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British Election Panel: Outcome

• Alternatives: Conservative, Labour, Liberal (exclude minor parties)

• Polytomous / First choice: Party voted for

• Rankings: Parties not explicitly ranked – rankings derived

A. Party voted for given rank 1

B. Parties not voted for ranked into second and third

place

using rating scales:

1 5
strongly against −→ strongly in favour
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British Election Panel: Covariates

• Election-specific covariates:

– [1987]

– [1992]

• Voter-specific covariates:

– [Male]

– [Age]

Age in 10 year units

– [Manual]

Father a manual worker

• Election and voter-specific covariate:

– [Inflation]

Since last election, prices fallen a lot → increased a lot

• Election, voter and alternative-specific covariate:

– [LRdist]

Absolute distance between voters’s position on left-right political

continuum and party’s mean position
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British Election Panel: Three-Level Data

1608 people participated in survey of voting in 1987 and 1992 elections.

Excluded voting occasions with voting on minor parties and missing

covariates

constituency Level 3: 249 constituencies
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Requirements of Methodology

Methodology should handle:

• Rankings as well as first choices

(rankings beneficial for efficiency & identification)

• Multilevel data

(dependence induced at several levels)

• Different types of covariates

(including alternative specific)

• Varying alternative sets

• Ties

• Responses ‘Missing at Random’ (MAR)

and be

• Implemented in publicly available software
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Random Utility Models

• Utility formulation useful:

– Insight into logistic regression models

(e.g. specification, identification)

– Facilitates extension of conventional logistic regression for first

choice and rankings to MULTILEVEL designs

• Unobserved ‘utility’ Ua
i associated with each alternative a=1, ..., A

for unit i=1, ..., N

• Random utility models composed as

Ua
i = V a

i + εa
i

– V a
i is fixed linear predictor representing observed heterogeneity

– εa
i is random term representing unobserved heterogeneity

(independent over i and a)
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First Choice as Utility Maximization

• Alternative f is chosen if

U f
i > U g

i for all g 6= f

• εa
i independent (over i and a) Gumbel or extreme value distributed of

type I:

g(εa
i ) = exp {−εa

i − exp(−εa
i )}

• McFadden (1973), Yellott (1977):

εa
i independent Gumbel

m

Pr(fi) =
exp(V f

i )
∑A

a=1 exp(V a
i )

[Conventional multinomial logit]
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Ranking as Utility Ordering

• rs
i is alternative with rank s for unit i.

Ranking defined as Ri = (r1
i , r

2
i , · · · , rA

i ), e.g. (2, 1, 3)

• Ri is obtained if

U
r1
i

i > U
r2
i

i > · · · > U
rA
i

i

• Luce & Suppes (1965); Beggs, Cardell & Hausman (1981):

εa
i independent Gumbel

⇓

Pr(Ri) =
exp(V

r1
i

i )
∑A

s=1 exp(V
rs
i

i )
× exp(V

r2
i

i )
∑A

s=2 exp(V
rs
i

i )
×· · ·× exp(V

rA
i

i )
∑A

s=A−1 exp(V
rs
i

i )

[Exploded logit]

• At each ‘stage’, a first choice is made among the remaining

alternatives.

• Duality with partial likelihood contribution of stratum in Cox

regression (‘surviving’ alternatives as risk sets and choices as failures)

=⇒ Survival software applicable

• No ‘explosion’ for normally distributed utilities!
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Identification

• Probability of choosing alternative 1 among alternatives 1, 2 and 3

can be expressed in terms of utility differences

Pr(U1−U2 > 0 ∩ U1−U3 > 0)

• Probability of ranking alternatives as 1 2 3 similarly becomes

Pr(U1−U2 > 0 ∩ U2−U3 > 0)

• First choice and ranking probabilities (and likelihoods) depend only on

utility differences

– Location of V a
i is arbitrary

– Scale of V a
i not arbitrary since variance of εa

i fixed (at π2/6),

exp(V 1
i )∑

a exp(V a
i )

=
exp(V 1

i + ci)∑
a exp(V a

i + ci)
6= exp(si × V 1

i )∑
a exp(si × V a

i )
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Independence from Irrelevant Alternatives (IIA)

• Multinomial logit: Odds of alternative a versus b becomes

Pr(a)

Pr(b)
= exp(V a

i −V b
i )

• Odds independent of properties of other alternatives

• Luce (1959) calls this ‘Independence from Irrelevant Alternatives’
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The Party Merger Problem

