unlike ML:
For a given cluster, mean EB prediction (over repeated samples of
units) closer to zero than true random intercept

◮ EB has smaller prediction error variance (mean squared error) than
ML, i.e. more accurate, especially for small clusters

Example:
Sampling
Distributions
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◮ Also called ‘Best Linear Unbiased Predictor’ (BLUP)
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“Borrowing strength” or partial pooling

◮ EB for cluster j ‘borrows strength’ from other clusters

◮ Estimate of true cluster mean β + ζj is:

• ML:

β̂ + ζ̂ML
j = β̂ +

1

nj

nj∑

i=1

(yij − β̂) = β̂ + (ȳ·j − β̂) = ȳ·j

=⇒ sample mean of cluster j

• EB:

β̂ + ζ̃EB
j = β̂ + R̂j ζ̂

ML
j = β̂ + R̂j(ȳ·j − β̂) = (1− R̂j)β̂ + R̂j ȳ·j

=⇒ weighted mean of:
sample mean of cluster j and β̂, estimate based on all clusters
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Fixed versus random effects

Issue Fixed effects Random effects

Inference for
population of clusters No − Yes +

Number of clusters
required Any number + At least 10 or 20 −

None for distribution Intercepts normal,
Assumptions of intercepts + constant variance, etc. −

Inference for Yes,
individual clusters Yes + empirical Bayes +

Cluster sizes Any sizes if many ≥ 2,
required but overfitting if small ± Any sizes if many ≥ 2 +

A parameter αj for One variance parameter
Parsimony each cluster − ψ for all clusters +

◮ Note: Further issues if there are covariates and for generalized linear mixed models
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Exercise: Fixed versus random

◮ In each situation below, should fixed or random effects be used?

1. Math achievement, 3 schools, 30 to 40 students per school

2. Reading test, 43 countries, about 2000 students per country

3. Longitudinal data on 20 subjects, 3 observations per subject

4. Blood pressure, 10 treatment groups, 20 patients per group

5. Depression, 15 therapists, 3-15 patients per therapist
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II. Random coefficient models

◮ Random intercept model with covariates

◮ Example: Georgian birthweights

◮ Between effects, within effects and endogeneity

◮ Random coefficients

c©Rabe-Hesketh&Skrondal – p.31

Random intercept model with covariate

◮ Add covariate to variance components model:

yij = β1 + β2xij︸ ︷︷ ︸
fixed part

+ ζj + ǫij︸ ︷︷ ︸
random part

◮ Intercept varies between clusters:

yij = β1 + ζj︸ ︷︷ ︸
intercept

for cluster j

+ β2xij + ǫij
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Assumptions for
random intercept model with covariate

◮ Assumptions for ǫij and ζj :

• E(ǫij |ζj ,Xj) = 0

⋄ ⇒ Cov(ǫij ,Xj) = 0 [level-1 exogeneity]
⋄ ⇒ variance decomposition

• ǫij independent over units i and clusters j
⇒ conditional independence of responses given random
intercept

• E(ζj |Xj) = 0
⇒ Cov(ζj ,Xj) = 0 [level-2 exogeneity]

• ζj independent for different j
⇒ independent clusters in likelihood

◮ Distributional assumptions (for maximum likelihood):

• ǫij normal with zero mean and variance θ

• ζj normal with zero mean and variance ψ
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Regression lines

◮ Population averaged or marginal regression line (mean over
population of clusters and populations of units within clusters)

E(yij |xij) = β1 + β2xij

◮ Cluster-specific or conditional regression line
(mean over population of units within cluster j)

E(yij |xij , ζj) = β1 + β2xij + ζj

= (β1 + ζj) + β2xij

• ψ is variance between cluster-specific intercepts β1 + ζj

• θ is variance of yij around cluster-specific regression lines
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Illustration of random intercept model with covariate
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Example: Georgia birthweights

◮ 878 mothers of five children in Georgia, USA:

• Child’s birth weight in grams yij

• Mother’s age at the time of the child’s birth xij

◮ Random intercept model:

yij = β1 + β2xij + ζj + ǫij

• With the usual assumptions stated on slide 33
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Estimates for Georgia birthweights (cont’d)

with age without age

Est (SE) Est (SE)

Fixed part

β1 2785.2 (45.2) 3156.3 (14.1)

β2 [age] 17.1 (2.0)

Random part
√
ψ 354.6 368.4

√
θ 434.2 435.5

Log-likelihood −33535.7 −33572.3
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Between and within-cluster covariates

◮ Covariates may vary

• Between clusters, e.g., mother’s own birthweight

• Within clusters, e.g., children’s parity (birth order) 1,2,3,4,5

• Both between and within clusters, e.g., mother’s age at birth
⋄ Between-cluster variability : Standard deviation of cluster

mean age around overall mean is 3.7
⋄ Within-cluster variability : Standard deviation of age around

cluster means is 2.8
⋄ Overall variability : Conventional standard deviation (ignoring

clustering) is 4.6
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Between and within-cluster effects of covariates

◮ Previous model:

yij = β1 + β2xij + ζj + ǫij

◮ Coefficient β2 represents difference in mean birth weight for children
whose mothers differ in age by one year

◮ Two types of comparisons or effects:

• Within-mother effect :
Same mother, children born at different times (ages)

• Between-mother effect :
Different mothers giving birth at different ages

◮ Model assumes that both effects are the same
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Between and within cluster effects

◮ Between effect : Take cluster average of random intercept model

1

nj

nj∑

i=1

yij =
1

nj

nj∑

i=1

[β1 + β2xij + ζj + ǫij ]

ȳ·j = β1 + β2x̄·j + ζj + ǭ·j︸ ︷︷ ︸
ej

◮ Within effect : Subtract cluster average random intercept model from
random intercept model

yij = [β1 + β2xij + ζj + ǫij ]

−ȳ·j = −[β1 + β2x̄·j + ζj + ǭ·j ]

yij − ȳ·j = β2(xij − x̄·j) + ǫij − ǭ·j︸ ︷︷ ︸
eij
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Illustration of different between and within-effects
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◮ Hollow circles: individual units (xij , yij )

◮ Dotted lines: within-cluster regression, slope is within-cluster effect

◮ Solid circles: cluster means (x̄.j , ȳ.j )

◮ Dashed line: between-cluster regression, slope is between-cluster effect

◮ Simpson’s paradox, cluster-level confounding, ecological fallacy

c©Rabe-Hesketh&Skrondal – p.41

Between and within-cluster estimates
for Georgia birthweights

Between Within

Est (SE) Est (SE)

Fixed part

β1 2499.1 (80.7) 2900.1 (51.1)

β2 [age] 30.4 (3.7) 11.8 (2.3)

◮ Estimated between-effect much larger than within-effect

◮ Advantage of clustered data:
Can distinguish between different kinds of effects!
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Exercise: Between and within-effects

◮ Explain why you think there is a difference between the within and
between-effects of mother’s age on birth weight
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Cluster-level confounding and endogeneity

