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Preface

The gllamm companion shows how most of the models discussed in Volume I of Multilevel and
Longitudinal Modeling Using Stata (3rd Edition) by Rabe-Hesketh and Skrondal (2012) can be fit
using the gllamm software.

gllamm is a user-written program for maximum likelihood estimation of multilevel and latent vari-
able modeling. The software can estimate models for many different response types, including contin-
uous, binary, ordinal and nominal responses, counts, and discrete-time and continuous-time survival.
For all except continuous responses, the likelihood involves integrals that cannot be solved analyti-
cally, and gllamm therefore uses numerical integration by adaptive quadrature (Rabe-Hesketh et al.
2002, 2005). The use of gllamm for estimating multilevel models for non-continuous responses is
described in detail in Volume II of Multilevel and Longitudinal Modeling Using Stata (3rd Edi-
tion) by Rabe-Hesketh and Skrondal (2012). See also the gllamm web site (http://www.gllamm.org)
for many resources for learning about gllamm, including the gllamm manual (Rabe-Hesketh et al.
2004a), a tutorial, and worked examples using gllamm.

If you use gllamm for a publication, the best citation to use is

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005). Maximum likelihood estimation
of limited and discrete dependent variable models with nested random effects. Journal
of Econometrics 128: 301-323.

This paper describes the estimation method in detail and evaluates it using simulations.

For continuous responses (assuming normality of the random effects and of the responses given
the random effects), the likelihood has a relatively simple closed form, and numerical integration is
not necessary. The official Stata programs xtreg and xtmixed for multilevel modeling of continuous
responses exploit the simple form of the likelihood and are therefore considerably faster than gllamm.
These official Stata programs are also more accurate for continuous responses, although gllamm will
produce very similar estimates as long as adaptive quadrature is used with a sufficient number of
quadrature points (see Rabe-Hesketh and Skrondal 2012b, sec. 10.11). To make sure that enough
quadrature points are used, the model should be estimated with increasing numbers of quadrature
points until the estimates do not change appreciably as the number of quadrature points is increased.
This method for checking accuracy is not demonstrated in the gllamm companion, but we do compare
the estimates with those from xtmixed.

Sometimes gllamm is used for models with continuous responses because it has features that
none of the official Stata programs provide. Before the release of Stata 11, these features included
robust standard errors based on the sandwich estimator (Rabe-Hesketh and Skrondal 2006), inverse
probability weighting (Rabe-Hesketh and Skrondal 2006), and heteroscedastic level-1 variances (see
Rabe-Hesketh and Skrondal 2012a, sec. 6.4.2). These features are now all available in xtmixed. For
this reason, we are no longer describing the use of gllamm for continuous responses (Volume I) in
the third edition of our book. However, the use of gllamm for other response types is described
in detail in Volume II which also provides a detailed description of the syntax for gllamm and its
post-estimation commands gllapred for prediction and gllasim for simulation in Appendices B, C,
and D, respectively. Appendix A describes the “bare essentials” of the gllamm, eq, and gllapred

commands.
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Remaining features of gllamm¸ that are not available in any of Stata’s official programs and may
sometimes be a reason for using gllamm for continuous responses include:

• Fitting models in the Generalized Linear Latent and Mixed (GLLAMM) framework (Rabe-Hesketh et al.
2004b; Skrondal and Rabe-Hesketh 2004, 2007) that which extends linear mixed models by in-
cluding (among other things)

– Factor loadings, i.e., parameters that multiply the random effects – see eqs() option

– Regressions among random effects – see bmatrix() option

• Modeling the level-1 standard deviation as a function of continuous covariates (via a log-linear
model – see s() option)

• Imposing linear constraints on the model parameters – see constraints() option

• Specifying discrete distributions for the random effects, or leaving the random-effects distri-
butions unspecified using Nonparametric Maximum Likelihood Estimation (NPMLE; Rabe-
Hesketh et al. 2003) – see ip() option

• Avoiding boundary estimates for random-effects covariance matrices, such as zero variances
and perfect correlations, by using Bayes modal estimation (Chung et al. 2011)

• Obtaining certain kinds of predictions (Skrondal and Rabe-Hesketh 2009):

– Posterior correlations among random effects using the gllapred command – see corr

option

– Standardized level-2 residuals using the gllapred command – see ustd() option

– Log-likelihood contributions from the highest-level clusters

This companion is intended for people wishing to learn how to use gllamm. A good way to
achieve this is often by starting with simple models, such as linear random intercept models, and
then gradually extending the models. The fact that these models can also be estimated using
xtmixed can be seen as an advantage since it allows you to compare estimates and therefore be
confident that you are fitting the model you intend to fit. In the gllamm companion, we therefore
demonstrate and explain how many of the examples of Volume I of Multilevel and Longitudinal
Modeling Using Stata (3rd Edition) can be estimated using gllamm. We do not use the link() and
family() options for gllamm in this companion because linear models with link(identity) and
family(gaussian) are the default.

The do file for this companion can be downloaded from

http://www.gllamm.org/gllamm companion.do

In this companion, we use the same chapter and section numbers as the book for sections where
we want to demonstrate the use of gllamm or associated post-estimation commands. Where there
are separate subsections in the book for analyses using xtreg and xtmixed, the companion will
introduce a new subsection for gllamm. For example, if the book describes the use of xtreg in
Section 2.5.2 and the use of xtmixed in Section 2.5.3, then Section 2.5.4 of this companion will
describe the use of gllamm for the same example. If the book describes only one command for a
given example (typically xtmixed), we use the same section number and insert a “(g)” before the
section heading to indicate that this is the gllamm version of the section. We do not describe the
datasets or interpret the estimates in this companion to avoid duplicating material from the book.
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Since gllamm is a user-written command, it may not be installed on your computer. You can
check by typing

. which gllamm

If the following message appears,

command gllamm not found as either built-in or ado-file

install gllamm (assuming that your computer is connected to the internet) by using the ssc command:

. ssc install gllamm

Occasionally, you should update gllamm using ssc with the replace option:

. ssc install gllamm, replace
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Chapter 2

Variance components models

2.5 Estimation using Stata

2.5.4 Using gllamm

We now introduce the gllamm command, which will be used extensively for models with categorical
or discrete responses in later chapters.

The basic gllamm command for fitting the variance-components model is:

gllamm wm, i(id)

Here the fixed part of the model is specified as in xtreg and xtmixed by listing the response variable
wm followed by the explanatory variables (here there are no explanatory variables). The i() option
specifies the cluster identifier, and by default a random intercept is included.

As mentioned in the preface, gllamm uses numerical integration, so we add two options to ensure
accurate estimates: the nip(12) option to use 12 integration points instead of the default of 8 and
adapt to use adaptive quadrature instead of the default ordinary Gauss-Hermite quadrature. The
command and output become:

(Continued on next page)
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. gllamm wm, i(id) nip(12) adapt

number of level 1 units = 34
number of level 2 units = 17

Condition Number = 152.64775

gllamm model

log likelihood = -184.57839

wm Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 453.9116 26.18394 17.34 0.000 402.592 505.2312

Variance at level 1
------------------------------------------------------------------------------

396.70876 (136.11608)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 11456.828 (3997.7689)
------------------------------------------------------------------------------

The output from gllamm first shows the number of units at each level, here 34 units at level 1 (the
total number of measurements) and 17 units at level 2 (the subjects). If the Condition Number is
very large, the model may not be well identified, but here it is not alarming.