1. Initially three political parties: Lab1, Lab2 and Cons. Lab parties are

indistinguishable and have the same linear predictor V Lab
i , whereas

Cons party has linear predictor V Cons
i

Pr(Lab1 or Lab2 | Cons, Lab1, Lab2) =
2 exp(V Lab

i )

2 exp(V Lab
i )+exp(V Cons

i )

2. Lab1 and Lab2 merge to form a single Lab party

Pr(Lab | Cons, Lab) =
exp(V Lab

i )

exp(V Lab
i )+exp(V Cons

i )

3. Follows that

Pr(Lab | Cons, Lab) < Pr(Lab1 or Lab2 | Cons, Lab1, Lab2)

Merger reduces the probability of voting Lab and increases the

probability of voting Cons which is contraintuitive!

Would expect no change in probability of voting Lab.

Slide 12



'

&

$

%

Heterogeneity and IIA

Numerical Examples of Probability Voting Lab

Marginal Probability

Before merger After merger

Heterogeneity (Lab1 or Lab2) (Lab)

none

V Lab
i −V Cons

i = 0 0.67 0.50

observed

men: V Lab
i −V Cons

i = −1.2

women: V Lab
i −V Cons

i = 2.8 0.67 0.59

observed & shared unobserved

men: V Lab
i −V Cons

i = −0.8+4δi

women: V Lab
i −V Cons

i = 3.2+4δi

δi ∼ N(0, 1) 0.67 0.63
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Observed Heterogeneity

Linear predictor for unit i and alternative a:

V a
i = ma + ga′xi + b′xa

i

• Covariates and Parameters:

– ma alternative specific constants

– xi varies over units (but not alternatives) and has fixed effects ga′

varying over alternatives

Examples: [Age] and [Male] for voter

– xa
i varies over alternatives (and possibly units) and has fixed

effects b′ not varying over alternatives

Example: [LRdist] between different parties and voter

• Identification: Alternative 1 reference alternative,

set m1 =0 and g1
k =0 for all k.

• Common special cases:

V a
i = ma + ga′xi [statistics/biostatistics]

V a
i = ma + b′xa

i [econometrics/psychometrics]
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Shared Unobserved Heterogeneity

• Unit-specific unobserved heterogeneity shared between alternatives

⇓
Utilities for alternatives dependent within units

• Use latent variables δ
a(1)
i to obtain flexible yet parsimonious

covariance structure for utilities:

I. Random Coefficient Models

II. Factor Models
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Covariance Structure I: Random Coefficient Models

• For alternative-specific covariates, za
i , we consider random

coefficients βi representing unit-specific effects of the covariates

Ua
i = V a

i + δ
a(1)
i + εa

i

δ
a(1)
i = β′iz

a
i

where

βi ∼ N(0,Ψβ)

• Example: βli is the voter-specific effect of political distance when

za
li = [LRdist]
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Covariance Structure II: Factor Models

• One-factor model:

Ua
i = V a

i + δ
a(1)
i + εa

i

δ
a(1)
i = λaηi

where

ηi ∼ N(0, ψη)

ηi is a common factor, λa are factor loadings and εa
i are unique

factors (independent Gumbel as before)

• Two interpretations of factor models:

1. λa alternative-specific effect of unobserved unit-specific variable ηi

2. λa an unobserved attribute of alternative a and ηi random effect

• Identification: Likelihood depends only on utility differences,

V a
i −V b

i + (λa−λb)ηi + εa
i −εb

i

one loading must be fixed, e.g. λ1 =0, and scale of factor must also

be fixed, e.g. λ2 =1

• Fragile identification for first choices unless alternative-specific

covariates included

• Can be extended to multidimensional factors
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Multilevel Designs and Latent Variables

• Three-level application:

– Constituencies (level 3) indexed k

– Voters (level 2) indexed j

– Elections (level 1) indexed i

• Latent variables introduced at each level to represent unobserved

heterogeneity at that level (induces dependence at all lower levels):

– Latent variables at election level

=⇒ Cross-sectional dependence between utilities

within voter j at given election i

– Latent variables at voter level

=⇒ Longitudinal dependence between utilities

within voter j over elections i

– Latent variables at constituency level

=⇒ Dependence between utilities

between voters j within constituency k
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Multilevel Logistic Regression

