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ABSTRACT

We describe generalized linear latent and mixed models (GLLAMMs) and illustrate their potential
in epidemiology. GLLAMMs include many types of multilevel random effect, factor and structural
equation models. A wide range of response types are accommodated including continuous, dichoto-
mous, ordinal and nominal responses as well as counts and survival times. Multivariate responses
can furthermore be of mixed types. The utility of GLLAMMs is illustrated in three applications
involving repeated measurements, measurement error and multilevel data.

INTRODUCTION

In this article we describe generalized linear latent
and mixed models (GLLAMMs) and illustrate their
potential in epidemiology.

We begin by briefly describing ‘generalized lin-
ear models’ (1) which encompass common epidemio-
logical tools such as linear regression, dichotomous
logistic regression and Poisson regression. Subse-
quently, we outline ‘generalized linear mixed models’
(2) where random effects are included in generalized
linear models. These models are called mixed since
both fixed and random effects are incorporated. Al-
though generalized linear mixed models are undoubt-
edly useful, it turns out that this framework is too
limited for some applications, including many in epi-
demiology.

This was our motivation (3,4) for extending gen-
eralized linear mixed models to the class of ‘gener-
alized linear latent and mixed models’ (GLLAMM).
GLLAMMs include many types of latent variables
varying at different levels such as random effects,
common factors and latent classes. Latent variables
can be regressed on covariates and other latent vari-
ables. A wide range of response types are accom-
modated including continuous, dichotomous, ordinal
and nominal responses as well as counts and sur-
vival times (discrete and continuous). Multivariate
responses can furthermore be of mixed type, some
responses may for instance be continuous and others
dichotomous.

The utility of GLLAMMs is illustrated in three
applications: logistic regression for repeated mea-
surement data (course of illness in schizophrenia),
logistic regression with covariate measurement er-
ror (diet and coronary heart disease), and multilevel

modelling of nominal data (abuse of antibiotics).

GENERALIZED LINEAR MODELS

Let yi be the response and xi explanatory variables
or covariates for unit i, and define the conditional
expectation of the response given the covariates as
µi, i.e. µi ≡ E[yi|xi].

Generalized linear models are specified as

g(µi) = x′iβ = νi, (1)

where the linear combination νi = β0 +β1xi1 + · · · =
x′iβ is called the ‘linear predictor’ and β are fixed
effects. g is a ‘link function’, linking the expected re-
sponse µi to the linear predictor νi. The specification
is completed by choosing a conditional distribution
for the responses yi given the covariates xi, f(yi|xi),
from the exponential family of distributions.

Links and distributions
Some of the links and distributions that can be com-
bined for generalized linear models are:

Links:
identity
reciprocal
logarithm
logit
probit
compl. log-log

Distributions:
normal
gamma
Poisson
binomial

Common special cases
Linear regression

Continuous outcomes are sometimes encountered in
epidemiology, for instance birthweight in perinatal
epidemiology. The conventional linear regression
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model for continuous responses results from combin-
ing the identity link, g(µi) = µi, with the normal
distribution:

µi = νi, (2)

yi|xi ∼ N(νi, σ
2). (3)

Logistic regression

Dichotomous responses are legion in epidemiology,
the archetypical example being disease (1:present,
0:absent). The expectation of a dichotomous re-
sponse yi is just the probability that yi = 1, i.e.
µi = Pr(yi =1|xi). The logistic regression model for
dichotomous responses results from combining the
bernoulli distribution (binomial with N = 1) with
the logit link:

ln
(

µi

1− µi

)
= νi.

An equivalent way of formulating the logistic regres-
sion model is often useful. This approach, which ap-
pears to be unfamiliar to most epidemiologists, ex-
press logistic regression as a latent response model
(4). Here, we consider a linear regression model for
a continuous latent response or underlying variable
y∗i (called ‘liability’ in genetics),

y∗i = νi + εi,

where the residual εi has a logistic distribution with
zero mean and variance π2/3. The dichotomous ob-
served response yi is simply related to the continuous
latent response y∗i via a threshold model

yi =
{

1 if y∗i > 0
0 otherwise.

We cannot resist pointing out that some epidemi-
ologists tend to dichotomize any outcome variable,
a practice that should be avoided. It should also
be noted that other approaches than logistic regres-
sion, such as linear risk models with an identity link,
have been advocated for dichotomous responses in
epidemiology (5).

Poisson regression

Epidemiologists using cohort designs are often inter-
ested in studying the incidence rates of diseases or
other outcomes. The conventional Poisson regression
model for counts and rates results from combining
the log link with the Poisson distribution:

ln µi = νi,

Pr(yi |xi) =
exp(−µi)µ

yi

i

yi!
.

GENERALIZED LINEAR MIXED MODELS

A crucial assumption of generalized linear models is
that the responses of different units i are independent
given the covariates xi. Unfortunately, this assump-
tion is often unrealistic since data are frequently of
a multilevel nature with units i nested in clusters j.
Examples of such two-level designs include repeated
measurements (units) nested in subjects (clusters) or
subjects (units) nested in families (clusters). There
will often be unobserved heterogeneity at the clus-
ter level representing confounders that are omitted
either because they cannot be measured or because
their existence is unknown. The unobserved hetero-
geneity induces dependence among the units, even
after controlling for observed heterogeneity (covari-
ates) at the unit and cluster levels.

The combined effect of all unobserved cluster-level
covariates is modeled by including random effects
eta

(2)
mj in the linear predictor which take on the same

value for all units in the same cluster

g(µij) = νij = x′ijβ︸︷︷︸
Fixed part

+
M−1∑
m=0

η
(2)
mjz

(2)
mij

︸ ︷︷ ︸
Random part

. (4)

Here, µij ≡ E[yij |xij , z
(2)
ij , η

(2)
j ] where η

(2)
j =

(η(2)
0j , · · · , η(2)

M−1,j)
′ are random effects varying at level

2 and z(2)
ij corresponding covariates. Specifically, η

(2)
mj

is a random effect of covariate z
(2)
mij for cluster j. It is

typically assumed that the random effects are multi-
variate normal,

η
(2)
j ∼ N(0,Ψ(2)).

