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Abstract. Generalized linear models with covariate measurement error can be
estimated by maximum likelihood using gllamm, a program that fits a large class
of multilevel latent variable models (Rabe-Hesketh, Skrondal, and Pickles 2004b).
The program uses adaptive quadrature to evaluate the log-likelihood, producing
more reliable results than many other methods (Rabe-Hesketh, Skrondal, and
Pickles 2002). For a single covariate measured with error (assuming a classical
measurement model), we describe a ‘wrapper’ command cme that calls gllamm to
estimate the model. The wrapper makes life easy for the user by accepting a simple
syntax and data structure and producing extended and easily interpretable output.
The commands for preparing the data and running gllamm can also be obtained
from cme and run in a do-file. We first discuss the case where several measurements
are available and subsequently consider estimation when the measurement error
variance is instead assumed known. The latter approach is useful for sensitivity
analysis assessing the impact of assuming perfectly measured covariates in gener-
alized linear models. An advantage of using gllamm directly is that the classical
covariate measurement error model can be extended in various ways. For instance,
we can use nonparametric maximum likelihood estimation (NPMLE) to relax the
normality assumption for the true covariate. We can also specify a congeneric
measurement model which relaxes the assumption that the measurements for a
unit are exchangeable replicates by allowing for different measurement scales and
error variances.

Keywords: covariate measurement error, measurement model, factor model, con-
generic measurement model, adaptive quadrature, nonparametric maximum like-
lihood, NPMLE, latent class model, empirical Bayes, simulation, wrapper, sensi-
tivity analysis, gllamm, cme

1 Introduction

Covariates are often measured with error, their true values being unobservable or ‘la-
tent’. For simplicity, we assume in this paper that this is only the case for one covariate
ui, whereas the other covariates zi are perfectly measured or ‘observed’. The problem
then is to estimate a generalized linear model for a response or ‘outcome’ variable yi

c© 2001 Stata Corporation st0001



2 Maximum likelihood

with link function g(·),
g(µi) = z′

iβ + uiβu. (1)

We will call this model the outcome model (‘disease model’ in epidemiology).

It is well-known that substituting an error-prone measured covariate wi for the true
covariate ui will generally lead to biased estimates of both βu and β. We can attempt
to correct the bias if further information is available, such as the true covariate values
in a ‘validation’ (sub)sample, instrumental variables, replicate measurements (at least
in subsample), or knowledge of the measurement properties (e.g. measurement error
variance).

In this paper we describe maximum likelihood estimation of generalized linear models
with covariate measurement error, making use of either replicate measurements, instru-
mental variables or known measurement error variance. Remarkably, the maximum
likelihood approach has received relatively scant attention in the literature, probably
because it is perceived as complicated to implement and is not available in standard
software. We hope that the cme (Covariate Measurement Error) command introduced
here will remedy this. This ‘wrapper’ command uses the reliable adaptive quadrature
method (Rabe-Hesketh et al. 2002) implemented in the general gllamm command but
is easier to use than gllamm because of its tailor-made syntax and output. Alternative
methods such as regression calibration, instrumental variables estimation and simula-
tion extrapolation are discussed in the companion papers by Hardin and Carroll (2003)
and Hardin et al. (2003a,b,c).

The covariate measurement error model consists of three submodels (e.g. Clayton
1992), the outcome model in (1), a measurement model, specifying the relationship be-
tween the true covariate and its measurements, and a true covariate model, specifying a
regression of the true covariate on observed covariates. Section 2.1 describes the classical
covariate measurement error model. Although the outcome submodel of this classical
model is very general, the measurement and true covariate submodels are rather restric-
tive. One limitation is that a normal distribution is assumed for the true covariate (given
the observed covariates), raising concerns about robustness. In Section 2.2 we therefore
relax this assumption by using nonparametric maximum likelihood estimation. Another
limitation is the implicit assumption of identical measurement properties for the fallible
measures of the true covariate. We relax this assumption by introducing the general
congeneric measurement model in Section 2.3. Maximum likelihood estimation of the
classical model and its extensions using the cme and gllamm commands is described in
Section 3.

2 Covariate measurement error models

2.1 Classical model

We first consider the situation where the true covariate has been measured ni times
for unit i, giving fallible measures wij , j = 1, · · · , ni, ni ≤ k. Sometimes replicate
measurements are available only on a subsample, all other units being measured once.
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The classical measurement model can be written as

wij = ui + εij , εij ∼ N(0, σ2). (2)

The measurement errors εij are independently normally distributed with zero mean
and constant measurement error variance σ2 and are independent of the true covariate
ui. This implies that the measurements are conditionally independent given the true
covariate. Furthermore, the repeated measurements for a unit have mean equal to
the true covariate, i.e. they are unbiased for the true covariate. In Carroll, Ruppert,
and Stefanski (1995), unbiasedness is a requirement for a measurement to be called a
replicate measurement, but here we use the term for any repeated measurement.

To complete specification of the covariate measurement error model, we need to
define a true covariate model (‘exposure model’ in epidemiology),

ui = z′

iγ + ζi, ζi ∼ N(0, τ2), (3)

where γ are regression parameters and ζi disturbances or residuals, assumed to be
independent of the covariates zi. The model includes zi because it would be unrealistic
to assume that the true covariate is independent of the other (observed) covariates in
the outcome model.

The joint model, comprising the three submodels in (1) to (3), is illustrated in
Figure 1 for the case of a single observed covariate zi and up to k = 2 measurements
of the true covariate. Here circles represent latent variables and rectangles observed
variables. Long arrows represent linear relations in the linear predictor and short arrows
represent residual variability. For the true covariate and measurement models, this
residual variability is an additive error term, but for the outcome yi it could be, for
instance, binomial or Poisson variability depending on the specified distribution. It is
apparent from the diagram that the measurements are conditionally independent of the
outcome yi given the true covariate, a property known as nondifferential measurement
error.