Next the maximized log likelihood is given as −184.58 followed by a regression table giving the
estimated fixed regression coefficient β̂ next to cons.

Estimates and standard errors for the random part of the model are given under the head-
ings “Variance at level 1” for the variance θ of the level-1 residuals εij and “Variances and

covariances of random effects” and “***level 2 (id)” for the variance ψ of the random in-
tercept ζj .

xtreg and xtmixed display the estimated standard deviations instead of variances. We can

convert these standard deviations to variances θ̂ = 19.910832 = 396.44115 and ψ̂ = 107.04642 =
11, 458.932, which differ slightly from the estimates using gllamm. The reason for the discrepancy
is that gllamm uses numerical integration, whereas xtreg and xtmixed exploit the closed form
of the likelihood for random-effects models with normally distributed continuous responses. The
accuracy of the gllamm estimates can be improved by increasing the number of integration points
(see section 10.11) using the nip() option.

Before doing further analyses, we save the gllamm estimates using estimates store:

. estimates store RI
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We can then compare this model with other models using for example likelihood-ratio tests. We
can also restore these estimates later without having to refit the model. This will be useful in
section 2.11, where we use gllamm’s prediction command gllapred. Storing estimates means that
they remain available during a Stata session; if we require the estimates again in a later Stata session,
we can save them in a file using estimates save filename (a command introduced in Stata release
10).

2.6 Hypothesis tests and confidence intervals

2.6.2 Hypothesis tests and confidence intervals for the between-cluster
variance

Likelihood-ratio test

We can perform a likelihood-ratio test for the null hypothesis that the between-cluster variance ψ
is zero:

. quietly quietly gllamm wm, i(id) init

. lrtest RI .

Likelihood-ratio test LR chi2(1) = 46.27
(Assumption: . nested in RI) Prob > chi2 = 0.0000

Here we used the init option (for “initial values”) which causes gllamm to fit the model without
any random effects.

As explained on page 88-89 of the book, the p-value is conservative and should be divided by 2.

2.9 Crossed versus nested effects

We can allow the mean of the response variable to depend on the measurement occasion by including
a dummy variable for occasion 2 in the model:

. generate occ2 = occasion==2

(Continued on next page)
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. gllamm wm occ2, i(id) nip(12) adapt

number of level 1 units = 34
number of level 2 units = 17

Condition Number = 154.075

gllamm model

log likelihood = -184.48885

wm Coef. Std. Err. z P>|z| [95% Conf. Interval]

occ2 2.88257 6.793615 0.42 0.671 -10.43267 16.19781
_cons 452.4716 26.40495 17.14 0.000 400.7188 504.2244

Variance at level 1
------------------------------------------------------------------------------

392.30228 (134.5612)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 11460.466 (3998.611)
------------------------------------------------------------------------------

Note that gllamm does not yet allow the use of “factor variables” or fvvarlist (introduced in
Stata 11) to declare explanatory variables as categorical and specify interactions within the estima-
tion command. We must either create dummy variables and products of variables for interactions
before running cngllamm or use the prefix command xi: to make gllamm accept terms of the form
i.varname and i.varname1*i.varname2 (see [R]xi).

2.11 Assigning values to the random intercepts

2.11.2 Empirical Bayes prediction

We first restore the estimates of the random-intercept model without the occasion 2 dummy variable
as a covariate:

. estimates restore RI
(results RI are active now)

Empirical Bayes predictions can be obtained by using the post-estimation command gllapred

for gllamm with the u option. For a two-level random-intercept model, the gllapred command
produces two variables, one for the posterior means (empirical Bayes predictions) and one for the
posterior standard deviations. In the gllapred command, the stub of the variable names is specified,
here eb, and gllapred produces the variable ebm1 for the posterior means and ebs1 for the posterior
standard deviations as stated in the output below:

(Continued on next page)
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. gllapred eb, u
(means and standard deviations will be stored in ebm1 ebs1)
Non-adaptive log-likelihood: -202.25846
-245.1480 -225.1857 -211.3252 -199.5193 -190.8173 -186.2250
-184.7457 -184.5784 -184.5784
log-likelihood:-184.57839

Adaptive quadrature is used to evaluate the posterior means and standard deviations. This requires
several iterations, with each iteration resulting in an improved evaluation of the log-likelihood. The
final value of the log likelihood should be the same as that obtained when the model was fit.

We now display the empirical Bayes predictions (see page 113 of the book):

. sort id

. format ebm1 %8.2f

. list id ebm1 if occasion==1, clean noobs

id ebm1
1 63.49
2 -30.88
3 59.07
4 -17.61
5 45.30
6 155.89
7 -41.20
8 -67.74
9 192.75
10 -15.15
11 -27.44
12 158.84
13 -206.83
14 17.78
15 -187.17
16 -92.31
17 -6.79

2.11.3 Empirical Bayes standard errors

Comparative standard errors

The comparative standard errors are just the posterior standard deviations which were produced by
the gllapred command with the u option and stored in the variable ebs1:

. display ebs1[1]
13.963476

Diagnostic standard errors

To obtain diagnostic standard errors, we need to subtract the posterior variance from the prior
variance (the estimated random-effects variance). The “estimation metric” used by gllamm for
random-intercept variances is the square root of the variance (which can be positive or negative).
By listing the parameter estimates, we can see what equation name and column name gllamm uses
for the square root of the random-intercept variance:

(Continued on next page)
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. matrix list e(b)

e(b)[1,3]
wm: lns1: id1:

_cons _cons _cons
y1 453.91159 2.9916012 107.03657

The diagnostic standard errors are therefore obtained using:

. generate diag_SE = sqrt(([id1]_cons)^2 - ebs1^2)

. display diag_SE[1]
106.12186



Chapter 3

Random-intercept models with
covariates

3.4 Estimation using Stata

3.4.3 Using gllamm

The gllamm command for fitting the model by adaptive quadrature with the default of 8 quadrature
points is:

. gllamm birwt smoke male mage hsgrad somecoll collgrad
> married black kessner2 kessner3 novisit pretri2 pretri3,
> i(momid) adapt

number of level 1 units = 8604
number of level 2 units = 3978

Condition Number = 8059.0646

gllamm model

log likelihood = -65145.752

birwt Coef. Std. Err. z P>|z| [95% Conf. Interval]

smoke -218.3289 18.20989 -11.99 0.000 -254.0197 -182.6382
male 120.9375 9.558726 12.65 0.000 102.2027 139.6722
mage 8.100549 1.347267 6.01 0.000 5.459954 10.74114

hsgrad 56.84715 25.0354 2.27 0.023 7.778662 105.9156
somecoll 80.68607 27.30916 2.95 0.003 27.1611 134.211
collgrad 90.83273 27.996 3.24 0.001 35.96157 145.7039
married 49.9202 25.50322 1.96 0.050 -.065183 99.90559

black -211.4138 28.27821 -7.48 0.000 -266.8381 -155.9895
kessner2 -92.91883 19.92625 -4.66 0.000 -131.9736 -53.86409
kessner3 -150.8759 40.83416 -3.69 0.000 -230.9094 -70.84241
novisit -30.03035 65.69217 -0.46 0.648 -158.7846 98.72394
pretri2 92.8579 23.1926 4.00 0.000 47.40125 138.3145
pretri3 178.7295 51.64148 3.46 0.001 77.5141 279.945

