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1 Introduction

Instead of linking the expectation of each observation with a single linear
predictor as in generalized linear models, it is often useful to link it with a
composite function of several linear predictors. Moreover, each likelihood
contribution can sometimes be exploded into a product of terms.
We explore how these tools can be used to extend ‘Generalized Linear
Latent And Mixed Models’ or GLLAMMs (Rabe-Hesketh, Skrondal and
Pickles, 2004a; Skrondal and Rabe-Hesketh, 2004). Applications consid-
ered include discrete time frailty models, item response models for ordinal
items, unfolding models for attitudes, small area estimation with census in-
formation, measurement models combining discrete and continuous latent
variables, ability testing with guessing, sensitivity analysis of the assump-
tion of normal random effects, and zero-inflated Poisson models.

2 Generalized Linear Models

Let yi be the response and xi explanatory variables for unit i, and define
the conditional expectation of the response given the covariates as µi, i.e.
µi ≡ E[yi|xi]. Generalized linear models can be specified as

µi = g−1(νi),

where g−1(·) is an inverse link function, νi = x′

iβ is a linear predictor and
β are fixed effects. The specification is completed by choosing a condi-
tional distribution for the responses yi given the conditional expectations
µi, f(yi|µi), from the exponential family.
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3 Exploded likelihoods and composite links

3.1 Exploded likelihoods

Generalized linear models can be extended to handle multivariate responses

yit, t=1, . . . , T , for each unit. The responses may be of mixed types com-
bining different links and families, for instance a Poisson distributed count
and a logistically distributed dichotomous response. Dependence can be
modelled by including latent variables (random effects and/or factors) in
the linear predictors; see Section 4. Given the corresponding vectors of
conditional means µi (which depend on the latent variables), the joint con-
ditional distribution of the vector of responses yi is

Pr(yi|µi) =

T∏

t=1

ft(yit|µit). (1)

We now distinguish between two types of artificial multivariate responses
where the response is univariate but individual likelihood contributions are
nevertheless ‘exploded’ into product terms:

Phantom responses A univariate response yi can in some cases be rep-
resented by S phantom responses yit entering the likelihood (1) as if they
were truly multivariate responses.
Phantom responses can be used for the Luce-Plackett model for rankings
where the likelihood contribution of a ranking is the product of successive
multinomial logit choice probabilities among remaining alternatives (e.g.
Skrondal and Rabe-Hesketh, 2003). Another example is survival analysis
based on data exploded into risk sets, for instance the Cox proportional
hazard model implemented via Poisson regression and the complementary
log-log model for discrete time hazards (e.g. Skrondal and Rabe-Hesketh,
2004, Ch.2).

Mutually exclusive responses A univariate response yi can sometimes
be represented by one of S mutually exclusive responses yit having distri-
butions ft(yit|µit) from generalized linear models. For the case of T =2 the
likelihood can be written as

Pr(yi|µi) = f1(yi1|µi1)
1−δif2(yi2|µi2)

δi ,

where the indicator δi picks out the appropriate component.
A simple example is a log-normal survival model with right-censoring. Let
x′

iβ be the linear predictor, yi1 the log survival time if the event is observed
for i (δi = 0) and yi2 the censoring time if the event is censored (δi =
1). The likelihood contribution then becomes either a normal distribution
with identity link and linear predictor x′

iβ, f1(yi1|µi1)=φ(yi1;µi, σ
2), or a

Bernoulli distribution with a (scaled) probit link and linear predictor x′

iβ,

f2(yi2|µi2) = Φ(
x
′

i
β−yi2

σ
). Here, Φ(·) is the cumulative standard normal

distribution and −yi2 is treated as an offset.
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3.2 Composite links

Thompson and Baker (1981) suggested linking the expectation µi with a
composite function of several linear predictors instead of a function of a
single linear predictor as in generalized linear models.