◮ Random intercept model (equal between and within-cluster effects)

yij = β1 + β2xij + ζj + ǫij

= β1 + β2(xij − x̄.j) + β2x̄.j + ζj + ǫij

◮ Random intercept model assumes exogenous covariate
(important if β2 interpreted as causal effect of xij on yij)

• xij uncorrelated with ζj (no cluster-level confounding)
⋄ x̄.j uncorrelated with ζj
⋄ Assumption not made in within-cluster regression
yij − ȳ·j = β2(xij − x̄·j) + ǫij − ǭ·j

• xij uncorrelated with ǫij (no unit-level confounding)
⋄ (xij − x̄.j) uncorrelated with ǫij

◮ Within-cluster estimate not subject to cluster-level confounding –
closer to causal effect?
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Allowing and testing for endogeneity

◮ Concern about bias due to correlation between ζj and xij
(especially among economists who call this endogeneity )

• Use within-effect estimator or modify random intercept model:

yij = β1 + β2w(xij − x̄·j) + β2bx̄·j + ζj + ǫij

⋄ β2w is within-effect and β2b is between-effect

• If Cor(xij , ζj) 6= 0

⋄ β̂2b inconsistent since Cor(x̄·j , ζj) 6= 0

⋄ β̂2w consistent since Cor((xij−x̄·j), ζj) = 0 and
Cor((xij−x̄·j), x̄·j) = 0

• Test of H0 : β2w = β2b, highly significant, p < 0.001

• This test is equivalent to famous Hausman test in econometrics
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Fixed instead of random effects of clusters

◮ Regression with dummy variables dmj for each cluster (and no
intercept) – ANCOVA model

yij =

αj︷ ︸︸ ︷
J∑

m=1

αmdmj +β2xij + ǫij , dmj =





1 if m = j

0 if m 6= j

• Any between-cluster covariate zj or x̄.j completely collinear with
set of dummy variables, i.e., can be written as linear combination
of dummy variables:

zj =
J∑

m=1

zmdmj x.j =
J∑

m=1

x.mdmj

⋄ Cannot include between-cluster covariates
⋄ Estimate of β2 is within-effect ; between-effect absorbed in
α1 to αJ
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Fixed versus random effects revisited

Issue Fixed effects Random effects

Inference for
population of clusters No − Yes +

Number of clusters
required Any number + At least 10 or 20 −

None for distribution Intercepts normal,
Assumptions of intercepts + constant variance, etc. −
Effects of cluster-
level covariates No − Yes +

Inference for Yes,
individual clusters Yes + Empirical Bayes +

Cluster sizes Any sizes if many ≥ 2,
required but overfitting if small ± Any sizes if many ≥ 2 +

A parameter αj for One variance parameter
Parsimony each cluster − ψ for all clusters +

Within-cluster effects Only with extra
of covariates Yes + work −
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Random coefficient models

◮ Not only the overall level of the response (intercept) can vary
between clusters, but also the slopes of within-cluster covariates

◮ Simple example:

yij =

intercept︷ ︸︸ ︷
β1 + ζ1j +

slope︷ ︸︸ ︷
(β2 + ζ2j)xij + ǫij

= β1 + β2xij︸ ︷︷ ︸
fixed part

+ ζ1j + ζ2jxij + ǫij︸ ︷︷ ︸
random part

• ζ1j is random intercept: Deviation of cluster-specific intercept
from mean intercept

• ζ2j is random slope: Deviation of cluster-specific slope from
mean slope
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Assumptions for random coefficient models

◮ Exogeneity assumptions analogous to random intercept model

◮ Distributional assumptions (for maximum likelihood):
• ǫij normal with zero mean and variance θ

• (ζ1j , ζ2j) bivariate normal with zero means and unstructured
covariance matrix (variances ψ11 and ψ22 and covariance ψ21)
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Regression lines

◮ Population averaged or marginal regression line (mean over
population of clusters and populations of units within clusters)

E(yij |xij) = β1 + β2xij

◮ Cluster-specific or conditional regression line
(mean over population of units within cluster j)

E(yij |xij , ζ1j , ζ2j) = β1 + β2xij + ζ1j + ζ2jxij

= (β1 + ζ1j) + (β2 + ζ2j)xij
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Illustration of random coefficient model

Random intercept model Random coefficient model

0.0 0.5 1.0 1.5 2.0

0.
0

0.
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1.
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1.
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2.
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ǫ1j

ζ1j

β1

β2

xij

yij

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

ǫ1j

ζ1j

ζ2j

β1

β2

β2

xij

yij = (β1+ζ1j) + β2xij + ǫij yij = (β1+ζ1j) + (β2+ζ2j)xij + ǫij

ζ1j : vertical shift ζ1j : vertical shift at xij = 0

c©Rabe-Hesketh&Skrondal – p.51

Parameters of random part

◮ Four unique parameters for random part:

• Unstructured covariance matrix of intercepts ζ1j and slopes ζ2j :


 Var(ζ1j) Cov(ζ1j , ζ2j)

Cov(ζ2j , ζ1j) Var(ζ2j)


 =


 ψ11 ψ12

ψ21 ψ22


 , ψ21 = ψ12

• Variance of level-1 residuals ǫij : θ

◮ Easier to interpret standard deviations
√
ψ11,

√
ψ22,

√
θ and

correlation ρ21

ρ21 =
ψ21√
ψ11ψ22
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Two-stage formulation

◮ Raudenbush and Bryk (R&B) define multilevel model in stages:

• Level-1 model with cluster-specific coefficients and unit-specific
covariates:

yij = β0j + β1jxij + rij

• Level-2 models for cluster-specific coefficients with
cluster-specific covariates:

β0j = γ00 + γ01wj + u0j

β1j = γ10 + γ11wj + u1j

⋄ ‘Intercepts and slopes as outcomes’
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Reduced form model

◮ Substitute level-2 models into level-1 model:

yij = γ00 + γ01wj + u0j︸ ︷︷ ︸
β0j

+(γ10 + γ11wj + u1j)︸ ︷︷ ︸
β1j

xij + ǫij

= γ00 + γ10xij + γ01wj + γ11wjxij + u0j + u1jxij + ǫij

≡ β1 + β2xij + β3wj + β4wjxij + ζ1j + ζ2jxij + ǫij

• γ11 (or β4) represents a cross-level interaction between wj

(level 2) and xij (level 1)
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Example: Inner London Schools

◮ Inner London School data (65 schools)

• Graduate Certificate of Secondary Education (GCSE) score
(age 16) yij

• London Reading Test (LRT) score before entering school
(age 11) xij

• GCSE and LRT standardized to mean=0, sd=10 (in larger
sample)

◮ Model:

yij = (β1 + ζ1j)︸ ︷︷ ︸
Intercept for school j

+ (β2 + ζ2j)︸ ︷︷ ︸
Slope for school j

xij + ǫij

• With the usual assumptions
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Maximum likelihood estimates for random intercept (RI)
and random coefficient (RC) models

RI Model RC Model
Parameter Est (SE) Est (SE)

Fixed part

β1 0.02 (0.40) −0.12 (0.40)

β2 [LRT] 0.56 (0.01) 0.56 (0.02)