We see that the covariate zi has an indirect effect γ1βu on the outcome mediated by
the true covariate in addition to the direct effect β1. The total effect is simply the sum
of these effects. This can also be seen by substituting the true covariate model (3) into
the outcome model (1), giving the reduced form outcome model

g(µi) = z′

iβ + (z′

iγ + ζi)βu

= z′

i (β + γβu)︸ ︷︷ ︸
α

+ζiβu.

The reduced form measurement model becomes

wij = z′

iγ + ζi + εij .

Incidentally, when all direct and indirect effects of covariates are included in the model, it
is easier to estimate the reduced form parameters α=β+γβu, βu and γ (e.g. Aitkin and
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Figure 1: Path diagram with direct and indirect effects of z on y

Rocci 2002) from which the parameters of primary interest, the structural parameters
β, γ and βu, can be derived. However, removing (at least two of) the direct effects
requires nonlinear constraints of the form αp = γpβu for the reduced form parameters.
Our programs therefore estimate the structural parameters directly.

The model is not identified if there are no replicate measurements, i.e. k=1. In this
case a parameter constraint is required to estimate the model, for instance setting the
measurement error variance σ2 to a known non-negative constant, typically an estimate
from another study. ‘Transporting’ a parameter estimate this way requires that the
parameter does not vary between populations, an assumption that is reasonable for the
measurement error variance. By contrast, the reliability (defined in (5)) depends on
the true covariate variance, a characteristic of the population. A major problem with
treating unknown parameters as known is that estimation uncertainty is not taken into
account. We therefore consider this ‘plugging in’ approach most useful as a sensitivity
analysis to investigate how the parameter estimates change for different values of the
assumed measurement error variance. Importantly, this allows us to assess the impact
of the implicit assumption of perfectly measured covariates in generalized linear models.

2.2 Nonparametric distribution of the true covariate

Instead of assuming a normal distribution for the true covariate ui, or for the resid-
ual ζi when there are observed covariates, we can leave the distribution unspecified.
The nonparametric maximum likelihood estimator (NPMLE) of the distribution is dis-
crete (Laird 1978; Heckman and Singer 1984) with masses πc at a finite number of
locations ζi = ec, c = 1, · · · , C. The number of masses is determined to achieve the
largest possible likelihood. Attempts to estimate the model with C + 1 masses would
result either in one mass having an estimated probability approaching zero or two masses
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nearly sharing the same estimated location. This model is also sometimes referred to
as a semiparametric mixture model.

Our approach to finding the NPMLE (Rabe-Hesketh, Pickles, and Skrondal 2003)
is to start with a small number of masses and estimate both locations and masses by
maximum likelihood, along with all the other parameters. We then use the idea of
directional derivative, referred to as gateaux derivative in Heckman and Singer (1984),
to decide if another mass should be added. Here, a very small new mass is moved across
a wide range of locations keeping all parameters at their ‘current’ estimates. If the
log-likelihood increases at any location, a new mass is introduced. It is helpful to use
the location resulting in the greatest increase in log-likelihood as a starting value for the
new masspoint. NPMLE for covariate measurement error models has been discussed
by Roeder et al. (1996), Schafer (2001), Aitkin and Rocci (2002), and Rabe-Hesketh
et al. (2003). General references include Lindsay (1995) and Böhning (2000).

2.3 Congeneric measurement model

The classical measurement model in (2) assumes that the fallible measures have the
same mean (no relative bias) and measurement error variance. This is reasonable if
the measures are essentially exchangeable replicates. However, if the measurements are
separated in time there may be a ‘drift’ in the mean measurement (e.g. Carroll et al.
1995). More importantly, if the fallible measures are obtained by different methods
such as different instruments or different raters, we should allow the measures to have
different means, scales, and measurement error variances. We can therefore extend the
classical measurement model to a congeneric measurement model (Jöreskog 1971) or
one-factor model of the form

wij = δj + λjui + εij , εij ∼ N(0, σ2
j ), (4)

where δ1 = 0 and λ1 = 1 for identification. Here δj represents the bias of measure j, λj

the scale or factor loading and σ2
j the measurement error variance. We interpret λjui

as the true score for unit i expressed in the scale of instrument or rater j.

Note that this general model can also be used for instrumental variables wij ; that
is any variables that are correlated with ui (not necessarily direct measures of ui),
independent of the measurement errors of the other measures and independent of the
outcome yi given zi and ui (e.g. Carroll et al. 1995).

The following hierarchy of increasingly restrictive versions of the congeneric mea-
surement models is often considered (Jöreskog 1971; Lord and Novick 1968):

1. Essentially tau-equivalent model.

The true scores have identical scales, i.e. all factor loadings are set equal across
raters or instruments j, λj =λ=1.

2. Tau-equivalent model.
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The true scores have identical locations and scales, i.e. the intercepts are also set
equal, δj =δ=0.

3. Parallel or classical measurement model in (2).

The measurement properties of raters or instruments are identical, i.e. the mea-
surement error variances are also set equal, σ2

j =σ2.

The measures can have different reliabilities defined as the proportion of the total
variance that is due to variability between the units’ true scores (true covariate values)

Rj =
λ2

j τ
2

λ2
jτ

2 + σ2
j

. (5)

If the true covariate model includes covariates, the reliability is interpreted as conditional
on these covariates. This conditional reliability could be substantially lower than the
unconditional one if the covariates explain a substantial portion of the between-subject
variance in the true covariate. We refer to Dunn (1992, 2004) and Dunn and Roberts
(1999) for useful treatments of reliability and measurement models.

The congeneric measurement model can be further generalized by specifying a gen-
eralized linear factor model as

g(µij) = δj + λjui.

If the responses are dichotomous, this is a two-parameter item response model (Birn-
baum 1968). If the true covariate is categorical, a latent class model (e.g. Clogg 1995)
can be specified where ui is categorical and the true covariate model becomes a multi-
nomial logit model. We refer to Bartholomew and Knott (1999) and Skrondal and
Rabe-Hesketh (2004) for theory and applications of generalized linear models with la-
tent variables.