_cons 3117.191 40.976 76.07 0.000 3036.88 3197.503

(Continued on next page)
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Variance at level 1
------------------------------------------------------------------------------

137392.81 (2867.2533)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (momid)

var(1): 114763.41 (4266.0686)
------------------------------------------------------------------------------

To compare the variance estimates with the standard deviation estimates from xtmixed on page 134
of the book, we square the latter and display them in the same order as they appear in the gllamm
output:

. display 370.6656^2
137392.99

. display 338.7669^2
114763.01

All estimates are close to those from xtreg and xtmixed. Estimation takes a relatively long time
for this example, so if there is any chance we may need the estimates again—for instance to perform
diagnostics—we should keep the estimates in memory for later use:

. estimates store gllamm

If estimates may be required in a future Stata session, they can also be saved in a file using estimates
save.

3.6 Hypothesis tests and confidence intervals

Almost all standard post-estimation commands (e.g., lrtest, lincom, test) work with gllamm,
and this is shown for testparm in section 3.6.1. However, the margins and marginsplot commands
used in section 3.6.2 of the book do not work with gllamm.

3.6.1 Hypothesis tests for regression coefficients

Joint hypothesis tests for several regression coefficients

The testparm command works after estimation using gllamm in the same way as it does after
estimation using xtmixed:

. testparm kessner2 kessner3

( 1) [birwt]kessner2 = 0
( 2) [birwt]kessner3 = 0

chi2( 2) = 26.94
Prob > chi2 = 0.0000
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3.9 Assigning values to random effects: Residual diagnostics

We begin by retrieving the gllamm estimates stored in section 3.4.3 (this is not necessary here since
we have not estimated any other models since estimating the model for which we want predictions):

. estimates restore gllamm
(results gllamm are active now)

We then use the gllapred command with the ustd option to obtain r
(2)
j :

. gllapred lev2, ustd
(means and standard deviations will be stored in lev2m1 lev2s1)
Non-adaptive log-likelihood: -65145.743
-6.515e+04 -6.515e+04
log-likelihood:-65145.752

and gllapred with the pearson option to obtain r
(1)
ij :

. gllapred lev1, pearson
(residuals will be stored in lev1)
Non-adaptive log-likelihood: -65145.743
-6.515e+04 -6.515e+04
log-likelihood:-65145.752

Histograms of the standardized level-1 residuals r
(1)
ij and the standardized level-2 residuals r

(2)
j

can be plotted as follows:

. histogram lev1, normal xtitle(Standardized level-1 residuals)

. histogram lev2m1 if idx==1, normal xtitle(Standardized level-2 residuals)

These commands produce figures 3.6 and 3.7 in the book.
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Chapter 4

Random-coefficient models

4.5 (g) Estimation using gllamm

4.5.1 (g) Random-intercept model

We start by using gllamm to fit the random-intercept model:

. gllamm gcse lrt, i(school) adapt

number of level 1 units = 4059
number of level 2 units = 65

Condition Number = 35.786606

gllamm model

log likelihood = -14024.799

gcse Coef. Std. Err. z P>|z| [95% Conf. Interval]

lrt .5633697 .0124863 45.12 0.000 .538897 .5878425
_cons .0239115 .4002945 0.06 0.952 -.7606514 .8084744

Variance at level 1
------------------------------------------------------------------------------

56.572669 (1.2662546)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (school)

var(1): 9.2127071 (1.8529779)
------------------------------------------------------------------------------

We store the estimates under the name RI:

. estimates store RI

15
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For comparison, the variance estimates from xtmixed are:

. display 7.521481^2
56.572676

. display 3.035269^2
9.2128579

All estimates are practically identical to those from xtmixed (see page 194 of the book).

4.5.2 (g) Random-coefficient model

In the previous gllamm command for the random-intercept model, all that was required to specify
the random intercept was the i(school) option.

To introduce a random slope ζ2j , we will also need to specify the variable multiplying the random
slope in equation (4.1) on page 188 of the book, i.e., xij or lrt. This is done by specifying an equation
for the slope:

. eq slope: lrt

We also need an equation for the variable multiplying the random intercept ζ1j , and since it is an
intercept, we just specify a variable equal to 1:

. generate cons = 1

. eq inter: cons

We must also add a new option, nrf(2), which stands for “number of random effects is 2” (an inter-
cept and a slope), and specify both equations, inter and slope, in the eqs() option of the gllamm
command. Finally, with two random effects, 8-point quadrature requires 82 = 64 terms to evaluate
the log likelihood. We can get nearly the same accuracy with only 44 points (taking about 30%
less time to run) by using a spherical quadrature rule of degree 15 (see Rabe-Hesketh and Skrondal
2012b, sec. 10.11), specified using the options ip(m) and nip(15):

. gllamm gcse lrt, i(school) nrf(2) eqs(inter slope) ip(m) nip(15)
> adapt

number of level 1 units = 4059
number of level 2 units = 65

Condition Number = 35.440557

gllamm model

log likelihood = -14004.613

gcse Coef. Std. Err. z P>|z| [95% Conf. Interval]

lrt .556729 .0199969 27.84 0.000 .5175357 .5959223
_cons -.1150847 .3982901 -0.29 0.773 -.8957188 .6655495

(Continued on next page)
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Variance at level 1
------------------------------------------------------------------------------

55.365323 (1.2492818)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (school)

var(1): 9.0447094 (1.8310164)
cov(2,1): .18040343 (.06915233) cor(2,1): .49754032

var(2): .01453578 (.00457732)
------------------------------------------------------------------------------

The gllamm output gives the maximum likelihood estimates of the within-school variance θ under
Variance at level 1 and the estimates of the elements ψ11, ψ21, and ψ22, of the covariance matrix
of the random intercept and slope under Variances and covariances of random effects. The
estimated correlation between the random intercept and slope is also give as cor(2,1): .49754323.
This correlation and the regression coefficients agree well with the estimates from xtmixed on page
196 of the book.

To compare the remaining estimates, we display the variance estimates from xtmixed in the
order in which they appear in the gllamm output:

. display 7.440787^2
55.365311
. display 3.007444^2
9.0447194
. display .1205646^2
.01453582

These estimates are practically identical to those from gllamm (see output from estat recovariance

on page 197 of the book).