Common special cases
Random intercept model

The simplest generalized linear mixed model is the
random intercept model where M =1 and z

(2)
0ij =1,

νij = x′ijβ + η
(2)
0j . (5)

Here, η
(2)
0j is a random intercept, allowing the overall

level of the linear predictor to vary between clusters
j over and above the variability explained by the
covariates xij .

Random coefficient model

Letting M =2, z
(2)
0ij =1 and z

(2)
1ij be a unit-specific co-

variate, we obtain a model with a random coefficient
in addition to a random intercept

νij = x′ijβ + η
(2)
0j + η

(2)
1j z

(2)
1ij . (6)

The model could of course include several random
coefficients. Usually x

(2)
1ij = z

(2)
1ij , implying that β1

represents the mean effect and η
(2)
1j cluster-specific

random deviations from this mean effect. While ran-
dom intercepts can be thought of as main effects of
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omitted covariates, random coefficients represent in-
teractions between omitted and included covariates.
Here, η

(2)
1j is a random coefficient, allowing the ef-

fects of z
(2)
1ij to vary between clusters j. In repeated

measurement modelling, z
(2)
1ij would typically repre-

sent time, so that the rate of change of the response
over time (the slope) can vary between subjects. The
model can be further extended to include quadratic
components (z(2)

1ij)
2 and higher order polynomials.

Truly multilevel models
Data are often ‘truly’ multilevel with more than two
hierarchical levels. For instance, children i (level 1)
may be nested in doctors j (level 2) who are nested in
hospitals k (level 3), as in an application considered
later. In the repeated measurement setting we could
have measurement occasions i (level 1) nested in sub-
jects j (level 2) who are nested in families k (level 3).
We would expect dependence between different sub-
jects in the same family, which can be modeled by in-
troducing family-level random effects. However, the
dependence should be even higher among different
responses for the same subject, which can be mod-
eled by using subject-level random effects (in addi-
tion to the family-level effects).

A generalized linear mixed model for three-level
data can be written as

g(µijk) = νijk = (7)

x′ijkβ︸ ︷︷ ︸
Fixed part

+
M2−1∑
m2=0

η
(2)
m2jkz

(2)
m2ijk

︸ ︷︷ ︸
Level-2 random part

+
M3−1∑
m3=0

η
(3)
m3kz

(3)
m3ijk.

︸ ︷︷ ︸
Level-3 random part

Here, µijk ≡ E[yijk|xijk, z(2)
ijk, z(3)

ijk, η
(2)
jk , η

(3)
k ] where

η
(2)
jk = (η(2)

0jk, · · · , η(2)
M2−1,jk)′ are level-2 random ef-

fects with corresponding covariates z(2)
ijk and η

(3)
k =

(η(3)
0k , · · · , η(3)

M3−1,k)′ are level-3 random effects with

corresponding covariates z(3)
ijk.

The random effects at each level are multivariate
normal,

η
(2)
jk ∼ N(0,Ψ(2)),

η
(3)
k ∼ N(0,Ψ(3)),

and assumed to be independent across levels. If re-
quired, the model can easily be extended to four or
more hierarchical levels.

GENERALIZED LINEAR LATENT AND
MIXED MODELS (GLLAMMs)

Although generalized linear mixed models are very
useful, the framework is too limited for many prob-
lems in epidemiology. GLLAMMs therefore provide
five extensions to generalized linear mixed models
(where we refer to η as latent variables, including
random effects, factors, etc.):

1. Multilevel factor structures

2. Multilevel structural equations, regressing la-
tent variables on other latent variables and co-
variates

3. Discrete latent variables

4. Additional response types

5. Responses of mixed types

Multilevel factor structures
In equation (4) each random effect multiplies a single
covariate. GLLAMMs allow each random effect to
multiply a linear combination of covariates. Consider
a two-level model

g(µij) = νij = x′ijβ︸︷︷︸
Fixed part

+
M−1∑
m=0

η
(2)
mjλ

(2)
m
′z(2)

mij

︸ ︷︷ ︸
Random part

, (8)

where z(2)
mij is a vector of covariates with correspond-

ing vector of coefficients, called factor loadings, λ(2)
m .

For identification, the first coefficient λ
(2)
m1, is set to

one. Note that the model reduces to a generalized
linear mixed model if z(2)

mij is a scalar for all m.
This extension of the generalized linear mixed

model allows factor models to be incorporated in
multilevel models. Here (some of) the level-one units
are the response variables of the factor model and the
z(2)

mij are dummy variables that assign factor loadings
to the appropriate responses.

The basic idea of factor models is that one or
more unobserved variables, latent traits or factors
‘explain’ the dependence between different observed
measurements for a subject, in the sense that the
measurements are conditionally independent given
the factor(s). We now consider a number of subjects
j providing yes/no responses to a set of measure-
ments or ‘items’ i, for instance to ascertain asthma
among children with symptoms such as wheezing,
heavy breathing and coughing at night. By regard-
ing the symptoms as nested in children, a logit factor
model relating the probability of having a symptom
to a single factor η

(2)
1j , interpretable as the childrens’

unobserved severity of asthma, can be defined as

logit(µij) = x′ijβ + η
(2)
1j λ

(2)
1
′z(2)

1ij

= βi + η
(2)
1j λ

(2)
1i , (9)

where xij and z(2)
1ij are vectors whose ith element

equals 1 and all other elements equal 0. The ‘factor’
η
(2)
1j represents the ‘true asthma’ of the jth child,

βi reflects the relative prevalence of the ith symp-
tom and λ

(2)
1i , the factor loading, reflects how well

the ith symptom discriminates between children with
different severities of asthma. This model is also
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known as a two-parameter item response model, ‘two-
parameter’ referring to βi and λ

(2)
1i for each item i.