3 Estimation using cme and gllamm

3.1 Classical covariate measurement error model

We will illustrate covariate measurement error modeling using data from Morris et al.
(1977). This study investigated the relationship between diet and coronary heart disease
(CHD). At the time of recruitment, 337 middle-aged men weighed their food intake over
a 7-day period, allowing food constituents to be derived. A subsample of 76 of the men
repeated this 6 months later, and all the men were then followed up for CHD. We will
estimate the effect of dietary fiber intake on CHD, controlling for occupation. The
relevant variables are:

• chd: dummy for coronary heart disease, CHD (1: present, 0: absent)

• fiber1 & fiber2: dietary fiber intake (grams/day) at first and second occasions



Rabe-Hesketh, Skrondal and Pickles 7

• bus: dummy for man working for London Transport (1: London Transport, 0:
bank staff)

• id: subject identifier

Since fiber intake has a skewed distribution, we will analyze log-fiber. We also subtract
2.8, approximately the mean log-fiber, to reduce correlations among the estimates β̂u

and β̂0, giving variables lfiber1 and lfiber2. Subtracting the mean is advisable and
will only affect the estimates of the constants β̂0 and γ̂0 in the measurement and outcome
models which are rarely of interest.

We specify a classical measurement model for log-fiber of the form of (2) and a
logistic regression model for CHD as in (1) with observed covariate bus (corresponding
to zi) and true log-fiber intake ui, where g(·) is the logit link. True log-fiber intake is
regressed on bus as in (3).

cme command

The classical covariate measurement error model can be estimated using the cme com-
mand which is a wrapper for gllamm. The syntax is as for the Stata command glm

except that the measurement model for the true covariate is specified as (label: mea-

sure1 measure2 ... measurek). Note that the variables measure1 measure2 ... measurek

can contain missing values if not all units have been measured on all occasions as is the
case here. All subjects with at least one nonmissing value will contribute to the analy-
sis, the assumption being that the data are missing at random (MAR). For the present
example, we obtain:

. cme chd bus (lfib: lfiber1 lfiber2), l(logit) f(binom) nolog

gllamm covariate measurement error model No. of obs = 333

log likelihood = -186.93042

OUTCOME MODEL

chd Coef. Std. Err. z P>|z| [95% Conf. Interval]

chd
bus -.1890801 .3396132 -0.56 0.578 -.8547097 .4765496
lfib -1.956459 .7261552 -2.69 0.007 -3.379698 -.5332214
_cons -1.852415 .2459018 -7.53 0.000 -2.334374 -1.370457

TRUE COVARIATE MODEL

lfib Coef. Std. Err. z P>|z| [95% Conf. Interval]

lfib
bus -.1208526 .0327975 -3.68 0.000 -.1851344 -.0565707

_cons .0637085 .0238865 2.67 0.008 .0168919 .1105252

res. var. .0701975 .0075798 .0561274 .0858397
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Table 1: Estimates of different models for diet and CHD data

Classical Only NPMLE
model indirect effect (dir. & indir.)

Est (SE) Est (SE) Est (SE)

Outcome model
β0 [Cons] -1.852 (0.246) -1.951 (0.176) -1.855 (0.246)
β1 [Bus] -0.189 (0.340) – -0.183 (0.338)
βu -1.956 (0.726) -1.860 (0.702) -1.928 (0.702)

True covariate model
γ0 [Cons] 0.064 (0.024) 0.063 (0.024) 0.061 (0.024)
γ1 [Bus] -0.121 (0.033) -0.120 (0.033) -0.115 (0.033)
τ 2 0.070 (0.008) 0.070 (0.008) 0.073 (–)

Measurement model
σ2 0.022 (0.004) 0.022 (0.004) 0.019 (0.003)

Log-likelihood -186.93 -187.09 -177.87

MEASUREMENT MODEL

error var. .0217326 .0035269 .0158115 .0298711
reliability .7635967 .0412876 .6756077 .8365528

There are three tables in the output, the generalized linear outcome model of primary
interest, followed by the true covariate model and the measurement model. In the
outcome model, the coefficient −1.96 of lfib represents the estimated effect β̂u of true
log-fiber. The corresponding odds ratio, exp(−1.956459)=0.14, can be obtained along
with the odds ratio for bus using the eform option. This extremely large estimated
protective effect of log-fiber is probably due to omitting important confounding variables
such as exercise which is protective of heart disease and increases food intake, including
fiber. Occupation does not appear to have an important direct effect on CHD. In
the true covariate model, we see that London transport staff consume less fiber than
bank staff. The residual variance (i.e. the within-occupation variance) of true log-
fiber is estimated as τ̂2 = 0.07. In the measurement model, the measurement error
variance is estimated as σ̂2 =0.02. The estimated reliability, conditional on occupation,
is R̂= τ̂2/(τ̂2 + σ̂2)=0.76.

The estimates are also shown under ‘Classical model’ in Table 1. Note that by
default 8-point adaptive quadrature was used to obtain these estimates. To ensure that
integration is accurate (see Rabe-Hesketh, Skrondal, and Pickles 2002), these estimates
should be compared with estimates using a larger number of points, for instance 12
using the nip(12) option.
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We can use the total and indirect options to obtain estimates of total and indirect
effects of bus, in terms of odds ratios if the eform option is used:

. cme, eform indirect total

gllamm covariate measurement error model No. of obs = 333

log likelihood = -186.93044

OUTCOME MODEL

chd exp(b) Std. Err. z P>|z| [95% Conf. Interval]

chd
bus .8270867 .2809421 -0.56 0.576 .4250281 1.609475
lfib .140508 .1020968 -2.70 0.007 .0338217 .5837223

Indirect effects of covariates via true covariate

bus 1.267658 .1378737 2.18 0.029 1.024291 1.568848

Total effects of covariates

bus 1.048463 .3490437 0.14 0.887 .5459838 2.013384

(output for true covariate model and measurement model not shown)

The indirect effect of reduced fiber intake among transport staff is to increase the odds of
CHD (estimated odds ratio of 1.27). The protective direct effect of being transport staff
(estimated odds ratio of 0.83) counteracts this, giving a negligible total effect (estimated
odds ratio of 1.27×0.83=1.05). However, there is not much evidence for a direct effect
and we may therefore wish to estimate a more parsimonious model omitting this effect
(possibly to perform a likelihood ratio test):

. cme chd (lfib: lfiber1 lfiber2), l(logit) f(binom) tcovmod(bus)
(output not shown)

Here bus has been omitted after chd whereas the tcovmod() option specifies bus as a
covariate for the true covariate model. The estimates are shown under ‘Only indirect
effect’ in Table 1. The odds ratio for the total effect of bus is now estimated as 1.25
with a 95% confidence interval from 1.02 to 1.53.