Random part
√
ψ11 3.04 3.01

√
ψ22 0.12

ρ21 0.50
√
θ 7.52 7.44

Log-likelihood -14024.80 -14004.61
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Test for zero slope variance

◮ H0: ψ22 = 0 (⇒ ψ21 = 0); in other words ζ2j = 0 for all j

◮ If null hypothesis is true, likelihood ratio (or deviance) statistic G2

usually has a χ2 distribution with degrees of freedom equal to
difference in number of parameters, here 2 ⇒ p-value is < 0.001

◮ However, for variance component ψ22, null hypothesis is on boundary
of parameter space since ψ22 ≥ 0

◮ Sampling distribution of G2 under null hypothesis a 1:1 mixture of
χ2(2) and mass at 0
⇒ divide p-value of conventional test by 2

• p-value based on χ2 distribution with d.f.= 2 is p < 0.001

• Dividing by 2 gives same conclusion: random intercept model
rejected in favor of random coefficient model
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Predicted school-specific regression lines

µ̂ij = β̂1 + β̂2xij + ζ̃1j + ζ̃2jxij

ζ̃1j , ζ̃2j are empirical Bayes predictions
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Illustration: Lack of invariance to translation
and heteroscedasticity

◮ Graphs of cluster-specific regression lines (with β1=β2=0),
illustrating effect of translation of xij :

Using xij Using x′ij = xij−3.5

-2 0 2 4 6

-5
0

5
10

ζ 1
j
+
ζ 2

j
x
ij

xij
-6 -4 -2 0 2

-5
0

5
10

ζ
′ 1
j
+
ζ 1

j
x
′ ij

x′ij = xij−3.5

Large ψ11, negative ψ21 Small ψ11, positive ψ21

◮ Variance of ζ1j + ζ2jxij , and hence of total residual ξij decreases
with xij and increases again
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Interpreting random part

◮

√
ψ11: Standard deviation of intercepts

• Has same units (scale) as yij and β1
⇒ estimate rescaled when yij rescaled
⇒ 95% of clusters expected to have intercepts in range
β1 ± 1.96

√
ψ11

• Is standard deviation of vertical positions of cluster-specific
regression lines were xij = 0

⇒ estimate changes if xij translated (e.g., mean-centered)

◮

√
ψ22: Standard deviation of slopes

• Has same units as β2 (units of yij divided by units of xij)
⇒ cannot compare directly with

√
ψ11

⇒ estimate rescaled if either xij or yij are rescaled
⇒ 95% of clusters expected to have slopes in range
β2 ± 1.96

√
ψ22
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Interpreting random part (cont’d)

◮ ρ21: Correlation between intercepts and slopes

• Has no units (−1 ≤ ρ21 ≤ 1)

• Is tendency for clusters with large intercepts to have large slopes
⇒ estimate changes if xij translated

• Note: Never set ρ21 = 0 (non-equivalent models if xij translated)

◮

√
θ: Standard deviation of level-1 residual ǫij

• Has same units as yij , β1 and
√
ψ11

⇒ estimate rescaled if yij rescaled

• Is amount of scatter around cluster-specific regression lines

◮ Note: Since the scaling if yij and xij and the translation of xij matter
for interpreting the random part, make meaningful choices

• e.g., if xij is annual income in $, express it as number of thousands above the

average, i.e., generate transformed variable zij =
xij−x̄..

1000
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Interpreting random part
for Inner London Schools

Parameter Est (SE)

β1 −0.12 (0.40)

β2 [LRT] 0.56 (0.02)
√
ψ11 3.01

√
ψ22 0.12

ρ21 0.50
√
θ 7.44

◮ 95% of intercepts are in the range −6.0 to 5.8 (−0.12± 1.96× 3.01)

◮ 95% of slopes are in the range 0.32 to 0.80 (0.56± 1.96× 0.12)

◮ When LRT is at its mean, the SD of the school means is 3.01, less
than half the within-school SD of 7.44
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Warnings about random coefficient models

◮ Random slope rarely makes sense if there is no random intercept
(just like interactions don’t make sense without main effects)

◮ Random slope rarely makes sense without corresponding fixed slope
(estimating variance, but constraining mean to zero)

◮ Models with several random slopes can be hard to estimate

• With k random slopes (plus 1 random intercept) there are
(k + 2)(k + 1)/2 + 1 parameters in random part
e.g., k = 3 gives 11 parameters in random part

• Clusters may not provide much information on cluster-specific
slopes or their variance if
⋄ Clusters are small
⋄ xij does not vary much within clusters, or varies only in a small

number of clusters
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Warnings about random coefficient models (cont’d)

◮ Variance-covariance matrix in random part may (try to) become non
‘positive semi-definite’ (e.g., negative variances, correlations greater
than 1 or less than −1)
If software does not allow this, get convergence problems

• It may help to translate and rescale xij , or to simplify the model

◮ Overall message: Include random slopes only where strongly
suggested by theory
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III. Multilevel logistic regression

◮ Introduction to ordinary logistic regression

◮ Random intercept logistic regression

◮ Conditional and marginal relationships
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Example: Attitudes to women’s roles

◮ U.S. General Social Survey (GSS), independent samples in 1982
and 1994

◮ Responses to the question “Do you agree or disagree with this
statement?”

• “Women should take care of running their homes and leave
running the country to men”

Year Agree (yi = 1) Disagree (yi = 0) Total

1982 (xi = 0) 122 223 345

1994 (xi = 1) 268 1632 1900

Total 390 1855 2245

◮ xi is a dummy variable for year being 1994
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Probabilities, odds and odds ratio

◮ Probability ≡ Proportion of people agreeing in population
(Expected number of successes per trial)

0 ≤ Pr(yi = 1) ≤ 1

• Probability of agreeing in 1982 estimated as P̂r(yi = 1|xi = 0) = 122

345
= 0.354

• Probability of agreeing in 1994 estimated as P̂r(yi = 1|xi = 1) = 268

1900
= 0.141

◮ Odds ≡ Number of people agreeing per person disagreeing in
population (Expected number of successes per failure)

0 ≤ Odds(yi = 1) ≤ ∞
• Odds of agreeing in 1982 estimated as Ôdds(yi = 1|xi = 0) = 122

223
= 0.547

• Odds of agreeing in 1994 estimated as Ôdds(yi = 1|xi = 1) = 268

1632
= 0.164

◮ Odds ratio (OR) = Odds(yi=1|xi=1)

Odds(yi=1|xi=0)

• Odds ratio is estimated as ÔR = 0.164
0.547

= 0.300
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Logistic regression

◮ Logistic regression

Pr(yi = 1|xi) =
exp(β1+β2xi)

1 + exp(β1+β2xi)
=

Odds(yi = 1|xi)
1 + Odds(yi = 1|xi)

◮ Log-odds

log [Odds(yi = 1|xi)] ≡ logit[Pr(yi = 1|xi)] = β1 + β2xi

◮ Difference in log-odds for unit change in xi (from a to a+1)

log [Odds(yi = 1|xi = a+1)]− log [Odds(yi = 1|xi = a)]

= [β1 + β2(a+ 1)]− [β1 + β2a] = β2

◮ Odds ratio for unit change in xi (from a to a+1)