Simple composite links In this case the expectation µi is a weighted
sum of inverse links with known weights wir ,

µi =
∑

r

wir g
−1
r (νir),

where νir is the rth linear predictor for unit i and g−1
r (·) an inverse link

function.
A simple example of composite links are cumulative models for categorical
responses with S ordered response categories s = 1, . . . , S, which can be
expressed as

Pr(yi>s|xi) = g−1(νi−κs), s = 1, . . . , S − 1

where κs are threshold parameters and the inverse link function is a cumu-
lative distribution function such as the standard normal, logistic or extreme
value distributions. The response probabilities can be written as a compos-
ite link,

Pr(yi =s|xi) = g−1(νi,s−1)−g
−1(νis), νis = νi−κs, s = 1, . . . , S, (2)

where κ0 = −∞ and κS = ∞ so that g−1(νi0) = 1 and g−1(νiS) = 0. An
advantage of the composite link formulation is that left and right-censoring,
or even interval censoring of an ordinal response are easily accommodated.
This is particularly useful for discrete time survival data.

Bilinear composite links A first extension is to consider unknown linear
functions of inverse links, replacing the known constants wir with products
of the constants and unknown parameters αr, giving

µi =
∑

r

αrwir g
−1
r (νir).

A second extension is to let the expectation be some (not necessarily linear)
function h{·} of the above sum,

µi = h{
∑

r

αrwir g
−1
r (νir)}.

General composite links In this case general functions fir[g
−1
r (νir)]

replace wir g
−1
r (νir) in the above expressions.
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4 Generalized Linear Latent and Mixed Models

4.1 Generalized Linear Mixed Models (GLMMs)

A crucial assumption of generalized linear models is that the responses of
different units i are independent given the covariates xi. This assumption is
often unrealistic since data are frequently of a multilevel nature with units
i nested in clusters j, for instance repeated measurements (units) nested in
subjects (clusters) or subjects (units) nested in families (clusters). There
will often be unobserved heterogeneity at the cluster level inducing depen-
dence among the units, even after conditioning on covariates. In generalized
linear mixed models (e.g. Breslow and Clayton, 1993) unobserved hetero-

geneity is modeled by including random effects η
(2)
mj in the linear predictor,

g(µij) = νij = x′

ijβ︸︷︷︸
Fixed part

+

M∑

m=1

η
(2)
mjz

(2)
mij

︸ ︷︷ ︸
Random part

. (3)

Here, µij ≡ E[yij |xij , z
(2)
ij ,η

(2)
j ] where η

(2)
j = (η

(2)
1j , · · · , η

(2)
M,j)

′ are random

effects varying at level 2 and z
(2)
ij corresponding covariates. Specifically,

η
(2)
mj is a random effect of covariate z

(2)
mij for cluster j, a random intercept

if z
(2)
mij =1. It is typically assumed that the random effects are multivariate

normal.

4.2 Extending GLMMs to GLLAMMs

Multilevel factor structures The basic idea of factor or IRT models
is that one or more unobserved variables, latent traits or factors ‘explain’
the dependence between different observed measurements for a subject, in
the sense that the measurements are conditionally independent given the
factor(s).
A simple example of a unidimensional factor model is the two-parameter
logistic item response model often used in ability testing. Examinees j
answer test items i, i = 1, . . . , I, giving responses yij equal to 1 if the
answer is correct and 0 otherwise. The probability of a correct response is
modelled as a function of the examinee’s latent ability ηj ,

Pr(yij = 1|ηj) =
exp(νij)

1 + exp(νij)
, νij = βi + λiηj . (4)

The latent ability ηj is assumed to have a normal distribution, λi are factor
loadings or discrimination parameters (with λ1 =1) signifying how well the
items discriminate between examinees with different abilities, and -βi/λi

are item ‘difficulties’.
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We can specify models of this form by extending the two-level generalized
linear mixed model in (3) to allow each random effect to be multiplied not
just by a single variable but by a linear combination of variables. To obtain
the two-parameter logistic item response model, we stack the dichotomous
responses yij into a single response vector and define dummy variables

dpi =

{
1 if p= i
0 otherwise

The linear predictor of the item response model can then be written as

νij =
∑

p

dpiβp + ηj

∑

p

dpiλp = βi + ηjλi.