If there are several children nested in families, fur-
ther latent variables could be added at the family
level (level 3). Another example where factor mod-
els are useful is for repeated fallible measurements of
nutrients, an application we will return to in a later
section.

A more general ‘two-level’ (here three-level due to
variables being considered level 1 units) factor model
would allow different factor structures at the two lev-
els. Such a model has been used for attitudes to
abortion (3), where questionnaire items were nested
in subjects who were nested in polling districts. Note
that the practice of substituting different kinds of
‘scores’ for factors in multilevel modeling should be
abandoned since this will in general preclude valid
statistical inference (6).

Multilevel structural equations
As an example of the use of structural equations,
consider the item response model in equation (9).
If there are several children nested in families k,
‘true asthma’ may depend on child-specific covariates
(e.g. age, w1jk) and family-level covariates (e.g. pres-
ence of a pet, w2k), and there may be residual het-
erogeneity between families represented by η

(3)
1k , for

instance of a genetic nature. Using indices i, j, k for
symptoms, children and families, respectively, we can
write the ‘measurement model’ as

logit(µijk) = x′ijkβ + η
(2)
1jkλ

(2)
1
′z(2)

1ijk, (10)

and add the ‘structural equation model’

η
(2)
1jk = η

(3)
1k + γ11w1jk + γ12w2k + ζ

(2)
1jk. (11)

In general, GLLAMMs allow latent variables (ran-
dom coefficients and/or factors) to be regressed on
other latent variables (random coefficients and/or
factors) and covariates (3,4). It is important to
note that GLLAMMs extend conventional structural
equation models (7) by permitting latent variables to
be regressed on same or higher level latent variables.

Discrete latent variables
For two-level models, the latent variables can have
a discrete distribution with non-zero probability at
a finite number of points (of dimensionality equal
to the number of random effects). This is useful if
the level 2 units are believed to fall into a number
of groups or ‘latent classes’ within which the latent
variables do not vary (8). For instance, such a for-
mulation seems natural for medical diagnosis of say
myocardial infarction where it is presumed that the
patient is either ill or not ill, but the physician must
resort to several fallible indicators of disease. For the
case of depression, however, it might be more natu-
ral to view the disease as having different degrees of
severity, consistent with a continuous illness distri-
bution.

If the number of latent classes, or masses, is chosen
to maximize the likelihood, the nonparametric maxi-
mum likelihood estimator (NPMLE) can be achieved
(9,10). Importantly, this approach enables us to
relax the assumption of multivariate normal latent
variables and thus makes our inferences more robust.
We consider the use of NPMLE in our covariate mea-
surement error application.

Additional response types
In addition to the response types typically consid-
ered in generalized linear mixed models, GLLAMMs
accommodate several additional response types and
links.

An ordinal response is one among a set of cate-
gories with a common a priori ordering. An example
is severity of illness in terms of the categories ‘ab-
sent’, ‘mild’, ‘moderate’ and ‘severe’. The following
links can be used for ordinal responses:

Ordinal responses:
ordinal logit
ordinal probit
ordinal compl. log-log
scaled ord. probit

Nominal responses are in terms of categories which
do not have a common a priori ordering. A polyto-
mous response is one among a set of unordered cate-
gories. For instance, the subject may be asked which
contraceptive was used (if any) during the last sexual
intercourse. Rankings involve ordering of categories,
for instance a patient’s preference ordering of differ-
ent drugs for a specific condition. The following link
is available for nominal responses:

Polytomous & Rankings:
multinomial logit

Responses of mixed types
Different links and families can be combined for
multivariate responses of mixed type. One ex-
ample would be the modelling of asthma, where
some symptoms could be ascertained as di-
chotomous (present/absent), some as ordinal (se-
vere/mild/absent) and others as counts (number of
episodes). Handling mixed responses is also neces-
sary for modeling joint processes, for instance joint
modeling of survival and repeated measurements
(11) or hospital delivery and child mortality (12).
The possibility of specifying models with mixed re-
sponses also turns out to be required for our covariate
measurement error application.

IMPLEMENTATION

All models in the GLLAMM framework can be es-
timated using the program gllamm (13). This pro-
gram, written in Stata (14), implements maximum
likelihood estimation and empirical Bayes prediction
for GLLAMMs. Numerical integration by adaptive
Gauss-Hermite quadrature (15) is used to integrate
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out the latent variables and obtain the marginal
log-likelihood. This log-likelihood is maximized by
Newton-Raphson using numerical first and second
derivatives. Empirical Bayes predictions are poste-
rior means of the latent variables given the observed
responses with the parameter estimates plugged in.
These predictions have many uses, for instance in
predicting ‘true’ exposure in covariate measurement
error models, plotting growth trajectories for individ-
ual units in longitudinal data and in model diagnos-
tics. Both posterior means and posterior standard
deviations are obtained by numerical integration us-
ing adaptive quadrature.

Monte Carlo experiments (16) have been per-
formed to investigate our maximum likelihood
methodology. The performance of adaptive quadra-
ture was good in all cases, larger numbers of quadra-
ture points being required for more difficult situa-
tions (17). Comparing gllamm with other software
(using e.g. IGLS, PQL, MCMC and quadrature)
good agreement was found between parameter es-
timates, standard errors and log-likelihood values
(13,15). The exceptions were cases where simulation
or parametric bootstrapping demonstrated that PQL
produced biased estimates in contrast to quadrature
(13,18,19).

MISSING DATA

The GLLAMM framework treats the variables of a
multivariate response as level-1 units, thereby auto-
matically handling unbalanced designs, for instance
due to missing data. Maximum likelihood produces
valid inferences when data are missing at random
(MAR), where the probability of a response being
missing (given the covariates) may depend on other
observed responses but not on missing responses
(20). Importantly, the stronger assumption of data
missing completely at random (MCAR), where the
probability of missingness (given the covariates) nei-
ther depends on observed nor missing responses,
need not be invoked. Furthermore, missing data that
are not MAR can be handled in GLLAMM by explic-
itly modeling the missingness mechanism (21).