Odds(yi = 1|xi = a+1)

Odds(yi = 1|xi = a)
= exp(β2)
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Example:
Logistic regression for attitudes to women’s roles

◮ Variables:

• Dummy for year being 1994 (xi)

• Agreeing with statement (yi)

◮ Maximum likelihood estimates:

Est (SE) OR=exp(β) (95% CI)

β1 −0.60 (0.11)

β2 [1994] −1.20 (0.13) 0.30 (0.23,0.39)

◮ 95% CI for OR is exp(β̂2 − 1.96SE
β̂2

), exp(β̂2 + 1.96SE
β̂2

)

◮ Standard error for odds ratio not useful
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Logistic regression as generalized linear model

◮ Linear predictor:
νi ≡ β1 + β2xi

◮ Conditional expectation of yi:

µi ≡ E(yi|xi) = E(yi|νi)

• For continuous responses, this is the population mean

• For dichotomous responses (0,1), this is the probability
Pr(yij = 1|νi)
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Logistic regression as generalized linear model (cont’d)

◮ Link function g() linking conditional expectation to linear predictor:

g(µi) = νi

• Linear regression: µi = νi (identity link)

• Logistic regression: logit(µi) ≡ log
[

µi

1−µi

]
= νi (logit link)

• Probit regression: Φ−1(µi) = νi (probit link)

◮ Distribution of yi given µi from exponential family:

• Linear regression: Normal with mean µi and constant variance θ

• Logit and probit: Bernoulli with probability µi (or binomial
B(1, µi)) – variance is µi(1− µi)
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Latent response y∗i

◮ A continuous latent (unobserved) response y∗i is often assumed to
underlie the observed dichotomous response yi

◮ Observed response yi=1 if latent response y∗i exceeds threshold 0

and yi = 0 otherwise

• When asked to ‘agree’ or ‘disagree’ with a statement, respondent
really agrees or disagrees to a certain extent (continuous scale),
but is forced to choose one of the two responses

• y∗i can be viewed as the propensity to have the ‘1’ response or
the utility difference between alternatives ‘1’ and ‘0’
⋄ e.g., the propensity (or inclination) to have a child vaccinated

has to exceed some limit for the parent to have the child
vaccinated

• Death results when some continuous frailty exceeds a limit, or
when exposure to some hazardous materials exceeds a limit
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Latent response y∗i (cont’d)

◮ Idea of latent response introduced by Pearson in 1901

◮ Yule remarked in 1912:

...all those who have died of smallpox are equally dead: no
one is more dead or less dead than another, and the dead
are quite distinct from the survivors

◮ Pearson and Heron responded in 1913:

...if Mr Yule’s views are accepted, irreperable damage will be
done to the growth of modern statistical theory

◮ Latent response models useful even if we do not believe in y∗i
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Latent response formulation

◮ Latent response model is a linear regression model

y∗i = β1 + β2xi + ǫi

◮ Observed response results as follows (deterministic):

yi =





1 if y∗i > 0

0 otherwise

◮ Logistic regression model:

• ǫi has a standard logistic distribution (variance π2/3)

◮ Probit model:

• ǫi has a standard normal distribution (variance 1)
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Latent response formulation of logistic regression

P
r(
y∗
>
0|x

)

0.5

0.0

x

y
∗
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Equivalence of generalized linear model
and latent response formulation

◮ Can calculate the probability that yi = 1 using latent resonse
formulation:

Pr(yi = 1|xi) = Pr(y∗i > 0|xi) = Pr(β1+β2xi+ǫi > 0|xi)
= Pr(−ǫi ≤ β1+β2xi|xi)
= Pr(ǫi ≤ β1+β2xi|xi), the CDF of ǫi

• Logistic CDF of ǫi results in logistic regression:

Pr(yi = 1|xi) =
exp(β1+β2xi)

1 + exp(β1+β2xi)

• Standard normal CDF Φ(·) of ǫi results in probit regression:

Pr(yi = 1|xi) = Φ(β1+β2xi)
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Example: Toenail infection

◮ 337 patients with toenail infection randomized to receive terbinafine
or itraconazole

◮ Assessments scheduled at 7 visits; weeks 0, 4, 8, 12, 24, 36, and 48

◮ Variables:

• Onycholysis (separation of nail plate from nail bed) yij
(0:none or mild, 1:moderate or severe)

• Treatment group (0:itraconazole, 1:terbinafine) x2j

• Exact timing of visit in months x3ij

• Visit number (1,2,. . .,7)
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Exploring missingness patterns

Freq. Percent Cum. Pattern

224 76.19 76.19 1111111

21 7.14 83.33 11111.1

10 3.40 86.73 1111.11

6 2.04 88.78 111....

5 1.70 90.48 1......

5 1.70 92.18 11111..

4 1.36 93.54 1111...

3 1.02 94.56 11.....

3 1.02 95.58 111.111

13 4.42 100.00 (other patterns)

294 100.00 XXXXXXX

◮ 224 patients have complete data, 21 patients missed visit 6, 10
patients missed visit 5, 6 patients dropped out after visit 3, etc.
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Plot of raw estimates of marginal probabilities

◮ Proportion with onycholysis at each occasion, versus average time at
each visit since randomization
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Logistic regression model for marginal probabilities

logit[Pr(yij = 1|x2j , x3ij)] = β1 + β2x2j + β3x3ij + β4x2jx3ij

◮ Regression coefficients and odds-ratios have marginal or
population averaged interpretations, comparing prevalences for
different population strata

◮ Plot of predicted probabilities together with raw estimates:
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Random intercept logistic regression

◮ Ordinary logistic regression fits marginal proportions quite well

◮ However, unobserved heterogeneity between subjects and
dependence within subjects are ignored

◮ Include a random intercept ζj :

logit[Pr(yij = 1|x2j , x3ij , ζj)] = β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj

or
y∗ij = β1 + β2x2j + β3x3ij + β4x2jx3ij + ζj + ǫij

• ζj enters in same manner as observed covariates

• Assume ζj ∼ N(0, ψ), independent of x2j , x3ij , and of ǫij in latent
response formulation (ǫij has standard logistic distribution)

◮ Regression coefficients and odds-ratios have conditional or
cluster-specific interpretations, comparing probabilities holding ζj
constant
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Estimation: Maximum likelihood

◮ Estimation for categorical responses difficult because marginal (or
integrated) likelihood involves integrals that do not have closed form

◮ Numerical integration

• Gauss-Hermite (ordinary) quadrature used in MIXOR/MIXNO
(two-level only) and aML

• Adaptive quadrature superior, particularly for large clusters and
large variances. Available in SAS: GLIMMIX and Stata: gllamm,
xtmelogit, etc., S-PLUS: glme, Mplus

◮ Monte Carlo integration

• Simulated maximum likelihood in nlogit, Stata: mixlogit

• Monte Carlo EM - no software?