• The general three-level model

Ua
ijk = V a

ijk + δ
(1)
ijk + δ

(2)
ijk + δ

(3)
ijk + εa

ijk

• Election level latent variables δ
(1)
ijk are composed as

δ
(1)
ijk = β

(1)′
ijk z

a(1)
ijk + λa(1)′η(1)

ijk

• Voter level latent variables δ
(2)
ijk are composed as

δ
(2)
ijk = β

(2)′
jk z

a(2)
ijk + γ

a(2)′
jk zijk + λa(2)′η(2)

jk

– Random Coefficients I: β
(2)
jk are voter level random coefficients for

alternative-specific covariates z
a(2)
ijk

(EX: effect of [LRdist] on party preference varies between voters)

– Random Coefficients II: γ
a(2)
jk are voter level alternative specific

random coefficients for election-specific covariates zijk

(EX: effects of [1987] and [1992] on party preference vary between

voters)

– Factors: λa(2)′η(2)
k induces dependence between different elections

for a voter

• Constituency level latent variables δ
(3)
ijk are composed as

δ
(3)
ijk = β

(3)′
k z

a(3)
ijk + γ

a(3)′
k zijk + λa(3)′η(3)

k
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British Election Panel: Retained Model and Estimates

• Latent variables at voter and constituency levels

• Correlated alternative specific random intercepts

‘Corr. Random Intercepts’ ‘Independence’

Lab vs. Cons Lib vs. Cons Lab vs. Cons Lib vs. Cons

Est. (SE) Est. (SE) Est. (SE) Est. (SE)

FIXED PART:

ga
1 [1987] 0.70 (0.51) 0.71 (0.35) 0.38 (0.20) 0.12 (0.17)

ga
2 [1992] 1.24 (0.53) 0.75 (0.37) 0.51 (0.20) 0.13 (0.18)

ga
3 [Male] -0.92 (0.31) -0.67 (0.20) -0.79 (0.11) -0.53 (0.09)

ga
4 [Age] -0.74 (0.10) -0.37 (0.04) -0.37 (0.04) -0.18 (0.03)

ga
5 [Manual] 1.63 (0.35) 0.12 (0.21) 0.65 (0.11) -0.05 (0.10)

ga
6 [Inflation] 1.27 (0.18) 0.72 (0.13) 0.87 (0.09) 0.18 (0.03)

b [LRdist] -0.78 (0.04) -0.62 (0.02)

RANDOM PART:

Voter Level

ψ
(2)
γa 15.85 (2.02) 5.73 (0.85)

ψ
(2)
γ2,γ3 8.20 (1.09)

Const. Level

ψ
(3)
γa 5.15 (1.07) 0.76 (0.28)

ψ
(3)
γ2,γ3 1.39 (0.47)

logL -2601.33 -2963.68
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The GLLAMM Framework

Generalized Linear Latent and Mixed Models (GLLAMM):

1. RESPONSE MODEL: Generalised linear model conditional on
latent variables• Linear predictor:

– observed covariates

– multilevel latent variables (factors and/or random coefficients)

• Links and distributions:

as for GLM’s plus ordinal and polytomous responses and rankings

2. STRUCTURAL MODEL: Equations for the latent variables

• Regressions of latent variables on observed covariates

• Regressions of latent variables on other latent variables

(possibly at higher levels)

3. DISTRIBUTION OF LATENT VARIABLES (DISTURBANCES)

• Multivariate normal

• Discrete with unspecified distribution
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gllamm: Stata program for estimation and prediction

• To obtain the likelihood of GLLAMM’s, the latent variables must be

integrated out

– Sequentially integrate over latent variables, starting with the lowest

level using a recursive algorithm

– Use Gauss-Hermite quadrature to replace integrals by sums

– Scale and translate quadrature locations to match the peak of the

integrand using adaptive quadrature

• Maximum likelihood estimates obtained using Newton-Raphson

• Empirical Bayes (EB) predictions of latent variables and EB standard

errors obtained using adaptive quadrature
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Some links and references

• Skrondal, A. & Rabe-Hesketh, S. (2002). Multilevel logistic regression

for polytomous data and rankings. Psychometrika, in press.

• GLLAMM framework:

– Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2002a). Generalized

multilevel structural equation modelling. Psychometrika, in press.

– Skrondal, A. & Rabe-Hesketh, S. (2003). Generalized latent

variable modeling: Multilevel, longitudinal and structural

equation models. Boca Raton, FL: Chapman & Hall/ CRC.

• gllamm software:

– gllamm and manual can be downloaded from

http://www.iop.kcl.ac.uk/iop/departments/biocomp/programs/gllamm.html

– Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2002b). Reliable

estimation of generalized linear mixed models using adaptive

quadrature. The Stata Journal, 2, 1–21.
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