The linear predictor for a three-level multidimensional factor model can be
expressed as

νijk = x′

ijkβ
︸ ︷︷ ︸

Fixed part

+

M2∑

m2=1

η
(2)
m2jkλ(2)′

m2
z
(2)
m2ijk

︸ ︷︷ ︸
Level-2 random part

+

M3∑

m3=1

η
(3)
m3kλ(3)′

m3
z
(3)
m3ijk

︸ ︷︷ ︸
Level-3 random part

,

where z
(2)
m2ijk and z

(3)
m3ijk are vectors of dummy variables with correspond-

ing vectors of factor loadings, λ(2)
m and λ(3)

m . See Rabe-Hesketh, Skrondal
and Pickles (2004a) for an application of a multilevel factor model with
dichotomous responses.

Discrete latent variables The response model can be further generalized
by allowing the latent variables ηj to have discrete distributions. This is
useful if the level 2 units are believed to fall into a number of groups or
‘latent classes’ within which the latent variables do not vary.
If the number of latent classes, or masses, is chosen to maximize the like-
lihood the nonparametric maximum likelihood estimator (NPMLE) can
be achieved (e.g. Rabe-Hesketh, Pickles and Skrondal, 2003), relaxing the
assumption of multivariate normal latent variables.

Multilevel structural equations Continuous latent variables (random
coefficients and/or factors) can be regressed on covariates (see Section 6)
and other latent variables at the same or higher levels, generalizing con-
ventional structural models to a multilevel setting. If the latent variables
are discrete, the masses, component weights or latent class probabilities
can depend on covariates via multinomial logit models. See Skrondal and
Rabe-Hesketh (2004, Ch.4).
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5 Composite links and exploded likelihoods in

GLLAMMs

An outline is given of some extensions of GLLAMMs arising from plugging
in linear predictors with latent variables from GLLAMMs into composite
links and exploded likelihoods.

Discrete time frailty models If we let the linear predictor in (2) be
νij = x′

ijβ + ηj and use a logit link we can obtain a proportional odds
model with frailty (see Skrondal and Rabe-Hesketh, 2004, Ch.12).

Item response models for ordinal items Letting the linear predictor
in (2) be νij = βi + λiηj as in the two parameter IRT model (4) and the
thresholds be item-specific, we obtain Samejima’s graded response model
for ordinal items (see Skrondal and Rabe-Hesketh, 2004, Ch.10).

Unfolding or ideal point models In standard item response models the
probability of a positive response for an item is a monotonic function of the
latent trait ηj . This assumption may be violated for attitude items where
respondents are asked to rate their agreement as ‘disagree’ or ‘agree’, or
more generally in terms of s=1, . . . , S ordered categories.
For instance, as sentiments favouring capital punishment increase from neg-
ative infinity, the probability of agreeing with the statement ‘capital pun-
ishment seems wrong but is sometimes necessary’ initially increases from
0, reaches a maximum when the latent trait is in the ‘ambiguous’ zone (at
the ‘ideal point’) and then declines as the latent trait goes to infinity.
It has been argued (e.g. Roberts and Laughlin, 1996) that a respondent may
give a particular rating of an attitude item for two reasons. Considering
‘disagree’, he can ‘disagree from below’ because his latent trait is below
the position of the item or ‘disagree from above’ because it exceeds the
position. These two possibilities can be expressed in terms of ‘subjective
ratings’ zij ; such that zij = s if the respondent ‘disagrees from below’ and
zij =2S+1−s if he ‘disagrees from above’.
Since the zij are not observed, the probabilities of the observed rating yij ,
given the latent trait ηj , can be written as the sum of the probabilities of
the two disjunct ‘subjective ratings’ corresponding to the observed rating.
We propose using a cumulative model (2) for the subjective ratings

Pr(yij =s|ηj) = Pr(zij =s|ηj) + Pr(zij =2S+1−s|ηj) = (5)
[
g−1(νij−κs−1)−g

−1(νij−κs)
]
+

[
g−1(νij−κ2S−s)−g

−1(νij−κ2S−s+1)
]
,

where νij = βi +λiηj as in (4). For identification, the thresholds must be
constrained as for instance κs =−κ2S−s, s=1, . . . , S, and κS =0.
Importantly, embedding the models in the GLLAMM framework produce
a wide range of novel unfolding models. The latent trait can for instance
be regressed on same or higher level latent variables and/or regressed on
covariates as demonstrated in Section 6.