We can estimate these models with the measurement error variance σ2 constrained
at a particular value using the mevar(#) option. As discussed in Section 2.1, such a
constraint is necessary for model identification if there are no replicate measurements.
We will pretend that we only had the first log-fiber measurement lfiber1 and explore
how the estimates of βu and β1 change for a range of values of σ2 from 0 to 0.05:

. gen beta_u = .

. gen beta_1 = .

. gen variance = (_n-1)/200 in 1/11

. glm chd bus lfiber1, l(logit) f(binom)
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Figure 2: Sensitivity analysis for βu and β1.

. replace beta_u = [chd]lfiber1 in 1

. replace beta_1 = [chd]bus in 1

. forvalues s=2/11{

. local var=(`s´-1)/200

. cme chd bus (lfib: lfiber1), l(logit) f(binom) mevar(`var´)

. replace beta_u = [chd]lfib in `s´

. replace beta_1 = [chd]bus in `s´

. }

. twoway connect beta_u variance, ytitle(Log odds ratio for true log-fiber) /*

. */ xtitle(Measurement error variance)

. twoway connect beta_u variance, ytitle(Log odds ratio for bus) /*

. */ xtitle(Measurement error variance)

Here the estimate for σ2 = 0 is obtained using glm, whereas cme is used within a
forvalues loop for variances σ2(s) = (s−1)/200, s = 2, · · · , 11. The corresponding

estimates β̂
(s)
u and β̂

(s)
1 are accessed using the ‘equation name’ chd (outcome variable)

and the ‘column names’ lfib (the label for the true covariate specified in the cme com-

mand) and bus. The resulting graphs of β̂
(s)
u and β̂

(s)
1 versus σ2(s) = (s−1)/200 are

shown in Figure 2. Such graphs are useful for assessing the sensitivity of the param-
eter estimates to the implicit assumption in generalized linear models that there is no
covariate measurement error.

The cme command allows a wide range of generalized linear models for the outcome
as well as ordinal logit and probit models (see Appendix A for all the options), but
the classical measurement model and a normally distributed true covariate are always
assumed. To relax these assumptions, gllamm has to be used directly. As we will see,
the commands option of cme is very useful for this purpose since it creates commands
for estimating the model in gllamm, including all the necessary data manipulation.

GLLAMM framework

Here we briefly describe the GLLAMM (Generalized linear latent and mixed model)
framework confining ourselves to the special case of two-level models with a single latent
variable (the general framework is described in Rabe-Hesketh et al. (2004b) and Skrondal
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and Rabe-Hesketh (2004)). All response variables, the outcome yi (CHD) and the
repeated measurements wij of the true covariate are stacked in a single response vector
y with elements indexed ij, where j =1 if the element corresponds to the outcome for
unit i and j =2, · · · , k + 1 for the fallible measurements. The linear predictor then has
the form

gij(µij) = x′

ijβ + uiv
′

ijλ, λ1 = 1,

where xij and vij are variables, β and λ parameters and ui is a latent variable. The
ij subscript for the link implies that different link functions can apply to different
responses, for example, the logit link for the outcome and the identity link for the
fallible measurements. The fixed part x′

ijβ allows inclusion of observed covariates in
the model. To include the observed covariates zi in the outcome model only, we must
multiply these covariates by a dummy variable for CHD

d1ij =

{
1 if j = 1
0 if j > 1

,

so that xij =d1ijzi.

The variables vij are typically dummy variables, allowing the regressions for different
response variables on the latent variable ui to have different regression coefficients λp.
In the present example, using the dummy variables v1ij = dmij ,

dmij = 1 − d1ij =

{
0 if j = 1
1 if j > 1

,

and v2ij = d1ij results in the following model

gij(µij) = d1ijz
′

iβ + ui(λ1dmij + λ2d1ij), λ1 = 1

=

{
z′

iβ + uiλ2 if j = 1
ui if j > 1

. (6)

Here λ2 corresponds to βu in (1). Note that we only required a single dummy variable
for both log-fiber measurements since the regressions on ui share the same regression
coefficient λ1 =1.

Finally we specify the true covariate model, called the structural model in the
GLLAMM framework, as

ui = z′

iγ + ζi, ζi ∼ N(0, τ2).

We assume here that the first observed covariate z1i is a constant so that the true
covariate model and outcome model both contain intercepts, γ0 and β0, respectively.

Note that GLLAMMs also allow more general structural models, regressing latent
variables at different levels on same or higher-level latent and observed variables.
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gllamm command

We will now show how all commands necessary for estimating the classical covariate
measurement error model for the diet and CHD example can be generated using the
commands option in cme (we have added the line numbers for ease of reference):

. cme chd bus (lfib: lfiber1 lfiber2), l(logit) f(binom) nolog commands

------------------------------ begin do-file ------------------------------

1 * starting values
2 matrix startv = ( -.1474, -1.853, -1.458, -1.54, .3555, -.1237, .06659)
3 gen _id = _n

4 * collapse data to make gllamm faster
5 gen _one = 1
6 collapse (sum) _wt2 = _one, by(chd lfiber1 lfiber2 _id bus bus)

7 * give response variable and replicate measurements same prefix
8 rename chd _r1
9 rename lfiber1 _r2
10 rename lfiber2 _r3

11 * reshape data to long
12 reshape long _r, i(_id) j(_var)

13 * create dummy variables and interactions
14 gen byte cons = 1
15 gen byte _d1 = _var == 1
16 gen byte _dmeas = 1-_d1
17 gen _type = _d1 + 2*_dmeas /* response type */
18 gen _bus_d1 = bus*_d1