SOME APPLICATIONS IN
EPIDEMIOLOGY

We describe some applications of GLLAMMs in or-
der to illustrate the potential of this methodology
for epidemiological research. However, we do not
purport to exhaust the types of applications that are
likely to be useful in epidemiology. Furthermore, it
should be appreciated that our applications are sim-
plified for didactic reasons.

Logistic regression for repeated measure-
ments: Course of illness in schizophrenia
The Madras Longitudinal Schizophrenia Study (22)
followed up 86 patients monthly after their first hos-
pitalization for schizophrenia. An important ques-

tion is whether the course of illness differs between
men and women and between patients with early
and late onset. Here we consider a subset of data
previously analyzed (23), namely data on whether
thought disorder was present or not at 0, 2, 6, 8 and
10 months after hospitalization.

Performing a complete-case or ‘listwise’ analysis
would discard the information from 16 patients con-
tributing a total of 45 responses (out of the sched-
uled 96). This will obviously lead to reduced power
but more importantly produce biased estimates un-
less the measurements are missing completely at ran-
dom (MCAR).

The variables are:

• [y]: dummy variable for thought disorder (1:
present, 0: absent)

• [Month]: number of months since first hospital-
ization

• [Man]: dummy for patient being a man (1: man,
0: woman)

• [Early]: dummy for early onset (1: before age
20, 0: at age 20 or later)

Following the approach adopted in (23), we will esti-
mate a dichotomous logistic regression model with
thought disorder [y] as response and explanatory
variables [Month], [Man], [Early] and the interactions
[Man]×[Month] and [Early]×[Month]. This model
allows us to investigate the linear trend (on the logit
scale) of time as well as differences between genders
and between times of onset, not just in the overall
odds of thought disorder but also in the trend over
time.

Let yij be the repeated measurement of thought
disorder at occasion i for patient j. To model the
dependence among the repeated measurements of
thought disorder (given the covariates) we can in-
clude a patient-specific random intercept η0j , giving
the model

ln
Pr(yij = 1|xij , η0j)
Pr(yij = 0|xij , η0j)

= x′ijβ + η0j ,

where η0j is normally distributed with zero mean.
The inclusion of η0j allows the overall logit of thought
disorder to vary over patients, even after controlling
for the covariates xij (due to omitted patient-specific
covariates).

The random intercept logistic regression model can
equivalently be expressed as a latent response model,

y∗ij = x′ijβ + η0j + εij ,

where the random intercept η0j is now included. The
dichotomous observed response is related to the la-
tent response via a threshold model as previously
specified for conventional logistic regression. The la-
tent response formulation is useful for investigating
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Table 1: Repeated measurements of thought disorder –
Estimates for dichotomous logistic regressions with ran-
dom intercept and with random intercept and random
slope for [Month]

Random Random
intercept coefficient
model model

Est (SE) Est (SE)

Fixed part

β0 [Cons] 0.71 (0.41) 1.00 (0.63)
β1 [Month] -0.37 (0.07) -0.46 (0.12)
β2 [Man] -0.25 (0.57) -0.23 (0.84)
β3 [Man]×[Month] -0.14 (0.11) -0.19 (0.16)
β4 [Early] 1.19 (0.62) 1.56 (0.91)
β5 [Early]×[Month] -0.19 (0.11) -0.24 (0.16)

Random part

var(η0j) 2.60 (0.91) 8.44 (3.58)
var(η1j) – 0.18 (0.09)
cov(η1j , η0j) – -0.97 (0.52)

Log-likelihood -217.32 -210.81

the properties of logistic regression models with la-
tent variables (24,4). For instance, the strength of
the residual within-patient dependence can be ex-
pressed by the intra-class correlation for the repeated
latent responses

ρ = cor(y∗ij , y
∗
i′j |xij ,xi′j) =

var(η0j)
var(η0j) + π2/3

.

The estimates for the random intercept model are
given in Table 1. The odds of thought disorder de-
crease over time in late-onset women with an esti-
mated odds ratio of exp(−0.37) = 0.69 per month.
Early onset patients seem to have a higher odds of
thought disorder at first hospitalization (odds ratio
exp(1.19) = 3.28). Interestingly, it also appears as
if early onset patients have a greater decline in their
odds of thought disorder over time. The intra-class
correlation is estimated as ρ̂ = 0.44, demonstrating
that those having a higher than expected (lower) risk
of thought disorder on one occasion tend to have a
higher (lower) risk at other occasions, taking into ac-
count the covariates.

The random intercept model assumes that the
logit of thought disorder declines at the same rate
over time for all patients with the same covariate
values. Since this may be unrealistic, we now allow
these rates to vary randomly between patients by in-
cluding a random slope η1j of [Month] in the model,
giving the random coefficient model

ln
Pr(yij = 1|xij , z1ij , η0j , η1j)
Pr(yij = 0|xij , z1ij , η0j , η1j)

= x′ijβ+η0j+η1jz1ij ,

where z1ij represents [Month]. The random intercept
η0j and slope η1j are bivariate normally distributed
with zero means.

Estimates for the random coefficient model are re-
ported in Table 1. The change in log-likelihood sug-
gests that the random slope should be included in the
logistic regression model. Overall, the fixed effects
estimates are quite similar to those for the random
intercept model. The random slope variance is esti-
mated as 0.18 and the covariance between intercept
and slope as −0.97, corresponding to a correlation
of −0.78. Therefore those at higher risk of thought
disorder at the time of hospitalization experience a
greater reduction in their risk over time than those
at lower risk. It is important to note that the ran-
dom intercept variance and the correlation between
the random intercept and coefficient are interpreted
at [Month]=0. (Subtracting 5 months from [Month]
yields an estimated correlation close to zero).