We store the estimates for later use:

. estimates store RC

To speed up estimation, we could also have used the previous estimates for the random-intercept
model as starting values for the regression coefficients and random-intercept variance, and set the
starting values for the additional two parameters (for the random-slope variance and the random
intercept and slope covariance) to zero:

. matrix a = e(b)

. matrix a = (a,0,0)

(The order in which the parameters are given in the matrix matters, and when going from a random-
intercept to a random-coefficient model, the two new parameters are always at the end.) To use the
parameter matrix a as starting values, we would specify the from(a) and copy options. The gllamm
command would be:

gllamm gcse lrt, i(school) nrf(2) eqs(inter slope) ip(m) nip(15)
adapt from(a) copy
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4.6 Testing the slope variance

We can use a likelihood-ratio test to test the null hypothesis that the random slope variance is zero:

. lrtest RI RC

Likelihood-ratio test LR chi2(2) = 40.37
(Assumption: RI nested in RC) Prob > chi2 = 0.0000

The correct asymptotic p-value is obtained using

. display 0.5*chi2tail(1,40.37) + 0.5*chi2tail(2,40.37)
9.616e-10

4.8 Assigning values to the random intercepts and slopes

4.8.2 Empirical Bayes prediction

To obtain predictions based on the random-coefficient model, we first retrieve the estimates:

. estimates restore RC
(results RC are active now)

and then use the gllapred command with the u option. We specify the stub (or prefix) of the
variables that will be generated by gllapred. Because the model contains two random effects, a
random intercept and a random slope, four variables will be generated, two for the posterior means
and two for the posterior standard deviations.

. gllapred eb, u
(means and standard deviations will be stored in ebm1 ebs1 ebm2 ebs2)
Non-adaptive log-likelihood: -14007.032
-1.401e+04 -1.400e+04 -1.400e+04 -1.400e+04
log-likelihood:-14004.613

The output tells us the variable names for the predictions. The order of the random effects is
determined by the order in which they are listed in the eqs() option in gllamm. Here, the first
random effect is the random intercept and the second is the random slope (note that the random
intercept always comes last in xtmixed). We display the corresponding posterior means (as on page
202 of the book) using:

(Continued on next page)
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. egen pickone = tag(school)

. list school ebm1 ebm2 if pickone==1 & (school<10 | school==48), noobs

school ebm1 ebm2

1 3.749336 .12497567
2 4.7021287 .16472645
3 4.7976842 .08086626
4 .35024886 .12718282
5 2.4628061 .07205773

6 5.1838152 .05862374
7 3.640946 -.1488712
8 -.1218854 .00688557
9 -1.7679824 -.08861967
48 -.40981905 -.00648538

4.8.3 Model visualization

We can use gllapred with the linpred option to predict school-specific regression lines by plugging
parameter estimates and empirical Bayes predictions of the random intercepts and slopes into the
model:

. gllapred muRC, linpred
(linear predictor will be stored in muRC)
Non-adaptive log-likelihood: -14007.032
-1.401e+04 -1.400e+04 -1.400e+04 -1.400e+04
log-likelihood:-14004.613

The following command produces the right panel of figure 4.10 on page 204 of the book:

. sort school lrt

. twoway (line muRC lrt, connect(ascending)), xtitle(LRT)
> ytitle(Empirical Bayes regression lines for model 2)

To produce the left panel (for the random-intercept model), use:

. estimates restore RI
(results RI are active now)

. gllapred muRI, linpred
(linear predictor will be stored in muRI)
Non-adaptive log-likelihood: -14028.596
-1.404e+04 -1.403e+04 -1.403e+04 -1.403e+04 -1.403e+04 -1.403e+04
-1.403e+04 -1.402e+04 -1.402e+04 -1.402e+04
log-likelihood:-14024.799

. sort school lrt

. twoway (line muRI lrt, connect(ascending)), xtitle(LRT)
> ytitle(Empirical Bayes regression lines for model 1)
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Chapter 6

Marginal models

Most of the models considered in this chapter cannot be estimated using gllamm because they relax
the assumption that the level-1 residuals are uncorrelated which is not possible in gllamm. However,
gllamm can estimate models with random-intercept or random-coefficient structures as shown in
chapter 4, and it does allow the residual variance to depend on covariates, as shown in sections 6.4.2
and 6.4.3 below.

6.4 Hybrid and complex marginal models

6.4.2 Heteroscedastic level-1 residuals over occasions

In gllamm, we can specify a model for the logarithm of the level-1 standard deviation of the form

ln
√
θi =

1

2
lnθi = α1x1i + α2x2i + · · ·

If the variables x1i, etc., are dummy variables, then we get a different standard deviation for each
of the corresponding groups. Note that the equation does not contain an intercept, so we can use
dummy variables for all groups and do not have to omit one dummy variable as usual.

To obtain different standard deviations for different years, we first generate dummy variables for
years:

. tabulate yeart, generate(yr)

yeart Freq. Percent Cum.

0 545 12.50 12.50
1 545 12.50 25.00
2 545 12.50 37.50
3 545 12.50 50.00
4 545 12.50 62.50
5 545 12.50 75.00
6 545 12.50 87.50
7 545 12.50 100.00

Total 4,360 100.00
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Now we can define an equation, called het, for the log-standard deviation by specifying the eight
dummy variables for the years:

. eq het: yr1-yr8

This equation will be passed to gllamm using the s() option.

To specify a random-coefficient model, we also have to define equations for the intercept and
slope to pass to gllamm using the eqs() option:

. generate one = 1

. eq inter: one

. eq slope: yeart

We use degree 11 spherical quadrature (ip(m) and nip(11) options). This takes some time
to run, and you could also try nip(7) or even nip(5) to speed estimation (often nip(5) is not
sufficiently accurate, but here it works quite well). The gllamm command is:

. gllamm lwage black hisp union married exper yeart educt, i(nr)
> nrf(2) eqs(inter slope) s(het) ip(m) nip(11) adapt

number of level 1 units = 4360
number of level 2 units = 545

Condition Number = 36.573837

gllamm model

log likelihood = -2036.413

lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

black -.1409611 .0485077 -2.91 0.004 -.2360344 -.0458878
hisp .0197168 .0432223 0.46 0.648 -.0649974 .1044311
union .1033512 .0175008 5.91 0.000 .0690503 .1376521

married .0749567 .0168062 4.46 0.000 .0420171 .1078963
exper .031004 .011544 2.69 0.007 .0083782 .0536299
yeart .0264718 .0119172 2.22 0.026 .0031144 .0498291
educt .0945191 .0108146 8.74 0.000 .0733228 .1157154
_cons 1.333682 .0393056 33.93 0.000 1.256645 1.41072

Variance at level 1
------------------------------------------------------------------------------

equation for log standard deviation:

yr1: -.78340246 (.03602338)
yr2: -1.0332121 (.03698541)
yr3: -1.2444805 (.03797054)
yr4: -1.2750318 (.0360111)
yr5: -1.0983855 (.03371716)
yr6: -1.1747076 (.03487452)
yr7: -1.1350565 (.03609228)
yr8: -1.4489631 (.05324738)

(Continued on next page)
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Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (nr)

var(1): .14474557 (.01229625)
cov(2,1): -.00966248 (.001685) cor(2,1): -.47235711

var(2): .00289089 (.00033276)
------------------------------------------------------------------------------

To compare the level-2 variances with the estimated standard deviations on page 318 of the book
from xtmixed, we square the latter:

. display .3804544^2

.14474555

. display .053767^2

.00289089

To see what the estimated level-1 standard deviations are (instead of their logarithms), we can
use:

. display exp([lns1]yr1)

.45684895

. display exp([lns1]yr2)

.35586207

. display exp([lns1]yr3)

.28809053

. display exp([lns1]yr4)

.27942208

. display exp([lns1]yr5)

.33340892

. display exp([lns1]yr6)

.30890929

. display exp([lns1]yr7)

.32140397

. display exp([lns1]yr8)

.23481364

All estimates are practically identical to those from xtmixed.