19 * define equations
20 eq load: _dmeas _d1
21 eq f1: bus cons

22 * call gllamm
23 gllamm _r _bus_d1 _d1, /*
24 */ i(_id) nocons eqs(load) link(logit ident) family(binom gauss) /*
25 */ lv(_type) fv(_type) geqs(f1) from(startv) copy adapt /*
26 */ weightf(_wt) nolog

------------------------------- end do-file ------------------------------

Note that running this do-file will change the data irreversibly so users may wish to
save their data first. The variables generated by the do-file start with ‘ ’ to distinguish
them from other variables in the dataset. If the variables id or one already exist, the
do-file will stop running and the user has to make changes to the do-file or data. In
line 2, the starting values generated by cme are placed into a matrix startv for later
use. In lines 5 and 6, the data are collapsed to reduce the number of observations if
several units share the same values on all variables contributing to the analysis (not the
case in this example). Since the two repeated log-fiber measurements and CHD are all
response variables, these variables need to be stacked into a single variable r. In lines
8 to 10, the variables are therefore first renamed to r1, r2 and r3 and in line 12 the
reshape command is used to stack these responses into r and create a variable var

taking on the values 1,2,3 for responses originally in r1, r2 and r3, respectively.

A constant is generated in line 14. Two response models will need to be specified,
one for CHD and one for log-fiber. Lines 15 to 17 therefore create dummy variables d1
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(d1ij) for CHD and dmeas (dmj =1−d1ij) for log-fiber and a variable type taking on
values 1 and 2 for these two response-types, respectively. In line 18, the explanatory
variable bus in the CHD model is multiplied by d1 to pick out the values of bus for
responses corresponding to CHD.

The data manipulation is now complete and the model can be specified. In line
20, the linear combination of variables v′

ijλ multiplying the latent variable is specified
using the equation command eq load: dmeas d1. To include the effect of bus on
true log-fiber, line 21 defines an equation for the structural model. Since there could be
several latent variables, the second character of the equation name must be a number,
here 1 for the first (and only) latent variable. In the gllamm command, the response
variable and the variables for the fixed part x′

ijβ are first listed in line 23. In line 24,
the i() option declares id as the unit-identifier i and the nocons option specifies that
the overall constant should be omitted. The eqs() option passes the equation for v ′

ijλ

to gllamm. The link() and family() options list the links and families needed. In
line 25, lv() and fv() specify that the first link and family should apply when type

equals 1 and the second when it equals 2. The equation for the structural model for the
true covariate is passed to gllamm using the geqs() option.

The from(startv) and copy options specify that starting values are in the matrix
startv and should be copied in the order in which they appear (not according to column
and equation names). The adapt option causes gllamm to use adaptive quadrature. In
line 26 weightf( wt) declares that unit-specific frequency weights can be found in wt2

whereas any response-specific weights would be in wt1. Since wt1 does not exist, the
latter are assumed to be 1. For further explanations of these options see help gllamm,
the gllamm manual (Rabe-Hesketh, Pickles, and Skrondal 2001a) and book (Rabe-
Hesketh, Pickles, and Skrondal 2004a).

Running this do-file gives the following gllamm output:

number of level 1 units = 742
number of level 2 units = 333

Condition Number = 56.335474

gllamm model

log likelihood = -186.93042

_r Coef. Std. Err. z P>|z| [95% Conf. Interval]

_bus_d1 -.1892767 .3396128 -0.56 0.577 -.8549055 .4763522
_d1 -1.852311 .2458932 -7.53 0.000 -2.334253 -1.370369

Variance at level 1
------------------------------------------------------------------------------

.02173286 (.00352703)

Variances and covariances of random effects
------------------------------------------------------------------------------
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***level 2 (_id)

var(1): .07019567 (.00757967)

loadings for random effect 1
_dmeas: 1 (fixed)
_d1: -1.9565293 (.72616402)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 2 covariates:
bus: -.12085325 (.03279718)
cons: .06370884 (.02388626)

------------------------------------------------------------------------------

Here ζi (and ui) are referred to as ‘random effects’. The estimated residual variance τ 2

and ‘loadings’ λ are listed under ‘Variances and covariances of random effects’.
The coefficient βu ≡λ2 is therefore somewhat hidden, whereas the mean of log-fiber µ
is presented in the initial regression table as the regression coefficient of dmeas. The
measurement error variance is referred to as ‘Variance at level 1’ since it represents
the variance between different ‘level-1’ units ij within the same ‘level-2’ unit i. The
estimated effect γ̂1 of bus on true log-fiber is listed under ‘Regressions of latent

variables on covariates.

An important advantage of understanding how gllamm works is that many of the
assumptions of the classical covariate measurement error model can be relaxed and the
model extended in many ways, some of which will be discussed in the following sections.
Another advantage is that we can make use of gllamm’s post-estimation commands
to obtain predictions and simulate from the model. For example, to predict the true
covariate values by empirical Bayes, use

. gllapred resfib, u /* predict ζi */

. gllapred truefib, fac /* predict ui = z
′

i
γ̂ + ζi */

To simulate responses from the model (including measurements for the second occasion
that were missing), use

. gllasim resp, fsample

3.2 Nonparametric true covariate distribution

We now relax the normality assumption for true log-fiber intake on which the previous
analyses have relied. Assuming the data are still as we left them in the previous section,
we can estimate a discrete true covariate distribution with three masses using gllamm

with the ip(f) and nip(3) options:

. eq load: _dmeas _d1

. eq f1: _bus cons
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. gllamm _r _bus_d1 _d1, /*
> */ i(_id) nocons eqs(load) link(logit ident) family(binom gauss) /*
> */ fv(_type) lv(_type) geqs(f1) ip(f) nip(3)

(output not shown).