◮ Markov chain Monte Carlo (MCMC) with vague priors approximates
maximum likelihood and available in MLwiN and WinBUGS
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Estimation: Approximate methods

◮ Penalized Quasilikelihood (PQL)

• Two versions: First and second order (PQL-1,PQL-2), the latter
being better
⋄ PQL-1 in MLwiN, HLM and SAS: GLIMMIX
⋄ PQL-2 in MLwiN

⋄ Even PQL-2 produces biased estimates for small clusters and
large level-2 variances

◮ Laplace: R: lmer and Stata: xtmelogit

◮ Sixth order Laplace in HLM

◮ H-likelihood in Genstat

◮ Methods do not provide a likelihood
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Maximum likelihood estimates

Marginal effects Conditional effects

Ordinary Random intercept
logistic logistic

Parameter OR (95% CI) OR (95% CI)

Fixed part

exp(β2) [treatment] 1.00 (0.74, 1.36) 0.85 (0.27, 2.65)

exp(β3) [month] 0.84 (0.81, 0.88) 0.68 (0.62, 0.74)

exp(β4) [trt_month] 0.93 (0.87, 1.01) 0.87 (0.76, 1.00)

Random part

ψ 16.08

Log-likelihood −908.01 −625.39
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Intraclass correlation of latent responses

◮ Correlation between observed responses in the same cluster, given
the covariates

Cor(yij , yi′j |x2j , x3ij, x3i′j)

is a function of x2j , x3ij , and x3i′j

◮ Therefore, report correlation between latent responses in same
cluster, given covariates

Cor(y∗ij , y
∗
i′j |x2j , x3ij , x3i′j) =

ψ

ψ + π2/3

• Estimated intraclass correlation for toenail data:

ψ̂

ψ̂ + π2/3
= 0.83
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Marginal and conditional relationships

◮ Note that marginal OR closer to 1 than conditional OR

◮ Marginal probabilities from random intercept model

Pr(yij = 1|x2j , x3ij)

=

∫
Pr(yij = 1|x2j , x3ij , ζj)g(ζj ; 0, ψ̂) dζj

=

∫
exp(β̂1 + β̂2x2j + β̂3x3ij + β̂4x2jx3ij + ζj)

1 + exp(β̂1 + β̂2x2j + β̂3x3ij + β̂4x2jx3ij + ζj)
g(ζj ; 0, ψ̂) dζj
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Marginal and conditional relationships (cont’d)
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Reason for difference between conditional and
marginal effects: Using latent response formulation

◮ Larger residual standard deviation, Var(ζj + ǫij) > Var(ǫij), requires
larger slope to obtain same marginal response probabilities:

x

x

y
∗

P
r(
y∗
>
0|x

)
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Conditional and marginal effects
for probit random intercept model

◮ Probit random intercept model: y∗ij = β1 + β2xij + ζj + ǫij︸ ︷︷ ︸
ξij

ζj ∼ N(0, ψ), ǫij ∼ N(0, 1) ⇒ ξij = ζj + ǫij ∼ N(0, ψ + 1)

◮ Conditional probability

Pr(yij = 1|xij , ζj) = Φ(β1 + β2xij + ζj)

◮ Marginal probability

Pr(yij = 1|xij) = Pr(y∗ij > 0|xij) = Pr(β1 + β2xij + ξij > 0|xij)
= Pr(−ξij ≤ β1 + β2xij |xij) = Pr(ξij ≤ β1 + β2xij |xij)

= Pr(
ξij√
ψ + 1

≤ β1 + β2xij√
ψ + 1

|xij)

= Φ(
β1 + β2xij√

ψ + 1
)

◮ Marginal effect attenuated or closer to zero: |β2/
√
ψ + 1| ≤ |β2|
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Illustration:
Conditional versus marginal relationship
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Interpretation of regression parameter
for within-cluster covariate

◮ Conditional effects or subject-specific effects :

• Subject-specific odds ratios, e.g. for [month] a+ 1 versus a when
[treatment] = 0

exp(βC
3 ) =

Pr(yij = 1|xij = a+ 1, xj = 0, ζj)

Pr(yij = 0|xij = a+ 1, xj = 0, ζj)

/
Pr(yij = 1|xij = a, xj = 0, ζj)

Pr(yij = 0|xij = a, xj = 0, ζj)

⋄ Comparing odds for particular subject j (conditional on ζj)

◮ Marginal effects or population-averaged effects :

• Marginal odds ratios

exp(βM
3 ) =

Pr(yij = 1|xij = a+ 1, xj = 0)

Pr(yij = 0|xij = a+ 1, xj = 0)

/
Pr(yij = 1|xij = a, xj = 0)

Pr(yij = 0|xij = a, xj = 0)

⋄ Comparing odds for population strata (not conditional on ζj)
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Interpretation of regression parameter
for between-cluster covariate

◮ Conditional effects or subject-specific effects :

• Subject-specific odds ratios, e.g. for [treatment] 1 versus 0

when [month] = 1

exp(βC
2 +βC

4 ) =
Pr(yij = 1|xj=1, xij=1, ζj)

Pr(yij = 0|xj=1, xij=1, ζj)

/
Pr(yij = 1|xj=0, xij=1, ζj)

Pr(yij = 0|xj=0, xij=1, ζj)

⋄ Comparing counterfactual odds for particular subject j

◮ Marginal effects or population-averaged effects :

• Marginal odds ratios

exp(βM
2 + βM

4 ) =
Pr(yij = 1|xj = 1, xij = 1)

Pr(yij = 0|xj = 1, xij = 1)

/
Pr(yij = 1|xj = 0, xij = 1)

Pr(yij = 0|xj = 0, xij = 1)

⋄ Comparing odds for population strata
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Pros and cons of conditional and marginal effects

◮ Marginal effects

• Of interest for policy, e.g. public health

• Not invariant across populations (depend on ψ)

◮ Conditional effects

• Of interest for individuals, e.g. patients

• More useful for investigating causal processes

• More invariant across populations
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Two-stage formulation

◮ Raudenbush and Bryk -style notation for two-level logistic models

• Level-1 model

ϕij ≡ Pr(yij = 1|νij) = E(yij |νij)
yij |ϕij ∼ Binomial(1, ϕij) ≡ Bernoulli(ϕij) (‘sampling model’)

logit(ϕij) = β0j + β1jx1ij + β2jx2ij ≡ νij (‘structural model’)

• Level-2 models

β0j = γ00 + γ01w1j + γ02w2j + u0j

β1j = γ10 + γ11w1j + γ12w2j + u1j

β2j = γ20

where
(u0j , u1j)

′ ∼ N(0, τ ), τ =


 τ00 τ01

τ10 τ11



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IV. Longitudinal data
and alternatives to multilevel modeling

◮ Longitudinal data

◮ Example: Wage and experience

◮ Linear growth curve models

◮ Nonlinear growth

◮ Example: Children’s growth

◮ Fixed effects approach

◮ Marginal versus multilevel approach

◮ Autoregressive approaches

◮ Dropout and missing data

◮ Three-level models

◮ Example: Sustaining effects study
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Longitudinal studies

◮ Panel surveys

• All subjects followed up at the same panel waves
=⇒ balanced data

◮ Cohort studies (as defined in epidemiology)

• Cohort is any group of individuals, often same age
(“birth cohort”)

• Generally, not followed up at the same time
=⇒ unbalanced data

• Intervention studies and clinical trials are special cases

◮ Other related types of studies (not discussed here)