Anders Skrondal and Sophia Rabe-Hesketh 7

Small area estimation Rindskopf (1992) emphasizes that composite link
functions are useful for modelling count data where some observed counts
represent sums of counts for different groups of units, due to different kinds
of missing or partially observed categorical variables. These ideas have been
used by Tranmer et al. (2004) in random effects modeling and empirical
Bayes prediction of area specific odds-ratios, for instance for the association
between ethnicity and unemployment. They make use of one-way marginal
tables from the census ‘tabular output’, e.g. unemployment rate and ethnic
composition, in addition to borrowing strength from other areas as usual
in empirical Bayes prediction.

Models combining discrete and continuous latent variables Latent
class models can be specified by modeling the ‘complete’ data (including
latent class membership) using log linear models. Since latent class mem-
bership is unknown, we must sum over the latent classes to obtain expected
counts for the observed response patterns. For a two-class model with three
dichotomous observed responses yi, i = 1, . . . , 3, a log-linear model with
conditionally independent responses given latent class membership can be
written as

logµy1y2y3c = νy1y2y3c = β0 + cα0 +
∑

i

yiβi +
∑

i

yicαi,

where c = 0, 1 is the latent class indicator, µy1y2y3c is the expected count for
response pattern y1, y2, y3 and latent class c, and βp and αp, p = 0, . . . , 3
are parameters. The expected values µy1y2y3

of the observed counts are
modeled as the sum of the class-specific expected counts,

µy1y2y3
= exp(νy1y2y30) + exp(νy1y2y31).

Qu, Tan and Kutner (1996) include continuous random effects ηj within a
latent class model to relax conditional independence among the responses
given latent class membership. To incorporate subject-specific random ef-
fects in the model, we expand the data to obtain counts (0 or 1) for each
response and latent class pattern for each subject j. The model can then
be written as

logµy1y2y3cj = νy1y2y3cj = β0 + cα0 +
∑

i

yiβi +
∑

i

yicαi

+ ηj(
∑

i

yi(1 − c)λi0 +
∑

i

yicλi1),

where ηj can be interpreted as subject j’s propensity to have a ‘1’ (e.g.
score positively on a diagnostic test, have a symptom, be diagnosed by a
rater), with item-specific effects λi0 for those who are healthy and λi1 for
those who have the disease. Since the total count for each person j is fixed
at 1, we can estimate the multinomial logit version of this model

Pr(y1y2y3c|j) =
exp(νy1y2y3cj)∑

y1y2y3c exp(νy1y2y3cj)
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Again, we do not know c, so the likelihood contribution for subject j be-
comes

Pr(y1y2y3|j) =
exp(νy1y2y30j) + exp(νy1y2y31j)∑

y1y2y3c exp(νy1y2y3cj)
.

This is a composite link model if each multinomial logit term is viewed as
an inverse link. Note that this set-up makes it easy to relax conditional
independence among pairs of items by including interaction effects of the
form β12y1y2 in the linear predictors.

Item response models accommodating guessing If it is possible to
guess the right answer of an ‘item’ in ability testing, as when multiple
choice questions are used, the two-parameter logistic item response model
in (4) is sometimes replaced by the three-parameter model

Pr(yij =1|ηj) = ci + (1−ci)
exp(νij)

1+exp(νij)
.

The ci are often called ‘guessing parameters’ and can be interpreted as the
probability of a correct answer on item i for an examinee with ability minus
infinity.
If we fix the guessing parameters to some common constant w, the response
model can be expressed as a generalized linear model with a composite link

Pr(yij =1|ηj) = wg−1
1 (1) + (1−w)g−1

2 (νij),

where g1 is the identity link and g2 is the logit link. If we let α1 = w be
a free parameter, we have a simple example of a bilinear composite link
model.
The above kind of model (without latent variables) is said to have ‘natural
responsiveness’ or ‘nonzero background’ in quantal response bioassay.

Log-normal random effects If the random effects distribution is skewed,
we may want to specify a linear mixed model with log-normal random
effects

µij = x′

ijβ + exp(η1j) + exp(η2j)zij ,

which can be accomplished using the composite link

µij = x′

ijβ + exp(η1j) + exp(η2j + log(zij)).