To see if a fourth mass can be added, we next specify nip(4) and use the gateaux()
and lf0() options. In the gateaux() option we specify the minimum, maximum and
number of steps for the search for a new mass location. In the lf0() option, we
specify the number of parameters and log-likelihood of the three-mass model. The
latter is necessary so that gllamm can check whether the log-likelihood increases when
a tiny fourth mass is placed at any of the locations tried in the search. The necessary
commands are:

. matrix a=e(b)

. local k = e(k)

. local ll = e(ll)

. gllamm _r _bus_d1 _d1, /*
> */ i(_id) nocons eqs(load) link(logit ident) family(binom gauss) /*
> */ fv(_type) lv(_type) geqs(f1) ip(f) nip(4) lf0(‘k’ ‘ll’) /*
> */ gateaux(-2 2 1000)

(output not shown).
At the end of the search, gllamm prints

maximum gateaux derivative is 1.9500323

and starts estimating the four-mass model using the location with the greatest increase
in log-likelihood as the starting value for the new location. Increasing the number of
masses this way one by one, the maximum gateaux derivative remains positive until the
8-mass solution is reached, giving the following output:

number of level 1 units = 742
number of level 2 units = 333

Condition Number = 148.23236

gllamm model Number of obs = 333
LR chi2(2) = 0.79

Log likelihood = -177.87417 Prob > chi2 = 0.6751

_r Coef. Std. Err. z P>|z| [95% Conf. Interval]

_bus_d1 -.1832445 .3382886 -0.54 0.588 -.846278 .479789
_d1 -1.855017 .2460202 -7.54 0.000 -2.337208 -1.372827

Variance at level 1
------------------------------------------------------------------------------

.01902727 (.00306924)

Probabilities and locations of random effects
------------------------------------------------------------------------------
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***level 2 (_id)

loc1: -.74544, .01391, .40077, .68476, 1.0856, -.53297, .20197, -.2587
var(1): .07299487

loadings for random effect 1
_dmeas: 1 (fixed)
_d1: -1.9278901 (.70234087)

prob: 0.0216, 0.4474, 0.0982, 0.0146, 0.0062, 0.0341, 0.1515, 0.2264

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 2 covariates:
bus: -.11507202 (.03271296)
cons: .06066323 (.0239785)

------------------------------------------------------------------------------

Up to ‘Probabilities and locations of random effects’ and from ‘Regressions
of latent variables on covariates’, the output has the same format as for a nor-
mally distributed true covariate (see previous section). In between, the estimated loca-
tions êc, c=1, · · · , 8 of the eight masses are listed to the right of loc1:, followed by the
variance of the estimated discrete distribution to the right of var(1):. This variance
is not a model parameter but is derived from the estimated locations and probabilities
using

var(1) =

8∑

c=1

π̂cê
2
c ,

since the mean of the discrete distribution is set to 0,
∑8

c=1 π̂cêc = 0 (only 7 locations

were independently estimated). The estimated factor loading β̂u is then given as for a
continuous true covariate, followed by the estimated probabilities π̂c, c = 1, · · · , 8 to the
right of prob: (to obtain the corresponding log-odds parameters with their standard
errors, as well as standard errors for the location parameters, use gllamm, allc.)

The parameter estimates (except for the locations and probabilities) are given under
‘NPMLE’ in Table 1. It is remarkable how close the estimates are to those obtained
by assuming a normally distributed true covariate (see ‘Direct and indirect effects’ in
Table 1).

The discrete distribution can be displayed graphically using the following sequence
of commands:

. * save locations and log probabilities as variables

. matrix locs=e(zlc2)’

. matrix lp = e(zps2)’

. svmat locs

. svmat lp

. * calculate probabilities

. gen p=exp(lp1)
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Figure 3: Nonparametric true covariate distribution

. * plot masses

. twoway (dropline p locs1), xtitle(Location) ytitle(Probability)

giving the graph in the left panel of Figure 3. Here we have used matrices of locations
and log-probabilities stored in the first (and only) rows of zlcs2 and zps2, respectively.
After transposing these matrices so that the estimates are in the first (and only) columns,
we place the values into new variables locs1 and lp1 using the svmat command. We
then convert the log-probabilities to probabilities p and plot the masses using the twoway
dropline command.

It is also useful to plot the corresponding cumulative distribution together with
that of the normal distribution with zero mean and variance τ̂ 2 = 0.0702 estimated in
Section 3.1:

. * set end-points for cumulative probabilities

. replace locs1 = -1 in 9

. replace p = 0 in 9

. replace locs1 = 1.1 in 10

. replace p = 0 in 10

. * calculate cumulative probabilities

. sort locs1

. gen cump = sum(p)

. * plot cumulative probabilities

. twoway (line cump locs1, connect(stairstep)) /*
> */ (function y=norm(x/sqrt(.0702)), range(-1 1)), /*
> */ xtitle(Location) ytitle(Cumulative probability) /*
> */ legend(order(1 "NPMLE" 2 "Normal"))

giving the graph in the right panel of Figure 3. Here we first create two artificial masses
at -1 and 1.1 with zero probabilities so that the cumulative distribution will start at 0
and finish at 1. We then sort the locations and calculate the cumulative probabilities
using the sum() function. The twoway line command with the connect(stairstep)
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option creates the stair-shaped plot for the discrete cumulative distribution and the
twoway function command combined with the norm() function produces a smooth
curve for the normal cumulative distribution function with the required variance.

The estimated discrete distribution resembles the normal distribution. This may
be the reason why the NPML estimates so closely resemble those assuming normality.
In Rabe-Hesketh et al. (2003), raw fiber was also analyzed, giving a skewed nonpara-
metric distribution for true fiber and greater differences between the NPML estimates
and those assuming normality. Rabe-Hesketh et al. (2003) also carried out simulations
to investigate the performance of parameter estimates and empirical Bayes predictions
for both NPMLE and assuming normality when the true covariate distribution is either
normal or skewed.