• Time-series for a single unit over time

• Longitudinal information collected retrospectively =⇒ Recall bias

• Survival, durations, or time-to event data
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Longitudinal data

◮ Variables for subject j at occasion (e.g., panel wave) i

• Response variable (time-varying) yij

• Explanatory variable
⋄ Subject-specific (time-constant) xj , e.g. gender
⋄ Occasion-specific xi, e.g. calendar time
⋄ Subject and occasion-specific (time-varying) xij , e.g. marital

status

◮ Longitudinal data are balanced if occasions for each subject
correspond to same time points

• Can treat responses at different occasions as different variables
& use multivariate methods (e.g., Structural equation modeling)

• Can model means and covariances more freely

◮ Intermittent missing data and dropout or attrition are common
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Longitudinal data (cont’d)

Subject Occ. Born Age Year Gender Married Happiness
j i x1j x2ij x3i x4j x5ij yij

1 1 1960 35 1995 Male 1 1

1 2 1960 40 2000 Male 0 6

1 3 1960 45 2005 Male 1 3

2 1 1980 15 1995 Female 0 5

2 2 1980 20 2000 Female 0 4

2 3 1980 25 2005 Female 1 1
︸ ︷︷ ︸

Cohort
︸︷︷︸
Age

︸ ︷︷ ︸
Period

c©Rabe-Hesketh&Skrondal – p.98

Three time scales

◮ Age A: Time since birth
◮ Period P : Current calendar time (time since birth of Christ)
◮ Cohort C: Calendar time at time of birth

A = P − C

Period

A
ge

98 99 00 01 02 03 04

19
20

21
22

23
24

25
26

27

C79

C78

C77

C76

◮ Alternative age-like timescale: Time since subject-specific event such
as surgery (then cohort becomes time of surgery)
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Age-Period-Cohort effects:
Cross-sectional study

◮ One period P
=⇒ cannot estimate effect of period

◮ Different ages Aj , Aj = P − Cj

=⇒ age and cohort effects confounded

Period

A
ge

98 99 00 01 02 03 04

19
20

21
22

23
24

25
26

27

C79

C78

C77

C76
e.g., explanations for older people

being more conservative:

(1) later stage in life Aj

(2) born longer ago (into a different ‘era’) Cj
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Age-Period-Cohort effects:
Longitudinal study, one cohort

◮ One cohort C
=⇒ cannot estimate effect of cohort

◮ Different periods Pi and ages Ai, Ai = Pi − C

=⇒ period and age effects confounded

Period

A
ge

98 99 00 01 02 03 04

19
20

21
22

23
24

25
26

27

C79

e.g., explanations for salary increases:

(1) more experience Ai

(2) inflation Pi
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Age-Period-Cohort effects:
Longitudinal study, several cohorts

◮ Several cohorts Cj , different periods Pi and ages Aij , Aij = Pi − Cj

=⇒ can estimate effects of two time scales, but confounded with third

 

 

98 99 00 01 02 03 04

19
20

21
22

23
24

25
26

27

A
ge

Period

C79

C78

C77

C76

CP

AC A P

Pick time scales believed to be most
important
⇒ e.g., Conservatism depends on age
and cohort (ignore period)
⇒ e.g., Salary depends on age and
period (ignore cohort)

Other terms for design:
Accelerated longitudinal
Cohort-sequential
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Example: Wage and experience

◮ US National Longitudinal Survey of Youth 1979 (NLSY79)

• Representative sample of non-institutionalized, civilian U.S. youth

• 6,111 men and women, aged 14-21 in Dec 31, 1978

• Subsample of 545 considered here:
⋄ Full-time working males who completed schooling by 1980
⋄ Complete data for 1980-1987

• Variables:
⋄ Subject identifier j
⋄ Log hourly wage lnyij
⋄ Education (number of years) Ej

⋄ Labor market experience (in years) Lij

⋄ Period (1980-1987) Pi

◮ How does log hourly wage depend on labor market experience Lij

and period Pi, controlling for education Ej?
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Time scales in NLSY79

◮ Note that there are at least 5 time-scales:

Aij = 6 + Ej + Lij = Pi − Cj

• Aij determined by (and thus confounded with) Ej and Lij

• Cj determined by (and thus confounded with) Pi, Lij and Ej

◮ Random intercept model: lnyij = β1 + β2Lij + β3Pi + β4Ej + ζj + ǫij

Est (SE) exp(Est)

Fixed Part:
β1 −52.99 (23.23)
β2 [Lij ] 0.04 (0.01) 1.04
β3 [Pi] 0.03 (0.01) 1.03
β4 [Ej ] 0.10 (0.01) 1.11

Random Part:√
ψ 0.34√
θ 0.35
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Linear growth curve models

◮ Appropriate for balanced or unbalanced data

◮ In R&B two-stage formulation, linear growth curve model (level 1):

yij = β0j + β1jtij + rij

• Each subject grows linearly, starting at level β0j (when tij = 0)
and growing at a rate of β1j per unit of time (e.g., year)

• Define level-2 models to explain variability in initial status β0j and
growth rate β1j using subject-specific covariate xj

β0j = γ00 + γ01xj + u0j

β1j = γ10 + γ11xj + u1j

◮ Reduced form formulation:

yij = β1 + β2xj + β3tij + β4xjtij + ζ1j + ζ2jtij + ǫij
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Nonlinear growth: Polynomial model

◮ Change fixed part of model to allow for nonlinear growth

◮ Saturated model for balanced data: use dummy variables for each
time point except first

◮ Polynomial model

yij = β1j + β2jtij + β3jt
2
ij + · · ·+ βp+1,jt

p
ij + · · ·

• Smooth function, but can get weird artifacts

• Order of polynomial p determines flexibility – number of extrema
is p− 1

• Not all coefficients must be random

• For balanced data, cannot have more coefficients than time
points
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Nonlinear growth: Piecewise linear model

◮ Model, with linear spline basis functions zkij

yij = β1 + β2z1ij + · · ·+ βK+1zKij + · · ·

◮ Example: tij = i, i = 0, . . . , 7, and spline knots at τ1 = 3, τ2 = 6

tij Interval z1ij z2ij z3ij

0 1 0 0 0

1 1 1 0 0

2 1 2 0 0

3 1 3 0 0

4 2 3 1 0

5 2 3 2 0

6 2 3 3 0

7 3 3 3 1

z1 �
�
�
��

z2 �
�

�
��

z3 ��
-

0 1 2 3 4 5 6 7
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Nonlinear growth: Piecewise linear model (cont’d)

-

6
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1 + z1ij + 0.25z2ij + 2z3ij
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Example: Children’s growth

◮ Asian children in Britain weighed from age 6 weeks to 27 months:
• Weight in Kg
• Age in years
• Gender (1:boy, 2:girl)

◮ Plot of observed trajectories
5
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0 1 2 3 0 1 2 3

Boys Girls

W
ei

gh
t i

n 
K

g

Age in years
Graphs by gender
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Maximum likelihood estimates (fixed part)

◮ Polynomial (quadratic)
Est (SE)

β1 3.75 (0.17)