6.4.3 Heteroscedastic level-1 residuals over groups

Similarly, for the random-intercept model with different residual variances for the three ethnicities,
use:

. generate white = 1 - black - hisp

. eq het: white black hisp

(Continued on next page)
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. gllamm lwage black hisp union married exper yeart educt, i(nr)
> s(het) adapt

number of level 1 units = 4360
number of level 2 units = 545

Condition Number = 39.649215

gllamm model

log likelihood = -2213.0207

lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

black -.133563 .0480979 -2.78 0.005 -.2278331 -.039293
hisp .0175076 .042645 0.41 0.681 -.066075 .1010902
union .1083187 .0179863 6.02 0.000 .0730662 .1435712

married .0751363 .0167458 4.49 0.000 .0423152 .1079574
exper .0331674 .0111967 2.96 0.003 .0112222 .0551126
yeart .0260171 .011402 2.28 0.023 .0036695 .0483646
educt .0946593 .0107039 8.84 0.000 .0736801 .1156385
_cons 1.317362 .0373883 35.23 0.000 1.244082 1.390641

Variance at level 1
------------------------------------------------------------------------------

equation for log standard deviation:

white: -1.0359907 (.01342136)
black: -1.0122484 (.0337608)
hisp: -1.0804347 (.02895928)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (nr)

var(1): .10698415 (.00747079)
------------------------------------------------------------------------------

For comparison with the xtmixed estimates on page 319 of the book, the random-intercept variance
estimate from xtmixed is:

. display .3270843^2

.10698414

and the level-1 standard deviation estimates from gllamm are:

. display exp([lns1]white)

.35487462

. display exp([lns1]black)

.36340098

. display exp([lns1]hisp)

.33944793

Again, agreement is nearly perfect.



Chapter 7

Growth-curve models

7.3 Models for nonlinear growth

7.3.1 Polynomial models

(g) Fitting the models

As usual, for random-coefficient models in gllamm, we first define equations for the intercept and
slope and then pass them to gllamm using the eqs() option. We use degree 15 spherical adaptive
quadrature:

. generate age2 = age^2

. generate cons = 1

. eq inter: cons

. eq slope: age

. gllamm weight girl age age2, i(id) nrf(2) eqs(inter slope)
> ip(m) nip(15) adapt

number of level 1 units = 198
number of level 2 units = 68

Condition Number = 9.151205

gllamm model

log likelihood = -253.86692

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

girl -.5960093 .2007172 -2.97 0.003 -.9894077 -.2026108
age 7.697967 .2391093 32.19 0.000 7.229322 8.166613
age2 -1.657843 .0885717 -18.72 0.000 -1.83144 -1.484245
_cons 3.794769 .1672318 22.69 0.000 3.467001 4.122537

(Continued on next page)
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Variance at level 1
------------------------------------------------------------------------------

.32756175 (.05680649)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .35370507 (.15342767)
cov(2,1): .04762586 (.08751458) cor(2,1): .15710858

var(2): .25980321 (.08887197)
------------------------------------------------------------------------------

. estimates store RC

The log likelihood and estimates of the regression coefficients are practically identical to those on
page 347 of the book from xtmixed, as is the estimated correlation between random intercept and
slope. We can obtain the estimated level-1 variance, random-intercept and random-slope variance
from xtmixed, respectively, using:

. display .57233^2

.32756163

. display .5947313^2

.35370532

. display .5097091^2

.25980337

and these are all very close to the gllamm estimates.

(g) Predicting trajectories for individual children

We can use gllapred with the linpred option to predict the individual growth trajectories:

. gllapred traj, linpred
(linear predictor will be stored in traj)
Non-adaptive log-likelihood: -253.94794
-253.9000 -253.8669 -253.8669
log-likelihood:-253.86692

Figure 7.5 on page 352 of the book is produced as follows:

. twoway (scatter weight age) (line traj age, sort) if girl==1,
> by(id, compact legend(off))

7.4 Heteroscedasticity

7.4.1 Heteroscedasticity at level 1

As shown in section 6.4.2 of this document, we can use the s() option in gllamm to specify a
linear model for the logarithm of the level-1 standard deviation. The model is defined using the
eq command. No intercept is included, so to specify different log standard deviations for boys and
girls, we use a dummy variable for each gender (we do not omit one dummy variable):
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. generate boy = 1 - girl

. eq het: boy girl

. eq inter: cons

. eq slope: age

. gllamm weight girl age age2, i(id) nrf(2) eqs(inter slope)
> s(het) ip(m) nip(15) adapt

number of level 1 units = 198
number of level 2 units = 68

Condition Number = 9.6099371

gllamm model

log likelihood = -252.40553

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

girl -.6026741 .2049726 -2.94 0.003 -1.004413 -.2009353
age 7.629066 .2368424 32.21 0.000 7.164863 8.093268
age2 -1.635112 .0874551 -18.70 0.000 -1.806521 -1.463703
_cons 3.829123 .1757713 21.78 0.000 3.484617 4.173628

Variance at level 1
------------------------------------------------------------------------------

equation for log standard deviation:

boy: -.4467279 (.10906431)
girl: -.70562715 (.11784509)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .39329041 (.14805673)
cov(2,1): .04438919 (.08252851) cor(2,1): .14571939

var(2): .23594266 (.08638896)
------------------------------------------------------------------------------

We can display the estimated residual standard deviations for boys and girls by exponentiating the
estimated log-standard deviations:

. display exp([lns1]boy)

.63971795

. display exp([lns1]girl)

.49379879

These estimates are practically identical to those from xtmixed on page 361 of the book as are the
level-2 variance estimates, given below for xtmixed:

. display .6271286^2

.39329028

. display .4857393^2

.23594267
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The likelihood-ratio test, comparing this model with the previous random-coefficient model (with
homoscedastic level-1 residuals) is obtained using:

. lrtest RC .

Likelihood-ratio test LR chi2(1) = 2.92
(Assumption: RC nested in .) Prob > chi2 = 0.0873

7.4.2 Heteroscedasticity at level 2

For heteroscedasticity at level 2, we can use the same trick in gllamm as we used in xtmixed. We
specify two random parts, one for boys and one for girls. In each random part, the random intercept
is multiplied by the dummy variable for the corresponding gender and the random slope is multiplied
by age times the dummy variable for the corresponding gender. As in xtmixed, we can specify two
random parts for the same level by pretending that we have a three-level model, but specifying the
same cluster identifier for levels 2 and 3.