It is worth noting that a syntax very similar to that used in this section would be
used to specify a latent class model with two classes when the true covariate as well as
the measurements are dichotomous:

. gllamm _r _bus_d1 _d1, i(_id) nocons eqs(load) /*
> */ link(logit) family(binom) peqs(f1) ip(f) nip(2)

3.3 Congeneric measurement model

Returning to a normally distributed true covariate, we now extend the measurement
model to the congeneric measurement model in (4) and estimate this model using
gllamm. However, the congeneric model is not identified with only two measurements
of log-fiber and we will therefore simulate data resembling the CHD data but with
three measures of log-fiber. Defining dummy variables d2ij to d4ij for the measures of
log-fiber, the model can be written as

g(µij) = d1ijβ0 + dmijµ + d3ijα2 + d4ijα3

+ ui(λ1d2ij + λ2d3ij + λ3d4ij + λ4d1ij), λ1 = 1

=





β0 + uiλ4 if j = 1 (CHD)
µ + ui if j = 2 (measure 1)
µ + α2 + uiλ2 if j = 3 (measure 2)
µ + α3 + uiλ3 if j = 4 (measure 3)

. (7)

Here a constant µ is now included in the measurement model and we must therefore
omit the constant γ0 in the true covariate model:

. eq f1: bus

Note that it is advisable to include constants in the response model instead of the
structural model when no starting values are provided for gllamm.

To allow for different measurement error variances σ2
j , we model the log of the ‘level

1’ standard deviation sij as

ln(sij) = δ1d2ij + δ2d3ij + δ3d4ij , σ2
j = exp(2δj).
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To simulate the data, we first create new observations for the third measurement of
log-fiber by replicating the records representing the second measurement ( var=3)

. expand 2 if _var==3

We need separate dummy variables d2, d3 and d4 for the three measures:

. qui tab _var, gen(d)

. bysort _id _var: gen d4 = _n==2

. replace d3=0 if d4==1

The first command only generates three dummy variables d1 to d3 since var equals 3
for both the second and third measures. Each subject therefore has two observations
with d3=1. In the second and third commands we set d4 to 1 and d3 to 0 for one of
these observations.

We can now specify the model we wish to simulate from using the gllamm command,
preventing gllamm from estimating the model using the eval option which instructs
gllamm to merely evaluate the log-likelihood.

First specify the linear predictor d2ij +λ2d3ij +λ3d4ij +λ4d1ij multiplying ui using

. eq load: d2 d3 d4 d1

where d2 is given first since the first factor loading λ1 equals 1. Then specify the linear
predictor δ1d2ij + δ2d3ij + δ3d4ij for the log standard deviation using

. eq het: d2 d3 d4

The latter is passed to gllamm using the s() option:

. matrix a=J(1,12,0) /* matrix with 12 columns, all elements equal to 0 */

. qui gllamm _r d1 _dmeas d3 d4, /*
> */ i(_id) nocons eqs(load) link(logit ident) family(binom gauss) /*
> */ fv(_type) lv(_type) geqs(u1) s(het) from(a) copy eval

Although no model has not been estimated, ‘estimates’ have been stored and the pa-
rameter matrix with values as specified in the from() option can be obtained using

. matrix a=e(b)

. matrix list a

a[1,12]
_r: _r: _r: _r: lns1: lns1: lns1:
d1 _dmeas d3 d4 d2 d3 d4

y1 0 0 0 0 0 0 0

_id1_1l: _id1_1l: _id1_1l: _id1_1: u1:
d3 d4 d1 d2 bus

y1 0 0 0 0 0

We can now specify the parameter values of the model from which we wish to simulate
in the order required by the simulation command gllasim (same order as for gllamm):

. * Intercept for CHD: β0

. matrix a[1,1] = -2
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. * Mean of measure 1: µ

. matrix a[1,2] = 3

. * Bias parameters: αj

. matrix a[1,3] = 1 /* measure 2 */

. matrix a[1,4] = -1 /* measure 3 */

. * Log(sd) parameters: δj

. matrix a[1,5] = -2 /* measure 1 */

. matrix a[1,6] = -2 /* measure 2 */

. matrix a[1,7] = -1 /* measure 3 */

. * Factor loadings: λj

. matrix a[1,8] = 1.5 /* measure 2 */

. matrix a[1,9] = 2 /* measure 3 */

. matrix a[1,10] = -2 /* βu */

. * True covariate sd: τ

. matrix a[1,11] = 0.3

. * Effect of bus on true covariate: γ1

. matrix a[1,12] = -0.2

We now set the random number seed (to allow replication) and simulate responses for
the full sample (instead of the previous estimation sample) from the model specified in
the previous gllamm command but with parameters from a using:

. set seed 131123

. gllasim r, fsample from(a)

The parameters can then be estimated using the same gllamm command as before:

. gllamm r _d1 _dmeas d3 d4, /*
> */ i(_id) nocons eqs(load) link(logit ident) family(binom gauss) /*
> */ fv(_type) lv(_type) geqs(u1) s(het) adapt

Running adaptive quadrature
Iteration 1: log likelihood = -677.30613
Iteration 2: log likelihood = -458.65378
Iteration 3: log likelihood = -419.96371
Iteration 4: log likelihood = -410.83011
Iteration 5: log likelihood = -410.55348
Iteration 6: log likelihood = -410.55324

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -410.55324
Iteration 1: log likelihood = -410.55324

number of level 1 units = 1332
number of level 2 units = 333

Condition Number = 46.814881

gllamm model

log likelihood = -410.55324

r Coef. Std. Err. z P>|z| [95% Conf. Interval]

_d1 -1.997545 .2007127 -9.95 0.000 -2.390935 -1.604155
_dmeas 3.043896 .026312 115.68 0.000 2.992325 3.095467
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d3 1.0229 .0176837 57.84 0.000 .9882403 1.057559
d4 -.9608751 .0352518 -27.26 0.000 -1.029967 -.8917829

Variance at level 1
------------------------------------------------------------------------------

equation for log standard deviation:

d2: -1.9827443 (.06099411)
d3: -1.8834334 (.09502256)
d4: -1.0093654 (.04794215)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (_id)

var(1): .09123715 (.00840143)

loadings for random effect 1
d2: 1 (fixed)
d3: 1.5103875 (.04910599)
d4: 2.0653678 (.08170733)
d1: -1.5363324 (.51209769)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 1 covariates:
bus: -.24193129 (.03478306)

------------------------------------------------------------------------------

The estimates are quite close to the true values and stay the same (to about four decimal
places) when 12-point quadrature is used. Assuming equal measurement error variances
and factor loadings but retaining the bias parameters αj , the log-likelihood decreases

substantially from -410.55 to -686.85 (12-pt adaptive quadrature) and the estimate β̂u

of the effect of the true covariate is attenuated from −1.54 (0.51) to −1.04 (0.35), the
true value being −2.