β2 [girl] −0.54 (0.21)

β3 [age] 7.81 (0.25)

β4 [agesq] −1.66 (0.09)

◮ Piecewise linear (4 pieces), knots at 0.5, 1, 2

Est (SE)

β1 3.34 (0.18)

β2 [girl] −0.64 (0.20)

β3 [age1] 8.71 (0.45)

β4 [age2] 3.93 (0.40)

β5 [age3] 1.95 (0.70)

β6 [age4] 2.40 (0.38)
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Estimated population averaged trajectories
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Estimated subject-specific trajectories

◮ ‘Trellis graph’ of estimated cluster-specific trajectories (for boys)

µ̂ij = β̂1+ β̂2girlj+ β̂3age1ij+ β̂4age2ij+ β̂5age3ij+ β̂6age4ij+ ζ̃1j+ ζ̃2jageij
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Fixed-effects models

◮ Avoid endogeneity or subject-level confounding by using fixed-effects
models to estimate within-effects

• Subjects truly act as their own controls

◮ For linear and log-linear models

• Include dummy variables, or use conditional maximum likelihood
(in linear case by sweeping out the subject mean)

◮ For logistic regression models:

• Cannot include dummy variables for subjects due to incidental
parameter problem, leading to inconsistent estimates of
within-effects

• Can use conditional logistic regression (conditional maximum
likelihood, conditioning on sum of responses for subjects)
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Disadvantages of fixed-effects models

◮ Cannot include subject-level covariates such as gender

◮ Inefficient if covariate(s) and/or response variable vary mostly
between subjects

◮ Allows only for subject-specific intercepts (not slopes) for logistic
regression

◮ Not possible for probit or ordinal models

◮ No direct information on unobserved heterogeneity

◮ Cannot make predictions for units in new clusters
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Reminder: Marginal versus conditional

yij = β1 + β2tij + ζ1j + ζ2jtij + ǫij︸ ︷︷ ︸
ξij

◮ Can consider conditional, or subject-specific expectation, given
random effects ζ1j , ζ2j :

E(yij |tij , ζ1j , ζ2j) = β1 + β2tij + ζ1j + ζ2jtij

◮ Conditional variance is θ and conditional covariances are zero

◮ Can consider marginal mean, variances and covariances

E(yij |tij) = β1 + β2tij

Var(yij |tij) = Var(ξij |tij) = ψ11 + 2ψ21tij + ψ22t
2
ij + θ

Cov(yij , yi′j |tij , ti′j) = Var(ξij , ξi′j |tij , ti′j) = ψ11+ψ21(tij+ti′j)+ψ22tijti′j
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Marginal covariance matrix for
linear growth curve model (5 occasions, t = 0, 1, 2, 3, 4)

Random
part

Ψ =

[
1.00 0.10

0.10 0.25

]
Ψ =

[
1.00 −0.40

−0.40 0.25

]

θ = 0.5 θ = 0.5

Subject-
specific
trajectories
(β1=β2=0)

Time

 

0 1 2 3 4
-4

-2
0

2
4

Time

 

0 1 2 3 4

-4
-2

0
2

4

Residual
variances

[
1.50 1.95 2.90 4.35 6.30

] [
1.50 0.95 0.90 1.35 2.30

]

Residual
correlations




1.00

0.63 1.00

0.58 0.76 1.00

0.51 0.74 0.84 1.00

0.46 0.71 0.84 0.90 1.00







1.00

0.50 1.00

0.17 0.32 1.00

−0.14 0.13 0.45 1.00

−0.32 0.00 0.42 0.68 1.00



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Population-averaged or marginal approach
to longitudinal data

◮ Instead of modeling individual trajectories (multilevel approach),
model mean response and covariance matrix of (total) residual
directly as functions of time (‘Marginal model’)

◮ Popular residual covariance structures

• Compound symmetric or exchangeable : All variances equal
and all covariances (and hence correlations) equal
⋄ If correlation is positive, random intercept model with variance
ψ + θ and covariance ψ

• Autoregressive : Correlations fall off as time lag increases
⋄ Popular special case: first order autoregressive, AR(1)

Cor(ξij , ξi′j) = α|ti−ti′ |

• Unstructured : Each variance and covariance is freely estimated
⋄ Seems best, but inefficient (imprecise) if many time points
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Illustration with three time-points

◮ Maximum likelihood estimates of residual variances and correlation
matrices (alcohol use data, not discussed here)

Unstructured AR(1) Exchangeable Growth curve model[
0.52 0.77 1.11

] [
0.80 0.80 0.80

] [
0.80 0.80 0.80

] [
0.60 0.72 1.15

]



1.00

0.44 1.00

0.26 0.53 1.00








1.00

0.49 1.00

0.24 0.49 1.00








1.00

0.40 1.00

0.40 0.40 1.00








1.00

0.38 1.00

0.28 0.57 1.00





−293.0 (6) −299.3 (2) −303.2 (2) −294.3 (4)
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Generalized estimating equations (GEE)

◮ Covariance structures for residuals are natural in linear models,
giving multivariate regression models that can be estimated by
maximum likelihood (ML)

◮ For binary and other non-continuous outcomes, can pretend that this
is still possible

• Specify structures for means and covariances ⇒ Quasilikelihood

• Use estimating equations , like “score equations” for ML

• Estimation alternates between estimation of
1. Regression coefficients: Generalized least squares for

linearized model
2. Covariance parameters: Moment estimators based on

residuals

• Not a true statistical model
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Advantages of multilevel over marginal approach

◮ Multilevel model ‘explains’ covariance structure in terms of variability
in intercepts and slopes

• In marginal model, tempting to specify meaningless structures,
such as constant variance over time in growth model (as in
standard GEE)

◮ Multilevel model provides conditional or subject-specific interpretation
⇒ stable across populations differing in between-subjects variability

◮ Multilevel model is proper statistical model for any response type

• Can conceptualize as data-generating mechanism
• Can simulate from the model
• Can derive marginal relationships
• Can make predictions and perform diagnostics based on

predictions
• Can perform likelihood ratio tests
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Advantages of marginal over multilevel approach

◮ Permits more flexible covariance structures, e.g., negative intraclass
correlation

◮ For non-continuous responses:

• Marginal approach has marginal or population-averaged
interpretation
⋄ Descriptive and easy to interpret; less likely to get extreme

coefficients

• Marginal approach via GEE gives consistent estimates of
regression coefficients even if covariance structure misspecified
(assuming correct fixed part)

• GEE is computationally efficient (e.g., no numerical integration)
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Models with autoregressive (AR) responses

◮ AR(1) model for response, conditioning on previous response yi−1,j:

yij = β1 + γyi−1,j + β2xij + ǫij , |γ| < 1

◮ Also called dynamic, lagged response or transition models

◮ Should be used only if effect γ of lagged response is of substantive
interest (‘state dependence’ for binary responses)

◮ Advantage:

• Easy to implement in linear as well as non-linear models

◮ Disadvantages:

• Only sensible for equally spaced time-points

• Discarding data: Lags missing for first occasion, missing
responses and subsequent responses discarded