We first create new variables age boy and age girl for the random slopes for boys and girls,
respectively, and then define equations for the random intercept and slope for boys (intboy and
slpby) and for the random intercept and slope for girls (intgirl and slpgirl):

. generate age_boy = age*boy

. generate age_girl = age*girl

. eq intboy: boy

. eq slboy: age_boy

. eq intgirl: girl

. eq slgirl: age_girl

In the gllamm command we use the i(id id) option to specify two levels of nesting (levels 2
and 3) both with the same identifier id. The nrf() option then expects two numbers, nrf(# #),
for the number of random effects at levels 2 and 3. Here we have a random intercept and slope at
each level so we use nrf(2 2). We will use “level 2” for boys and “level 3” for girls, so our eqs()
option will list the equation names in this order: eqs(intboy slboy intgirl slgirl).

The model has a total of four random effects which can take a long time to estimate in gllamm.
We therefore specify spherical quadrature of degree 5 (which happens to give good estimates for this
dataset):

. gllamm weight girl age age2, i(id id) nrf(2 2)
> eqs(intboy slboy intgirl slgirl)
> ip(m) nip(5) adapt

number of level 1 units = 198
number of level 2 units = 68
number of level 3 units = 68

Condition Number = 11.906761

(Continued on next page)
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gllamm model

log likelihood = -249.70705

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

girl -.6067896 .2038118 -2.98 0.003 -1.006253 -.2073258
age 7.613138 .2364782 32.19 0.000 7.14965 8.076627
age2 -1.646243 .0874661 -18.82 0.000 -1.817673 -1.474812
_cons 3.820108 .162376 23.53 0.000 3.501857 4.138359

Variance at level 1
------------------------------------------------------------------------------

.32178303 (.05248488)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .28830336 (.18984704)
cov(2,1): .01825417 (.13419043) cor(2,1): .0493191

var(2): .47516482 (.1795417)

***level 3 (id)

var(1): .48912345 (.22086607)
cov(2,1): .05868205 (.08335526) cor(2,1): .38227205

var(2): .0481778 (.054581)
------------------------------------------------------------------------------

The estimates are remarkably close to those from xtmixed on page 363 of the book, given that we
only used a degree 5 integration rule. The estimates from xtmixed of the five variances, in the order
they are given in the output above are:

. display .567544^2

.32210619

. display .5364599^2

.28778922

. display .6891223^2

.47488954

. display .6987662^2

.4882742

. display .218154^2

.04759117

The likelihood-ratio test comparing this model with the original random-coefficient model can
be obtained as follows:

. lrtest RC .

Likelihood-ratio test LR chi2(3) = 8.32
(Assumption: RC nested in .) Prob > chi2 = 0.0398
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� Alternative model for heteroscedasticity at level 2

We can also fit a model that allows the random-intercept and random-slope variances to differ
between the genders but not the correlation between random intercept and random slope. This can
be accomplished by using factor loadings in gllamm.

The random part of the model can be written as

ζ1j(boyj + λ1girlj) + ζ2j(tijboyj + λ2tijgirlj) + εij =

{
ζ1j + ζ2jtij + εij if boyj = 1

ζ1jλ1 + ζ2jλ2tij + εij if girlj = 1

where λ1 and λ2 are factor loadings. Note that linear mixed models do not allow for factor loadings,
so this is no longer a standard linear mixed model.

In gllamm we specify the terms multiplying the random effects through the eq command. For
the random intercept, we specify the variables boy and girl:

. eq inter: boy girl

gllamm automatically sets the factor loading for the first variable to one.

For the random slope, we specify the variables age boy and age girl:

. eq slope: age_boy age_girl

The model now includes only two random effects and is faster to estimate. We can therefore use
degree 15 spherical integration:

. gllamm weight girl age age2, i(id) nrf(2) eqs(inter slope)
> ip(m) nip(15) adapt

number of level 1 units = 198
number of level 2 units = 68

Condition Number = 19.88205

gllamm model

log likelihood = -249.80965

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

girl -.6093703 .2058006 -2.96 0.003 -1.012732 -.2060086
age 7.623536 .2358429 32.32 0.000 7.161292 8.085779
age2 -1.648115 .0872424 -18.89 0.000 -1.819107 -1.477123
_cons 3.809033 .1592697 23.92 0.000 3.49687 4.121196

Variance at level 1
------------------------------------------------------------------------------

.3202304 (.05462852)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .26625045 (.18083572)



7.4. HETEROSCEDASTICITY 31

loadings for random effect 1
boy: 1 (fixed)
girl: 1.4211837 (.48836587)

cov(2,1): .04948418 (.11335276) cor(2,1): .14211781

var(2): .45535006 (.17310296)

loadings for random effect 2
age_boy: 1 (fixed)
age_girl: .3644414 (.17706435)

------------------------------------------------------------------------------

The factor loadings are estimated as λ̂1 = 1.4211837 and λ̂1 = 0.3644414. We see from the log
likelihood that the model fits nearly as well as the model that allowed the correlation between
random intercept and random slope to differ between boys and girls in addition to the variances.

We can obtain the estimated random-intercept variance for girls using:

. display .26625045*1.4211837^2

.53776284

and the estimated random slope variance for girls using:

. display .45535006*.3644414^2

.06047847

The likelihood-ratio test comparing this model with the original random-coefficient model can
be obtained as follows:

. lrtest RC .

Likelihood-ratio test LR chi2(2) = 8.11
(Assumption: RC nested in .) Prob > chi2 = 0.0173
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Chapter 8

Higher-level models with nested
random effects

8.6 (g) Estimation using gllamm

In gllamm, the levels of the model are defined by listing the cluster identifiers in the i() option,
starting with level 2, then level 3, etc. Note that the levels are specified in the opposite order
in xtmixed. By default, the model has a random intercept at each level. The syntax to fit the
three-level variance components model to the peak expiratory flow data is:

. gllamm w, i(method id) adapt

number of level 1 units = 68
number of level 2 units = 34
number of level 3 units = 17

Condition Number = 224.35613

gllamm model

log likelihood = -345.29005

w Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 450.8971 26.6384 16.93 0.000 398.6867 503.1074

(Continued on next page)
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Variance at level 1
------------------------------------------------------------------------------

315.36764 (76.487891)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (method)

var(1): 379.32392 (188.12061)

***level 3 (id)

var(1): 11794.773 (4138.6952)
------------------------------------------------------------------------------

The estimates are practically identical to those from xtmixed on page 393 of the book. To compare
the variance estimates, we square the standard deviation estimates from xtmixed, in the order that
they are displayed in gllamm:

. display 17.75859^2
315.36752

. display 19.47623^2
379.32354

. display 108.6037^2
11794.764

8.7 Empirical Bayes prediction

The gllapred command with the u option produces empirical Bayes predictions of the random
effects in the order that they are specified in the gllamm command:

. gllapred reff, u
(means and standard deviations will be stored in reffm1 reffs1 reffm2 reffs2)
Non-adaptive log-likelihood: -351.36155
-444.5225 -424.4041 -406.6573 -390.3798 -377.2486 -366.6731
-358.0680 -351.7793 -346.8303 -345.2988 -345.2901 -345.2901
log-likelihood:-345.29005

The variable reffm1 contains the posterior means (empirical Bayes predictions) of the method-level
random intercepts and the variable reffm2 contains the posterior means of the subject-level random
intercepts. We can list these predictions as on page 395 of the book using:

(Continued on next page)
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. sort id method

. label define m 0 "Wright" 1 "Mini Wright"

. label values method m

. list id method reffm2 reffm1 if id<8 & occasion==1, noobs sepby(id)

id method reffm2 reffm1

1 Wright 53.143156 -8.5047963
1 Mini Wright 53.143156 10.213898

2 Wright -40.72008 -10.014133
2 Mini Wright -40.72008 8.7045614

3 Wright 61.698399 .99212078
3 Mini Wright 61.698399 .99212078

4 Wright -23.609595 -6.9135302
4 Mini Wright -23.609595 6.1542376

5 Wright 34.810493 -8.9761801
5 Mini Wright 34.810493 10.095697

6 Wright 144.07317 -7.748992
6 Mini Wright 144.07317 12.382434

7 Wright -37.053548 .11053846
7 Mini Wright -37.053548 -1.3021932

8.8 Testing variance components

We can use a likelihood-ratio test for the null hypothesis that the variance for methods within
subjects is zero:

. estimates store THR

. quietly gllamm w, i(id) adapt

. lrtest THR .

Likelihood-ratio test LR chi2(1) = 9.20
(Assumption: . nested in THR) Prob > chi2 = 0.0024

8.9 Crossed versus nested random effects revisited

The gllamm command for fitting the model with a fixed effect for method is:

. gllamm w method, i(method id) adapt

number of level 1 units = 68
number of level 2 units = 34
number of level 3 units = 17

Condition Number = 227.30894

(Continued on next page)
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gllamm model

log likelihood = -344.99736

w Coef. Std. Err. z P>|z| [95% Conf. Interval]

method 6.029412 7.812741 0.77 0.440 -9.28328 21.3421
_cons 447.8824 26.9233 16.64 0.000 395.1136 500.6511

Variance at level 1
------------------------------------------------------------------------------

315.36765 (76.487893)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (method)

var(1): 361.14706 (182.02062)

***level 3 (id)

var(1): 11803.861 (4138.627)
------------------------------------------------------------------------------

To compare the variance estimates with those from xtmixed on page 398 of the book, we display
the latter in the same order as they appear in the gllamm output:

. display 17.75859^2
315.36752

. display 19.00386^2
361.14669

. display 108.6455^2
11803.845

Again, the estimates are very close.

8.12 Three-level random-intercept model

8.12.3 (g) Estimation using gllamm

When the model contains only random intercepts, specification of the random part of the model
requires only the i() option, here i(id schoolid). We use 5 quadrature points per dimension to
speed estimation:

. gllamm ravens meat milk calorie relyear meat_year milk_year calorie_year
> age_at_time0 boy, i(id schoolid) nip(5) adapt

number of level 1 units = 2593
number of level 2 units = 542
number of level 3 units = 12

Condition Number = 43.636436

(Continued on next page)
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gllamm model

log likelihood = -6255.8919

ravens Coef. Std. Err. z P>|z| [95% Conf. Interval]

meat -.2557746 .3331808 -0.77 0.443 -.908797 .3972478
milk -.4792254 .3224457 -1.49 0.137 -1.111207 .1527565

calorie -.371442 .3293026 -1.13 0.259 -1.016863 .2739792
relyear .9131073 .1406552 6.49 0.000 .6374281 1.188786

meat_year .5111623 .1967369 2.60 0.009 .1255651 .8967595
milk_year -.1057321 .1914634 -0.55 0.581 -.4809934 .2695293

calorie_year .1226815 .1931934 0.64 0.525 -.2559706 .5013337
age_at_time0 .1163292 .0616601 1.89 0.059 -.0045223 .2371808

boy .5372866 .165845 3.24 0.001 .2122363 .8623369
_cons 16.70636 .509331 32.80 0.000 15.70809 17.70463

Variance at level 1
------------------------------------------------------------------------------

5.8223567 (.1816606)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 2.3472399 (.22325898)

***level 3 (schoolid)

var(1): .04883539 (.05906999)
------------------------------------------------------------------------------

. estimates store M1

In the order that they appear above, the variance estimates from xtmixed on page 407 of the
book are:

. display 2.412956^2
5.8223567

. display 1.532073^2
2.3472477

. display .2209702^2

.04882783

8.13 Three-level random-coefficient models

8.13.1 Random coefficient at the child-level

We now add a random slope for relyear at the level 2. We therefore have to define an equation for
the random intercept and an equation for the random slope:

. generate cons = 1

. eq inter: cons
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. eq slope: relyear

In the gllamm command we also need the nrf() option to specify how many random effects there
are at each level, here nrf(2 1), and the eqs() option to list the corresponding three equations,
here eqs(inter slope inter):

. gllamm ravens meat milk calorie relyear meat_year milk_year calorie_year
> age_at_time0 boy, i(id schoolid) nrf(2 1) eqs(inter slope inter)
> ip(m) nip(5) adapt

number of level 1 units = 2593
number of level 2 units = 542
number of level 3 units = 12

Condition Number = 41.753006

gllamm model

log likelihood = -6241.3374

ravens Coef. Std. Err. z P>|z| [95% Conf. Interval]

meat -.236802 .3401249 -0.70 0.486 -.9034345 .4298305
milk -.4783402 .3304776 -1.45 0.148 -1.126064 .1693841

calorie -.3685747 .3382833 -1.09 0.276 -1.031598 .2944484
relyear .9236107 .1567281 5.89 0.000 .6164293 1.230792

meat_year .4990581 .2194573 2.27 0.023 .0689296 .9291865
milk_year -.1156097 .2139669 -0.54 0.589 -.5349772 .3037578

calorie_year .1169182 .2149197 0.54 0.586 -.3043168 .5381531
age_at_time0 .1146557 .0609246 1.88 0.060 -.0047544 .2340658

boy .4902233 .1648488 2.97 0.003 .1671255 .813321
_cons 16.74273 .5069814 33.02 0.000 15.74906 17.73639

Variance at level 1
------------------------------------------------------------------------------

5.3609699 (.19291996)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 2.1263441 (.27162165)
cov(2,1): -.00139043 (.17591362) cor(2,1): -.00110335

var(2): .74685559 (.19683476)

***level 3 (schoolid)

var(1): .06557091 (.0717574)
------------------------------------------------------------------------------

. estimates store M2

The corresponding variance estimates from xtmixed on page 410 of the book are:

. display 2.315432^2
5.3612253

. display 1.45822^2
2.1264056

. display .864055^2
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.74659104

. display .2546548^2

.06484907

The likelihood-ratio test for comparing the three-level random-intercept model with the three-
level model that has a random slope at the child level can be performed using:

. lrtest M1 M2

Likelihood-ratio test LR chi2(2) = 29.11
(Assumption: M1 nested in M2) Prob > chi2 = 0.0000

8.13.2 Random coefficient at the child and school levels

We now add a random slope of relyear at the school level. The resulting model has four random
effects and estimation is slow, so we use spherical quadrature of degree 5. We also use the estimates
from the previous model as starting values. We can do that very easily here because the previous
model used the same equation names for the random effects that the models share in common,
so the parameter vector will have the correct equation names and column names. The starting
values for the new parameters (for variance of the new random slope and the covariance between
the school-level random intercept and random slope) will be set to zero. The commands are:

. matrix a=e(b)

. gllamm ravens meat milk calorie relyear meat_year milk_year calorie_year
> age_at_time0 boy, i(id schoolid) nrf(2 2) eqs(inter slope inter slope)
> ip(m) nip(5) from(a) adapt

number of level 1 units = 2593
number of level 2 units = 542
number of level 3 units = 12

Condition Number = 49.123752

gllamm model

log likelihood = -6240.6132

ravens Coef. Std. Err. z P>|z| [95% Conf. Interval]

meat -.226835 .3783363 -0.60 0.549 -.9683604 .5146905
milk -.4940559 .3623273 -1.36 0.173 -1.204204 .2160925

calorie -.3500534 .3805169 -0.92 0.358 -1.095853 .3957461
relyear .9211458 .1698552 5.42 0.000 .5882357 1.254056

meat_year .4751492 .2391628 1.99 0.047 .0063987 .9438997
milk_year -.1087991 .2320662 -0.47 0.639 -.5636406 .3460423

calorie_year .1043165 .2361275 0.44 0.659 -.3584848 .5671178
age_at_time0 .1131252 .0607745 1.86 0.063 -.0059906 .2322409

boy .4906368 .164508 2.98 0.003 .168207 .8130666
_cons 16.76484 .5194477 32.27 0.000 15.74674 17.78294

(Continued on next page)
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Variance at level 1
------------------------------------------------------------------------------

5.3603882 (.1929498)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 2.100472 (.27199282)
cov(2,1): .01673053 (.17561439) cor(2,1): .01346052

var(2): .73549376 (.19663458)

***level 3 (schoolid)

var(1): .12262135 (.15586286)
cov(2,1): -.04258019 (.06022169) cor(2,1): -.99996871

var(2): .01478687 (.02732136)
------------------------------------------------------------------------------

The estimates differ a little from those produced by xtmixed (see page 412 of the book). We can
get estimates that are very close to the xtmixed estimates by using nip(7) instead of nip(5) but
this will take longer to run.

The variance estimates from xtmixed are:

. display 2.31526^2
5.3604289

. display 1.452461^2
2.109643

. display .8583323^2

.73673434

. display .3172716^2

.10066127

. display .1110955^2

.01234221

We restore the estimates of the previous model

. estimates restore M2
(results M2 are active now)

8.14 Residual diagnostics and predictions

We can obtain empirical Bayes predictions of the random effects using:

(Continued on next page)
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. predict eb, u
(means and standard deviations will be stored in ebm1 ebs1 ebm2 ebs2 ebm3 ebs3)
Non-adaptive log-likelihood: -6289.1885
-6321.1680 -6308.2454 -6300.9731 -6296.6789 -6293.2117 -6290.3333
-6287.8986 -6285.8287 -6284.1725 -6282.9172 -6281.8684 -6280.7653
-6279.4592 -6277.9273 -6276.2307 -6274.4521 -6272.6437 -6270.8288
-6269.0166 -6267.2111 -6265.4146 -6263.6288 -6261.8554 -6260.0966
-6258.3548 -6256.6333 -6254.9363 -6253.2692 -6251.6395 -6250.0578
-6248.5390 -6247.1046 -6245.7862 -6244.6269 -6243.6707 -6242.9229
-6242.3293 -6241.8587 -6241.5362 -6241.3796 -6241.3408 -6241.3379
-6241.3379
log-likelihood:-6241.3379

To keep track of which variable is for which random effect, we rename the variables produced by
gllapred:

. rename ebm1 RI2

. rename ebm2 RC2

. rename ebm3 RI3

For the level-1 residuals, we can only get standardized residuals by using the pearson option:

. predict RES, pearson
(residuals will be stored in RES)
Non-adaptive log-likelihood: -6289.1885
-6321.1680 -6308.2454 -6300.9731 -6296.6789 -6293.2117 -6290.3333
-6287.8986 -6285.8287 -6284.1725 -6282.9172 -6281.8684 -6280.7653
-6279.4592 -6277.9273 -6276.2307 -6274.4521 -6272.6437 -6270.8288
-6269.0166 -6267.2111 -6265.4146 -6263.6288 -6261.8554 -6260.0966
-6258.3548 -6256.6333 -6254.9363 -6253.2692 -6251.6395 -6250.0578
-6248.5390 -6247.1046 -6245.7862 -6244.6269 -6243.6707 -6242.9229
-6242.3293 -6241.8587 -6241.5362 -6241.3796 -6241.3408 -6241.3379
-6241.3379
log-likelihood:-6241.3379

To obtain unstandardized residuals, we multiply by the estimated residual standard deviation:

. replace RES = RES*exp([lns1]_cons)
(2593 real changes made)

We can now produce the graph in figures 8.6 of the book (page 414):

. replace RI3=. if pick_school!=1
(2581 real changes made, 2581 to missing)

. replace RI2 =. if rn!=1
(2059 real changes made, 2059 to missing)

. graph box RI3 RI2 RES, ascategory box(1, bstyle(outline))
> yvaroptions(relabel(1 "School" 2 "Child" 3 "Occasion"))
> medline(lcolor(black))

The graph in figure 8.7 is produced using:

. scatter RC2 RI2 if rn==1, saving(yx, replace)
> xtitle("Random intercept") ytitle("Random slope")
(file yx.gph saved)

. histogram RC2, freq horiz saving(hy, replace)
> yscale(alt) ytitle(" ") fxsize(35) normal
(bin=34, start=-1.3361212, width=.08589759)
(file hy.gph saved)

. histogram RI2, freq saving(hx, replace)
> xscale(alt) xtitle(" ") fysize(35) normal
(bin=23, start=-7.715339, width=.50420418)



42 CHAPTER 8. HIGHER-LEVEL MODELS WITH NESTED RANDOM EFFECTS

(file hx.gph saved)

. graph combine hx.gph yx.gph hy.gph, hole(2) imargin(0 0 0 0)

and the graph in figure 8.8 is produced using:

. gllapred ptraj, linpred
(linear predictor will be stored in ptraj)
Non-adaptive log-likelihood: -6289.1885
-6321.1680 -6308.2454 -6300.9731 -6296.6789 -6293.2117 -6290.3333
-6287.8986 -6285.8287 -6284.1725 -6282.9172 -6281.8684 -6280.7653
-6279.4592 -6277.9273 -6276.2307 -6274.4521 -6272.6437 -6270.8288
-6269.0166 -6267.2111 -6265.4146 -6263.6288 -6261.8554 -6260.0966
-6258.3548 -6256.6333 -6254.9363 -6253.2692 -6251.6395 -6250.0578
-6248.5390 -6247.1046 -6245.7862 -6244.6269 -6243.6707 -6242.9229
-6242.3293 -6241.8587 -6241.5362 -6241.3796 -6241.3408 -6241.3379
-6241.3379
log-likelihood:-6241.3379

. sort schoolid id relyear

. twoway (line ptraj relyear, connect(ascending)), by(schoolid, compact)
> xtitle(Time in years) ytitle(Raven’s score)
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