4 Discussion

We have developed the gllamm wrapper cme which makes estimation of an important
class of generalized linear covariate measurement error models extremely easy while
making use of the reliable adaptive quadrature method provided by gllamm. The wrap-
per will also produce the commands necessary to manipulate the data and estimate
the model in gllamm, which should be useful for learning to use gllamm. The gener-
ated commands can subsequently be modified to extend the model or to use gllamm’s
post-estimation commands gllapred and gllasim for prediction and simulation.

We have also extended the classical covariate measurement error model to relax the
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assumptions that the true covariate is normally distributed and that the fallible mea-
surements of the true covariate are exchangeable replicates with the same measurement
properties.

In addition to dichotomous outcomes and continuous measurements as discussed
here, gllamm can handle continuous, censored, ordinal and nominal responses and rank-
ings (Skrondal and Rabe-Hesketh 2003), as well as continuous and discrete-time du-
rations (Rabe-Hesketh et al. 2001b). Moreover, the measurements may be of mixed
type.

We have discussed only the most common case of a single covariate measured with
error. Models with several imperfectly measured covariates can easily be handled by
gllamm, see also Rabe-Hesketh et al. (2004b). The NPMLE example showed how di-
chotomous true covariates and latent class modeling can be handled in gllamm. However,
at present it is not possible to have both continuous and categorical true covariates in
the same model. When the true covariate is available in a validation sample, the model
can also be estimated in gllamm, see Skrondal and Rabe-Hesketh (2004), Chapter 14, for
an example. gllamm can be used to estimate multilevel generalized linear mixed models
with covariate measurement error. When the outcome has been measured several times,
it can also be useful to construct models for a latent true outcome, see Rabe-Hesketh
et al. (2004b), Skrondal and Rabe-Hesketh (2004) and Rabe-Hesketh et al. (2004a).
Finally, we can allow measurement errors to be correlated (if the model is identified)
using further latent variables.

The gllamm command is also useful for other problems involving latent variables,
such as multilevel random effects models, multilevel structural equation models (includ-
ing factor and item response models), latent class models and multilevel selection and
endogenous treatment models, see Skrondal and Rabe-Hesketh (2004).

Bobby Gutierrez at Stata Corporation has achieved a considerable increase in the
speed of gllamm in January (2003) by converting an important part of gllamm to internal
code. As a result, gllamm is fairly quick for the models estimated in this paper. For
models including many latent variables, gllamm can however still be slow and we are
working on further speed improvements.
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Appendix: Syntax for cme

cme depvar
[
varlist

]
(label: varlist)

[
weight

] [
if exp

] [
in range

] [
, mevar(#)

family(familyname) link(linkname) denom(varname) noconstant

offset(varname) tcovmod(varlist) simple nip(#) noadapt robust
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cluster(varname) indirect total eform level(#) nolog trace

from(matrix)
]

The outcome model is specified by depvar
[
varlist

]
, family(familyname), etc.

The classical measurement model for the true covariate is specified by (label: varlist),
where label is the name of the true covariate (cannot be the same as an existing vari-
able in the data set) and varlist are the fallible (continuous) measurements of the true
covariate. At least two variables are required unless the mevar(#) option is used.

The true covariate model is a linear regression with explanatory variables (observed
covariates)

[
varlist

]
unless the tcovmod(varlist) option is used to specify different ex-

planatory variables.

families links
gaussian identity

poisson log

gamma reciprocal

binomial logit

probit

cll (complementary log-log)
ologit (o stands for ordinal)
oprobit

ocll

Options

mevar(#) specifies the measurement error variance. This option is required if there are
no replicate measurements.

family(familyname) specifies the distribution of depvar; family(gaussian) is the de-
fault.

denom(varname) specifies the binomial denominator for the binomial link when depvar

is the number of successes out of a fixed number of trials.

link(linkname) specifies the link function; the default is the canonical link for the
family() specified.

noconstant specifies that the linear predictor has no intercept term, thus forcing it
through the origin on the scale defined by the link function.

offset(varname) specifies an offset to be added to the linear predictor.

tcovmod(varlist) specifies the observed covariates to be used in the true covariate model;
a constant will automatically be estimated.

simple specifies that there are no observed covariates in the true covariate model.
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nip(#) the number of quadrature points to be used.

noadapt use ordinary quadrature instead of the default adaptive quadrature.

robust specifies that the Huber/White/sandwich estimator of variance is to be used.

cluster(varname) specifies that the observations are independent across groups (clus-
ters), but not necessarily within groups.

commands displays the commands necessary to prepare the data and estimate the model
in gllamm instead of estimating the model. Note that these commands change the
data!

indirect displays the indirect effects of observed covariates on the outcome via the
true covariate - this is shown for all covariates in the true covariate model.

total displays the total effects (indirect effects plus direct effects) of observed covariates
on the outcome via the true covariate - this is shown for all covariates in the true
covariate model.

eform displays the exponentiated coefficients and corresponding standard errors and
confidence intervals.

level(#) specifies the confidence level, in percent, for confidence intervals (default 95).

nolog suppresses the iteration log.

trace requests that the estimated coefficient vector be printed at each iteration. In
addition, all the output produced by gllamm with the trace option is also produced.

from(matrix) specifies a matrix of starting values. Elements must be in the order
required by cme

About the Authors

Sophia Rabe-Hesketh is Professor in the Graduate School of Education, University of California,
Berkeley.

Anders Skrondal is Head of Biostatistics Group, Division of Epidemiology, Norwegian Institute
of Public Health, Oslo.

Andrew Pickles is Professor of Epidemiological and Social Statistics at the School of Epidemi-

ology and Health Science & CCSR, The University of Manchester.