To gain more insight into the model, we have plot-
ted the conditional or subject-specific probabilities of
thought disorder given various values of the random
intercept (±3) and slope (±0.4) for women with early
onset. These are shown as dashed curves in Figure 1
where the dotted curve is the conditional probability
for random intercept and slope both equal to their
population means of zero, thus representing a ‘typ-
ical’ individual. Also shown as a solid bold curve
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Figure 1: Conditional and marginal predicted proba-
bilities of thought disorder for women with early onset.
Dotted curve for conditional probability from random co-
efficient model when both random intercept and slope are
zero.

is the population average or marginal probability of
thought disorder obtained by integrating the condi-
tional probability over the random effects distribu-
tion. Note that the population average curve is con-
siderably flatter than that of a typical patient. Such
attenuation of the effects of covariates in marginal
models compared with conditional models is a well-
known phenomenon for dichotomous responses (25).

Generalized estimating equations (GEE), see e.g.
(26), are often used for estimating marginal rela-
tionships in longitudinal data. Using GEE with an
‘exchangeable’ correlation structure, the estimated
effect of [Month] becomes −0.26, attenuated com-



GLLAMM 271

pared with −0.37 and −0.46 for the random in-
tercept and random coefficient models, respectively.
Figure 2 shows the population average probability
curves for GEE and the random intercept and ran-
dom coefficient models. As might be expected, all
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Figure 2: Marginal predicted probabilities of thought
disorder for women with early onset from random effects
models and GEE.

three marginal curves nearly coincide.

Finally, some comments on random effects mod-
eling versus GEE are in order. GEE is an estima-
tion method for clustered data where the dependence
within clusters is treated as a nuisance. The merit of
GEE is that valid inferences are produced for popu-
lation average effects as long as the mean structure
is correctly specified, even if the dependence struc-
ture is misspecified. It should be noted that random
effects models can also be made more robust by us-
ing nonparametric maximum likelihood estimation
(NPMLE), see the following section.

GEE has a number of severe limitations as com-
pared to random effects modeling that are often not
recognized. No insight is gained regarding individual
trajectories of change in contrast to random effects
modeling. In fact, longitudinal information is not ex-
ploited at all since estimation proceeds as if the data
were repeated cross-sections (27). It is also evident
that causal processes necessarily operate at the sub-
ject level so that subject-specific effects are required
for etiological inference. In contrast, population av-
erage effects are merely descriptive and largely deter-
mined by the degree of heterogeneity in the popula-
tion. Finally, GEE is not based on a statistical model
which precludes likelihood based inference and can
lead to logical inconsistencies.

Commands for estimating the random effects mod-
els in gllamm are given in the Appendix. More details
on how to obtain the estimates, predictions and plots
shown in this section are provided in (28).

Logistic regression with covariate measure-
ment error: Diet and heart disease
We consider data from an investigation of the re-
lationship between diet and coronary heart disease
(30). At the time of recruitment, 337 middle-aged
men weighed their food intake over a 7-day period,
allowing food constituents to be derived. A subsam-
ple of 76 of the men repeated this 6 months later, and
all the men were then followed up for heart disease.
We will estimate the effect of dietary fibre intake on
heart disease, controlling for occupation. The rele-
vant variables are:

• [Chd]: dummy variable for coronary heart dis-
ease (1: present, 0: absent)

• [Lfibre1]: log of dietary fibre intake (grams/day)
at first occasion

• [Lfibre2]: log of dietary fibre intake (grams/day)
at second occasion

• [Bus]: dummy for man working for London
Transport (1: London Transport, 0: bank staff)

Following Clayton (30), we view covariate mea-
surement error models as composed of three submod-
els: [1] a disease model, [2] a measurement model
and [3] an exposure model. Since we have different
response types for unit j; continuous measurements
of log dietary fibre intake y1j and y2j and dichoto-
mous coronary heart disease y3j , we need a model
handling multivariate responses of mixed types.

As disease model, we consider a logistic regression
model for [Chd] (y3j) with a latent (‘unobserved’ or
‘true’) covariate ηj ,

ln
Pr(y3j = 1|xj)
Pr(y3j = 0|xj)

= β0 + β1xj + ηjλ. (12)

One of the covariates, [Bus] (xj), is perfectly mea-
sured or ‘observed’ and has a direct effect β1 on the
logit. The other covariate, ‘true log fibre intake’ (ηj),
is latent and measured with error. The factor load-
ing λ represents the regression coefficient for true log
fibre intake.

We specify a classical measurement model relating
measured log fibre intake yij to true log fibre intake
ηj :

yij = ηj + εij , (13)

where the measurement error εij has a normal dis-
tribution with mean zero. True log fibre intake was
measured by y1j for all men at the first occasion.
At the second occasion measures y2j were missing
for many of the men. The repeated measurements
for a man are assumed to have the same mean as
the true covariate for that man. The measurement
errors εij are specified as independently normally dis-
tributed with zero mean and constant measurement
error variance and are independent of the true covari-
ate ηj . It follows that the measurements are condi-
tionally independent of one another given the true
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Figure 3: Path diagram with direct and indirect effects
of [Bus] on [Chd] via true fibre intake.

covariate. Furthermore, the measurements are con-
ditionally independent of the outcome y3j given the
true covariate, a property known as nondifferential
measurement error.

To complete specification of the covariate mea-
surement error model, we need to define an exposure
model

ηj = γ0 + γ1xj + ζj , (14)

where the covariate [Bus] affects true log fibre intake
and the residual or ‘disturbance’ ζj has a normal
distribution with mean zero.

The quality of measurements is often quantified in
terms of the reliability of the measures. Here, we
define the reliability as the proportion of the total
variance that is due to variability between the units’
true covariate values, given the observed covariate
xj :

R =
var(ζj)

var(ζj) + var(εij)
. (15)

The structure of the model is perhaps best con-
veyed in a path diagram as shown in Figure 3. Here
circles represent latent variables and rectangles ob-
served variables. Long arrows represent linear rela-
tions in the linear predictor and short arrows repre-
sent residual variability. For the exposure and mea-
surement models, this residual variability is repre-
sented by an additive error term, but for the disease
model it represents bernoulli variability.