• Initial conditions problem if true model contains subject-specific
effects ζj
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Models with autoregressive (AR) residuals

◮ AR(1) model for residual, conditioning on previous residual ǫi−1,j

ǫij = αǫi−1,j + δij , δij ∼ N(0, σ2) Cor(ǫi−1,j, δij) = 0

◮ Correlation structure is

Cor(ǫij , ǫi′j) = α|tij−ti′j |, |α| < 1
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Dropout and missing data

◮ Dropout or attrition is common where subjects are lost to follow-up
from some time onwards (monotone missingness)

◮ Intermittent missing data also occur
(e.g., subjects miss appointments but return)

◮ Old-fashioned methods & software (e.g., repeated measures ANOVA
in SPSS) use listwise deletion, where all subjects with incomplete
data are dropped

◮ Multilevel modeling & other modern methods (& modern software)
use all available data

◮ Depending on reasons for dropout and missing data and on
estimation method, both approaches can give inconsistent estimates
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Types of missing data

◮ Missing completely at random (MCAR):
=⇒ consistent estimates from ‘listwise’ data but inefficient

◮ Covariate-dependent dropout
=⇒ consistent estimates if covariates that relate to missingness are
included in model

◮ Missing at random (MAR):
probability of missingness can depend on covariates and observed
responses
=⇒ consistent estimates if maximum likelihood used and model
correctly specified

◮ Not missing at random (NMAR):
probability of missingness depends on what that response would
have been
=⇒ Problems with all methods; can attempt to model missingness
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Three-level data

◮ Units i nested in clusters j nested in superclusters k
e.g. occasions i in children j in schools k

School Level 3:

Schools k

?
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��	
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@@R
MaryPaulPeter Level 2:

Children j�
�
��
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�
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A
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1 3

�
�
��

A
A
AU

2 3 Level 1:

Occasions i
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Example: Sustaining effects study

◮ Longitudinal survey of children in the six primary school years

◮ Primary sampling units were urban public primary schools

◮ 60 schools, 1721 students, 6 panel waves

◮ Variables:

• Level 1 (occasion)
⋄ [Math]: Math test score from item response model yijk
⋄ [Year]: Year of study minus 3.5 a1ijk

(values −2.5, −1.5, −0.5, 0.5, 1.5, 2.5)

• Level 2 (child)
⋄ [Black]: Dummy variable for being African American x1jk
⋄ [Hispanic]: Dummy variable for being Hispanic x2jk

• Level 3 (school)
⋄ [Lowinc]: Percentage of students from low income families w1k
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Variability between and within children

◮ Observed growth trajectories for 9 children from the same school

−
4

−
2

0
2

m
at

h

−2 0 2
year

c©Rabe-Hesketh&Skrondal – p.128



Variability between and within schools

◮ Mean math score over time for children from 10 schools
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Three-level model

yijk = β1 + β2w1k + β3x1jk + β4x2jk

+ β5a1ijk + β6w1ka1ijk + β7x1jka1ijk + β8x2jka1ijk︸ ︷︷ ︸
Interactions

+ ζ
(2)
1jk + ζ

(2)
2jka1ijk︸ ︷︷ ︸

Child

+ ζ
(3)
1k + ζ

(3)
2k a1ijk︸ ︷︷ ︸

School

+ ǫijk︸︷︷︸
Occ.
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Maximum likelihood estimates

Fixed part Random part

Est (SE)

β1≡γ000 [Cons] 0.141 (0.127)

β2≡γ001 [Lowinc] −0.008 (0.002)

β3≡β01 [Black] −0.502 (0.078)

β4≡β02 [Hispanic] −0.319 (0.086)

β5≡γ100 [Year] 0.875 (0.039)

β6≡γ101 [Lowinc]×[Year] −0.001 (0.000)

β7≡β11 [Black]×[Year] −0.031 (0.022)

β8≡β12 [Hispanic]×[Year] 0.043 (0.025)

Est√
ψ
(2)
11 0.789√
ψ
(2)
22 0.105

ρ
(2)
21 0.561√

ψ
(3)
11 0.279√
ψ
(3)
22 0.089

ρ
(3)
21 0.033
√
θ 0.55
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Interpretation of estimates

◮ In the middle of primary school, controlling for school mean income,

• black and Hispanic children score on average 0.50 points and 0.32 points lower
than white children, respectively

• within ethnic groups, children’s mean scores have a standard deviation of 0.79
within schools and 0.28 between schools; the standard deviation of scores around
child-specific regression lines is 0.55

◮ On average, the mean math score increases 0.88 points per year for white children in
schools with no low income children and this increase does not differ significantly for
blacks or Hispanics

◮ The average annual increase in mean math scores is somewhat lower in schools with
low income children, for a given ethnicity

◮ After controlling for ethnicity and school mean income, the average annual increase in
math scores has a within-school standard deviation of 0.11 and a between-school
standard deviation of 0.09
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Model using three-stage (R&B) formulation

◮ Level-1 model:
yijk = π0jk + π1jka1ijk + eijk

• Linear growth model

◮ Level-2 models:

πpjk = βp0k + βp1x1jk + βp2x2jk + rpjk, p = 0, 1

• Mean intercept and slope depend on [Black] and [Hispanic]

• Intercept and slope vary randomly between students within ethnic
groups

◮ Level-3 models:

βp0k = γp00 + γp01w1k + up0k, p = 0, 1

• Mean intercept and slope depend on [Lowinc]

• Intercept and slope vary randomly between schools with given
[Lowinc]
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Deriving the reduced form

◮ Substitute level-3 models into level-2 models

πpjk = γp00 + γp01w1k + up0k︸ ︷︷ ︸
βp0k

+βp1x1jk + βp2x2jk + rpjk

= γp00 + γp01w1k + up0k + βp1x1jk + βp2x2jk + rpjk, p = 0, 1

◮ Substitute level-2 models into level-1 model

yijk = γ000 + γ001w1k + u00k + β01x1jk + β02x2jk + r0jk︸ ︷︷ ︸
π0jk

+ (γ100 + γ101w1k + u10k + β11X1jk + β12X2jk + r1jk)︸ ︷︷ ︸
π1jk

a1ijk + eijk

= γ000 + γ001w1k + β01x1jk + β02x2jk

+ γ100a1ijk + γ101w1ka1ijk + β11x1jka1ijk + β12x2jka1ijk

+ r0jk + r1jka1ijk + u00k + u10ka1ijk + eijk
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Further reading

◮
Rabe-Hesketh & Skrondal (2012):
Applied multilevel modeling (MLM) using Stata

◮ Snijders & Bosker (2011): Excellent introduction to MLM

◮ Fitzmaurice, Laird & Ware (2011): Most accessible biostatistical book
on longitudinal data analysis (LDA)

◮ Wooldridge (2010): Most accessible econometric book on LDA

◮ Goldstein (2010): Generalized linear mixed models (GLMM)

◮ Raudenbush & Bryk (2002): GLMM

◮ McCulloch, Searle & Neuhaus (2008): Theoretical treatment of
LMMs and GLMMs

◮
Skrondal & Rabe-Hesketh (2004):
GLMM & Generalized latent variable modeling
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