This is also a useful way of conducting a sensitivity analysis of the conven-
tional normality assumption for the random effects. Using the GLLAMM
formulation, we can also have log-normal common factors.
If we use a bilinear composite link, we can include log-normal random
effects in generalized linear mixed (and item response) models as well,

µij = h[x′

ijβ + exp(η1j) + exp(η2j + log(zij))].
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Zero-inflated Poisson (ZIP) models The likelihood of ZIP models
can be expressed using a combination of composite links and exploded
likelihoods.
The ZIP model is a finite mixture model for counts where the population is
assumed to consist of two components, a component c=0 where the count
can only be zero and a component c = 1 where the count has a Poisson
distribution. The probability of belonging to the zero-count component is
modelled as

πi0 =
exp(z′iγ)

1 + exp(z′iγ)
(6)

and the Poisson distribution for the other component is

Pr(yi =k|xi, ci =1) = exp(−µi)µ
k
i /k!, µi = exp(x′

iβ). (7)

The probability of a non-zero count becomes

Pr(yi =k > 0|zi,xi) = Pr(yi =k > 0, ci =1) = (1 − πi0) exp(−µi)µ
k
i /k!

=

(
1

1 + exp(z′iγ)

) [
exp(−µi)µ

k
i /k!

]

and the probability of a zero count

Pr(yi =0|zi,xi) = Pr(yi =0, ci =0|zi,xi) + Pr(yi =0, ci =1|zi,xi)

= πi0 + (1 − πi0) exp(−µi)

=

(
1

1 + exp(z′iγ)

)
[exp(z′iγ) + exp(− exp(x′

iβ))] .

For a non-zero count, the probability is the product of the probability of
0 in a logistic regression model with linear predictor z′iγ and the Poisson
probability of a count k with a log link and linear predictor x′

iβ. There-
fore, for non-zero counts, we obtain the correct likelihood by creating two
responses, 0 and k and specifying a mixed response (logistic and Poisson)
model.
For a zero count, we again create a 0 response, modelled as a logistic re-
gression, for the first term. For the second term, we specify a composite
link,

[exp(z′iγ) + exp(− exp(x′

iβ))] = g−1
1 (z′iγ) + g−1

2 (x′

iβ),

where g1 is the log link and g2 the log-log link. If we create a 1 response
and specify a Bernoulli distribution with this composite link, we obtain the
required term.
This set-up also makes it fairly straightforward to include random effects
in ZIP models to capture dependence induced by clustered data. For in-
stance, in modeling the number of alcoholic drinks consumed by respon-
dents nested in regions, we could include region-specific random effects in
both (6) and (7) to model variations in the prevalence of non-drinking
and in the amount consumed among drinkers, with possible correlations
between these random effects.
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6 Unfolding attitudes to female work participation

In the 1988 and 2002 General Social Surveys respondents in the USA were
presented with the following attitude statements regarding female work
participation:

[famhapp] A woman and her family will all be happier if she goes to work

[twoincs] Both the husband and wife should contribute to the family income

[warmrel]: A working mother can establish just as warm and secure a relation-
ship with her children as a woman who does not work

[jobindep] Having a job is the best way for a woman to be an independent person

[housewrk] Being a housewife is just as fulfilling as working for pay

[homekid] A job is alright, but what most women really want is a home and
children

[famsuff] All in all, family life suffers when the woman has a full-time job

[kidsuff] A pre-school child is likely to suffer if his or her mother works

[hubbywrk] A husband’s job is to earn money; a wife’s job is to look after the
home

The respondents rated each statement as either ‘disagree completely’ (1),
‘disagree’ (2), ‘agree somewhat’ (3), ‘agree’ (4), or ‘agree completely’ (5).
In 2002, the ‘disagree completely’ and ‘disagree’ response options were col-
lapsed into a single ‘disagree’ option.
We use the unfolding model proposed in Section 5, with g as scaled probit
links with item-specific scale parameters σi (estimated on the log-scale),

g−1(νijs) = Φ−1

(
βi + λiηj − κs

σi

)
.