Importantly, the covariate measurement error
model specifies true log fibre intake as an intermedi-
ate variable in the causal pathway from occupation
[Bus] to disease [Chd]. It follows that [Bus] may have
an indirect effect γ1λ in addition to the direct effect
β1. The total effect, the sum of the direct and indi-
rect effect, then becomes β1 + γ1λ. Note that true
log fibre intake can be viewed as the latent variable
in a factor model with mixed responses; continuous
responses for the two measurements of log fibre in-
take and a dichotomous response for disease. The
factor loading for [Chd] is λ, whereas the loadings

Table 2: Diet and CHD – Estimates for dichotomous lo-
gistic regression with covariate measurement error based
on normal and nonparametric exposure distributions

Normality NPMLE
Est (SE) Est (SE)

Disease model

β0 [Cons] 3.64 (2.02) 3.54 (1.96)
β1 [Bus] -0.19 (0.34) -0.18 (0.34)
λ -1.96 (0.73) -1.93 (0.70)

Measurement model

var(εij) 0.02 (0.00) 0.02 (0.00)

Exposure model

γ0 [Cons] 2.86 (0.02) 2.86 (0.02)
γ1 [Bus] -0.12 (0.03) -0.12 (0.03)

var(ζj) 0.07 (0.01) 0.07† (–)

Log-likelihood -186.93 -177.87

†Empirical variance of estimated discrete distribution.

are fixed at one for the fibre measures. Since the
latent variable is regressed on a covariate, the speci-
fied covariate measurement error model represents a
generalization of the conventional Multiple-Indicator
Multiple-Cause (MIMIC) model (31) to include direct
effects and non-continuous responses.

Estimates for the logistic regression model with co-
variate measurement error are presented in Table 2.
Estimates for the model presented above are shown
under ‘Normality’ in the table. Here, λ̂ = −1.96
represents the estimated effect of true log-fibre on
coronary heart disease with corresponding odds ratio
exp(−1.96) = 0.14. This extremely large estimated
protective effect of log-fibre is probably due to omit-
ting important confounding variables such as exer-
cise which is protective of heart disease and increases
food intake, including fibre. Note that the ‘naive’ es-
timate, treating the first log-fibre measurement as
perfect and discarding the second measurement, is
−1.63, which is attenuated as expected. True log-
fibre has an estimated mean of γ̂0 =2.86 among bank
staff and γ̂0+γ̂1 =2.74 for transport staff.

It is interesting to investigate the direct, indirect
and total effects of occupation on CHD. The reduced
fibre intake among transport staff results in an in-
creased odds of CHD, the odds ratio for this indi-
rect effect of occupation (not shown in the table)
being estimated as 1.27 (95% CI from 1.02 to 1.57).
The protective direct effect of being transport staff
exp(−0.19)=0.83 (95% CI from 0.43 to 1.61) coun-
teracts this, the odds ratio for the total effect of oc-
cupation (not shown in the table) being estimated as
1.05 (95% CI from 0.55 to 2.01).

The residual variance of true log fibre intake is es-
timated as v̂ar(ζj)=0.07 and the measurement error
variance as v̂ar(εij) = 0.02. Using equation (15), we
obtain an estimated reliability R̂=0.77.
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Instead of assuming a normal distribution for the
true covariate ηj , we can make the analysis more
robust by letting the distribution be unspecified.
The nonparametric maximum likelihood estimator
(NPMLE) of the distribution is discrete (32,33) with
probability masses at a finite number of locations.
The number of masses is determined to achieve
largest possible likelihood. NPMLE for covariate
measurement error models has been discussed in sev-
eral papers, e.g. (34,35). NPMLE for the logistic
regression model with covariate measurement error
required 8 mass points, the resulting estimates are
presented under NPMLE in Table 2. We note that
the estimates are very similar to those assuming nor-
mality, indicating that the normality assumption is
tenable for this application.

Although commonly used, the classical measure-
ment error model in equation (13) has a number of
limitations. It assumes that the fallible measures
have the same mean (no relative bias) and measure-
ment error variance, which is reasonable if the mea-
sures are essentially exchangeable replicates. How-
ever, if the measurements are separated in time there
may be a ‘drift’ in the mean measurement (36). More
importantly, if the fallible measures were obtained by
different methods, we should allow the measures to
have different means, scales, and measurement error
variances. These limitations can be rectified by using
a congeneric measurement model (37).

There are often no replicate measures available to
identify and estimate the covariate measurement er-
ror models considered above. In this case it is useful
to perform a sensitivity analysis, investigating how
the regression estimate for a fallible covariate de-
pends on the magnitude of its measurement error
variance. Suppose that we only had measures of log-
fibre intake at the first occasion. Figure 4 shows a
plot of the estimated odds-ratio exp(βu) for differ-
ent assumed values of the measurement error vari-
ance var(εi1). We see that the difference between the
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Figure 4: Sensitivity analysis of odds-ratio for different
assumed measurement error variances (supposing there
are no replicate measurements).
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‘naive’ estimated odds-ratio exp(−1.63) = 0.20 (as-
suming no measurement error) and the ‘corrected’
estimated odds-ratio increases as the measurement
error variance increases.

The diet and heart disease application has been
discussed in more detail elsewhere (35,37), where
several extensions of conventional covariate measure-
ment error modelling are also described.

It is demonstrated in the Appendix that the cme
wrapper for gllamm described in (37) makes esti-
mation of the model with a normal true exposure
distribution extremely easy. Commands for produc-
ing nonparametric maximum likelihood estimates in
gllamm are also given in (37).

Multilevel modelling of nominal data: Abuse
of antibiotics
Acute respiratory tract infection (ARI) is a common
disease among children, pneumonia being a leading
cause of death in young children in developing coun-
tries. In China the standard medication for ARI
is antibiotics, which has led to concerns about an-
tibiotics misuse and resultant drug resistance. As
a response, the WHO introduced a program of case
management for ARI in children under 5 years old
in China in the 1990’s.

We will analyze data on physicians prescribing be-
havior of antibiotics in two Chinese counties, one of
which was in the WHO program whereas the other
was not. These data have previously been analyzed
by Yang (38). The multilevel structure of the pre-
scribing data is displayed in Figure 5.

Medical records were examined for medicine pre-
scribed and a ‘correct’ diagnosis determined from
symptoms and clinical signs. Based on the WHO
case management criteria, the antibiotic prescription
for child i by doctor j in hospital k, yijk, was clas-
sified into three categories (denoted ‘abuse’ if there
were no clinical indications):

1: Correct use of antibiotics (reference-category)

2: Abuse of one antibiotic

3: Abuse of several antibiotics
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Prescription behavior is obviously a complex pro-
cess, and the present analysis is merely intended to
shed some light on basic issues such as the impact
of the patient’s status at arrival and the physician’s
experience.

We consider the following covariates (xijk) at dif-
ferent levels:

• Child-level:

– [Age]: age in years (0-5)
– [Temp]: body temperature, centered at

36oC
– [Paymed]: dummy variable for patient pays

for medication (yes=1, no=0)
– [Selfmed]: dummy for self medication be-

fore seeing doctor (yes=1, no=0)
– [Wrdiag]: dummy for diagnosis classified as

wrong (yes=1, no=0)

• Doctor-level:

– [DRed]: doctor’s education (ordinal with
six categories from self-taught to medical
school)

• Hospital-level:

– [WHO]: dummy for hospital in WHO pro-
gram (yes=1, no=0)

Disregarding the multilevel structure of the data
for a moment, the natural model for a multicate-
gory response variable is polytomous logistic regres-
sion (39). The probability of the realized category,
say a, can be written as

Pr(yijk =a) =
exp(V a

ijk)
∑3

b=1 exp(V b
ijk)

, (16)

where
V a

ijk = ga
0 + x′ijkg

a

is a linear predictor with category-specific intercepts
ga
0 and category-specific effects of covariates that do

not vary over categories ga. Since the first category
serves as reference, g1

0 = 0 and g1 = 0 for identifica-
tion.

An alternative specification of the polytomous lo-
gistic regression model, based on so-called random
utility models, is often used in econometrics and psy-
chometrics but is unfamiliar among epidemiologists.
Random utilities Ua

ijk are introduced for each cat-
egory a, where we emphasize that the term utility
should be broadly construed as ‘attractiveness’ of the
category in some sense. The utilities are modelled as

Ua
ijk = V a

ijk + εa
ijk,

where εa
ijk is a random term, assumed to be indepen-

dently distributed across children, doctors, hospitals
and categories with a Gumbel distribution

g(εa
ijk) = exp

{−εa
ijk − exp(−εa

ijk)
}

.

The realized category is then viewed as arising from
utility maximization where the utility of the realized
category Ua∗

i is larger than the utilities of the other
categories. Remarkably, the familiar logistic regres-
sion model (16) arises if and only if the random util-
ities are Gumbel distributed (40).

In an effort to handle the multilevel nature of the
prescription problem, we specify a three-level ran-
dom intercept polytomous regression model

V a
ijk = ga

0 + γ
a(2)
0jk + γ

a(3)
0k + ga′xijk. (17)

Comparing this linear predictor with that for the
conventional model, we see that the terms γ

a(2)
0jk and

γ
a(3)
0k are also included.
γ

a(2)
0jk is a category-specific random intercept vary-

ing at level 2, letting the overall ‘attraction’ of cat-
egory a differ among doctors over and above the
variability explained by the included covariates. Re-
taining the first category as reference, we let the
doctor-level intercepts for categories 2 and 3, γ

2(2)
0jk

and γ
3(2)
0jk , be bivariate normal with zero means,

variances var(γ2(2)
0 ) and var(γ3(2)

0 ) and covariance
cov(γ2(2)

0 , γ
3(2)
0 ).

Analogously, γ
a(3)
0k is a category-specific random

intercept varying at level 3, permitting the overall
‘attraction’ of category a to differ among hospitals.
The hospital-level intercepts, γ

2(3)
0k and γ

3(3)
0k , are bi-

variate normal with zero means, variances var(γ2(3)
0 )

and var(γ3(3)
0 ) and covariance cov(γ2(3)

0 , γ
3(3)
0 ). Thus,

the category-specific random intercepts at a given
level are dependent whereas the intercepts are spec-
ified as independent across levels.

Estimates for the multilevel polytomous regression
model, including only covariates at the child level,
are presented in Table 3. Estimates also including
covariates varying at the doctor and hospital levels
are given in Table 4. The change in log-likelihood
indicates that inclusion of these covariates improves
the fit considerably. Note that the variances of the
intercepts are considerably reduced at the hospital
level whereas the variances of the intercepts at the
doctor level are fairly similar. In general, the fixed
effects do not appear to change appreciably.

The estimates for the fixed effects at the child level
all seem to have reasonable signs and magnitudes.
For instance, the higher the child’s temperature, the
lower the risk of abuse. Self-medication also appears
to reduce the risk of antibiotics abuse, particularly of
several antibiotics. On the other hand, a wrong di-
agnosis increases the risk. We note that doctor’s ed-
ucation appears to reduce the risk of abusing several
antibiotics but not the risk of abusing one antibiotic.
Importantly, the WHO program seems to have a ben-
eficial effect on antibiotics abuse, most pronounced
for several antibiotics.