In 2002, the composite link for ‘disagree’ is the sum of the composite links
for ‘disagree’ and ‘disagree completely’.
To investigate if sentiments in favour of female work participation ηj (loosely
referred to as ‘feminism’) have changed from 1988 to 2002, we specify the
structural model

ηj = γ1wj + ζj , ζj ∼ N(0, ψ),

where wj is a dummy variable for year being [2002].
Maximum likelihood estimates based on data from 1462 respondents are
given in Table 1 where the items have been ordered from the most positive
to the most negative according to their estimated scale values β̂i. Since
the magnitude of γ̂1 is negligible, mean ‘feminism’ does not appear to have
changed.



Anders Skrondal and Sophia Rabe-Hesketh 11

TABLE 1. Estimates for scaled probit unfolding model

Item parameters
βi λi ln σi

Item i Est SE Est SE Est SE

[famhapp] -2.32 0.08 0.30 0.04 -0.24 0.05
[twoincs] -1.60 0.07 0.29 0.05 -0.06 0.05
[warmrel] -0.99 0.07 1 – 0 –
[jobindep] -0.27 0.14 1.15 0.15 0.64 0.05
[housewrk] 1.29 0.08 0.54 0.08 0.22 0.06
[homekid] 2.11 0.07 0.76 0.06 -0.06 0.04
[famsuff] 2.19 0.08 1.43 0.09 -0.29 0.05
[kidsuff] 2.24 0.08 1.49 0.09 -0.46 0.06
[hubbywrk] 2.42 0.09 1.14 0.09 -0.11 0.05

Thresholds −κs =κ2S−s

s (categories) Est SE

1 (‘disagree completely’/‘disagree’) 3.43 0.11
2 (‘disagree’/‘agree somewhat’) 2.36 0.08
3 (‘agree somewhat’/‘agree’) 1.67 0.06
4 (‘agree/‘agree completely’) 0.72 0.03

Latent trait regression
Est SE

[2002] γ1 -0.04 0.04
Variance ψ 0.62 0.08

Following Roberts and Laughlin (1996) we assess model fit graphically.
First, we estimate the position or ‘dominance’ ν̃ij of respondent j relative
to item i (how much more ‘feminist’ the respondent is than the item)
by plugging in the empirical Bayes prediction η̃j of the latent trait and
the parameter estimates into the linear predictor. Substituting this into
the unfolding model, we obtain the expected response category for each
person-item pair. Grouping the ν̃ij into approximately homogeneous groups
of size 30 for each item and plotting the corresponding average observed
and expected frequencies versus the average ν̃ij for each item gives Figure
1. Our unfolding model appears to fit quite well.
Although the expected response takes the form of a single-peaked function
consistent with an unfolding process when all items are considered together,
none of the individual items exhibit single-peaked behaviour with the pos-
sible exception of [jobindep]. Using conventional item response models that
assume monotonicity might therefore be appropriate if either (1) reversing
the coding of the appropriate items can be based on a priori information
or (2) the model accommodates negative factor loadings.
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FIGURE 1. Mean expected and observed responses as a function of ‘dominance’
ν̃ij of person j over item i

7 Conclusions

Although simple to implement, composite links and exploded likelihoods
have been demonstrated to be remarkably powerful tools for specifying
novel GLLAMMs. Indeed, we do not purport to exhaust potential applica-
tions in this paper.
A further useful extension would be to generalize the traditional composite
links suggested by Thompson and Baker (1981) to accommodate products
of inverse links. A simple variant is of the form

µi =
∑

r

αr

∏

t

g−1
rt (νirt).

A composite link with products can be used for additive relative risk mod-
els with random effects. The risk or rate parameter µij in the Poisson
distribution is specified as

µij = exp(β0 + ηj)[1 + x′

ijβ],

where xij does not include a 1 and β correspondingly not a constant. Note
that the baseline risk when xij =0 becomes exp(β0+ηj) > 0. It follows that
the ‘relative risk’ RRij , the risk when the covariate vector is xij relative to
the baseline risk, is

RRij = 1 + x′

ijβ,

an additive function of the covariates.
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Maximum likelihood estimation and of GLLAMMs and empirical Bayes
prediction using adaptive quadrature (e.g. Rabe-Hesketh, Skrondal and
Pickles, 2004b) are implemented in the gllamm software running in Stata.
See http://www.gllamm.org for further information.
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