It could be argued that it would be more parsi-
monious to treat the antibiotic response as ordinal
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Table 3: Abuse of antibiotics – Estimates for multilevel
random intercept polytomous regression. No observed
covariates at the doctor and hospital levels

Abuse one Abuse several
vs. None vs. None

Est (SE) Est (SE)

Fixed Effects

Child-level

ga
0 [Cons] 0.23 (0.32) -1.64 (0.49)

ga
1 [Age] 0.19 (0.08) 0.09 (0.09)

ga
2 [Temp] -1.01 (0.12) -0.27 (0.13)

ga
3 [Paymed] 0.30 (0.31) 0.91 (0.41)

ga
4 [Selfmed] -0.42 (0.24) -0.78 (0.29)

ga
5 [Wrdiag] 2.08 (0.23) 1.80 (0.26)

Doctor-level

ga
6 [DRed] – –

Hospital-level

ga
7 [WHO] – –

Random Effects

Doctor-level

var(γ
a(2)
0 ) 0.43 (0.27) 0.51 (0.26)

cov(γ
2(2)
0 , γ

3(2)
0 ) -0.47 (0.15)

Hospital-level

var(γ
a(3)
0 ) 2.50 (0.93) 0.23 (0.18)

cov(γ
2(3)
0 , γ

3(3)
0 ) 0.68 (0.31)

Log-likelihood -730.6

Table 4: Abuse of antibiotics – Estimates for multilevel
random intercept polytomous regression. Including ob-
served covariates at the doctor and hospital levels

Abuse one Abuse several
vs. None vs. None

Est (SE) Est (SE)

Fixed Effects

Child-level

ga
0 [Cons] -0.23 (0.55) -5.72 (0.99)

ga
1 [Age] 0.17 (0.08) 0.07 (0.09)

ga
2 [Temp] -0.96 (0.12) -0.27 (0.13)

ga
3 [Paymed] 0.12 (0.32) 0.92 (0.40)

ga
4 [Selfmed] -0.49 (0.24) -0.86 (0.29)

ga
5 [Wrdiag] 2.08 (0.23) 1.85 (0.26)

Doctor-level

ga
6 [DRed] 0.08 (0.11) -0.62 (0.17)

Hospital-level

ga
7 [WHO] -0.88 (0.33) -2.40 (0.62)

Random Effects

Doctor-level

var(γ
a(2)
0 ) 0.43 (0.22) 0.46 (0.28)

cov(γ
2(2)
0 , γ

3(2)
0 ) -0.44 (0.13)

Hospital-level

var(γ
a(3)
0 ) 0.11 (0.12) 0.88 (0.45)

cov(γ
2(3)
0 , γ

3(3)
0 ) 0.31 (0.20)

Log-likelihood -716.2

instead of nominal, since the categories seem to have
an a priori ordering (correct, abuse one, abuse sev-
eral). However, models for ordinal response are con-
siderably more restrictive than their nominal coun-
terparts.

The multilevel polytomous regression model used
above is a special case of a general modeling frame-
work for multilevel polytomous regression (41), given
a more introductory treatment in (42). The frame-
work includes category-specific covariates such as the
cost or other ‘attributes’ of the categories, useful for
instance in health utilization studies. Multilevel and
possibly multidimensional common factors can be in-
cluded as well as different kinds of random coeffi-
cients.

Commands for producing the reported estimates
in gllamm are given in the Appendix.

DISCUSSION

The purpose of this article has been to convey the
usefulness of the general and flexible GLLAMM
framework in epidemiology. We have considered
three applications; logistic regression for repeated
measurement data (course of illness in schizophre-
nia), logistic regression with covariate measurement
error (diet and coronary heart disease), and mul-
tilevel modelling of nominal data (abuse of antibi-
otics).

Importantly, the applications considered do not
in any way exhaust the potential of GLLAMMs in
epidemiology. Types of applications not covered in-
clude:

• Multilevel and multivariate survival analysis
with frailties, for discrete time (43,4) and con-
tinuous time (4)

• Discrete random growth curve models or latent
trajectory models (44)

• Disease mapping (4)

• Endogenous treatment models and joint models
of survival and repeated measurements (4)

• Genetic epidemiology, for instance investigating
association between a genetic marker and the di-
chotomous phenotype ‘atopy’ (asthma, eczema
or hayfever) (45)

Although the incidence of gllamm use is increasing
in epidemiological research, see for instance (46-50),
we hope that this article will further enhance the
popularity of this powerful research tool.
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APPENDIX: ESTIMATION USING STATA
PROGRAMS gllamm AND cme

The commands required to perform many of the
analyses reported in this article are given here. We
refer to (13) and (51) for explanation of the com-
mands.

Course of illness in schizophrenia

* Create interactions

gen month_age = month*age

gen month_gen = month*gen

* Random intercept model

gllamm y month age gender month_age month_gen, /*

*/ i(id) link(logit) family(binom) adapt

* Random coefficient model

gen cons = 1

eq inter: cons

eq slope: month

gllamm y month age gender month_age month_gen, /*

*/ i(id) nrf(2) eqs(inter slope) /*

*/ link(logit) family(binom) adapt

Diet and heart disease

* Model assuming normal exposure

cme chd bus (lfib: lfibre1 lfibre2), /*

*/ link(logit) family(binom)

See (35) for nonparametric maximum likelihood estima-
tion.

Abuse of antibiotics

The data need to be in ‘expanded’ form with three
records per child, one for each response category, a vari-
able alt taking on values 1, 2, and 3 for the response cat-
egories, and a dummy variable choice indicating which
response occurred:

doc child alt choice age ...

1 1 1 0 4

1 1 2 1 4

1 1 3 0 4

1 2 1 0 2

1 2 2 0 2

1 2 3 1 2

Estimation in gllamm:

* Create dummy variabes for the categories

gen categ1 = alt == 1

gen categ2 = alt == 2

eq c1: categ1

eq c2: categ2

gllamm alt age temp ... , i(doc hosp) /*

*/ nrf(2 2) eqs(c1 c2 c1 c2) /*

*/ link(mlogit) family(binom) /*

*/ expanded(child choice m) basecat(3)
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