Estimating chopit models in gllamm Political efficacy example from King et al. (2002)

Sophia Rabe-Hesketh Department of Biostatistics and Computing Institute of Psychiatry King's College London

Anders Skrondal Division of Epidemiology Norwegian Institute of Public Health Oslo

September 2, 2002

1 Introduction

King et al. (2002) introduce a method for analyzing ordinal survey responses taking into account individual differences in interpretation of the survey questions. In addition to answering a survey question relating to their own situation (the 'self-assessment' question), respondents answer the same question in relation to a number of hypothetical individuals described by written vignettes. The responses to the vignettes are then used as anchors for the self-assessment question by specifying a joint 'chopit' (compound hierarchical ordinal probit) model for the self-assessment question and vignettes.

The purpose of this document is to show how the political efficacy example discussed in Section 8.1 of King et al. (2002) can be estimated using the Stata program gllamm (Rabe-Hesketh, Pickles, and Skrondal, 2001; Rabe-Hesketh, Skrondal, and Pickles, 2002b). The gllamm program, simulated data and do-file for this example are available from

http://www.iop.kcl.ac.uk/IoP/Departments/BioComp/programs/gllamm.html

2 Brief description of the political efficacy example

2.1 The data

Surveys were carried out for the WHO in China (n = 371) and Mexico (n = 551) in 2002. Respondents were asked

How much say do you have in getting the government to address issues that interest you?

and given the following set of ordinal categories in which to respond: (1) 'no say at all', (2) 'little say', (3) 'some say', (4) 'a lot of say' and (5) 'unlimited say'.

The respondents were also given five vignettes describing hypothetical individuals with varying degrees of political efficacy and were asked the same question as above regarding each hypothetical individual (with appropriate substitutions for 'you'). Possible covariates include country, age, sex and years of education.

2.2 Model for self-assessment question

The response y_i for person i is modelled as an ordinal probit model with underlying response

$$y_i^* = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$$

where \mathbf{x}_i are covariates, $\boldsymbol{\beta}$ are fixed effects and ϵ_i is a residual error term

$$\epsilon_i \sim N(0,1).$$

The observed responses $k = 1, \dots, K$ are generated via a threshold model with person-specific thresholds τ_i^k

$$y_i = k \quad \text{if } \tau_i^{k-1} \le y_i^* < \tau_i^k,$$

where $-\infty = \tau_i^0 < \tau_i^1 < \cdots < \tau_i^K = \infty$. The thresholds are modelled as

$$\begin{aligned} \tau_i^1 &= \boldsymbol{\gamma}^{1\prime} \mathbf{v}_i \\ \tau_i^k &= \tau_i^{k-1} + \exp(\boldsymbol{\gamma}^{k\prime} \mathbf{v}_i), \quad k = 2, \cdots, K, \end{aligned}$$
(1)

where \mathbf{v}_i are covariates and $\boldsymbol{\gamma}^k$ are parameters.

Here the underlying response y_i^* can be interpreted as the true preceived political efficacy of respondent *i*, on a scale that is comparable across individuals. The observed responses result from different individuals applying different thresholds τ_i^k and are therefore no longer comparable.

2.3 Model for vignettes

In order to anchor the self-assessment questions against the vignettes, it must be assumed that there is a true political efficacy θ_j associated with the hypothetical person described in the *j*th vignette $j = 1, \dots, J$. The true perception of the survey respondents differs from this only by a random error term

$$z_{ij}^* = \theta_j + u_{ij},$$
$$u_{ij} \sim N(0, \sigma^2).$$

Note that, in contrast to the self-assessment question, the standard deviation σ of the error term is now a free parameter. It is further assumed that the observed responses are generated by applying the same thresholds as for the self-assessment question, i.e.,

$$z_{ij} = k$$
 if $\tau_i^{k-1} \le z_{ij}^* < \tau_i^k$,

where the thresholds are modelled as in (1).

3 Estimation using gllamm

We will now analyze the original data, but note that the data provided in *effic1.dta* differ from these since the responses were simulated as discussed below. We have six responses or items per person; the self-assessment question y_i and the vignettes z_{i1} to z_{i5} with corresponding variables names xsayself and xsay1 to xsay5.

. use ef . list >	ficO, c say* in	lear 1/5				
xsa	ayself	xsay1	xsay2	xsay3	xsay4	xsay5
1.	1	5	1	2	5	2
2.	0	3	1	1	3	4
з.	1	1	1	5	5	5
4.	2	3	2	2	1	1
5.	2	4	3	2	2	1

Here the value 0 stands for 'missing'. In order to use gllamm, the responses must be stacked into a single variable. We will use the reshape command to achieve this and also delete items with missing values:

. rename xsayself xsay6 . reshape long xsay, i(id) j (note: j = 1 2 3 4 5 6)	(item)			
Data	wide	->	long	
Number of obs.	981	->	5886	
Number of variables	12	->	8	
j variable (6 values)		->	item	
xij variables:				
xsay1 xsay	2 xsay6	->	xsay	
dana if array-0				

item

1

2

3

4

5

6

drop if xsay (806 observations deleted) . list id xsay item in 1/6 id xsay 1. 1 5 2. 1 1 з. 1 2 4. 1 5 2 5. 1

1

6.

The linear predictors in the probit models (or the means of the underlying responses) are $\mathbf{x'}\boldsymbol{\beta}$ for the self-assessment question and θ_1 to θ_5 for the vignettes. To define these linear predictors using a single set of covariates or 'design matrix', we need to generate dummy variables, i1 to i6 for items 1 to 6:

. tab item, g	gen(i)		
item	Freq.	Percent	Cum.
1	844	16.61	16.61
2	842	16.57	33.19
3	841	16.56	49.74
4	845	16.63	66.38
5	849	16.71	83.09
6	859	16.91	100.00
Total	5080	100.00	
. sort id ite	em		

1

(Continued on next page)

. list id xsay i1-i6 in 1/6								
	id	xsay	i1	i2	i3	i4	i5	i6
1.	1	5	1	0	0	0	0	0
2.	1	1	0	1	0	0	0	0
3.	1	2	0	0	1	0	0	0
4.	1	5	0	0	0	1	0	0
5.	1	2	0	0	0	0	1	0
6.	1	1	0	0	0	0	0	1

The covariates **x** (china, age, male and educyrs) must now be multiplied by the dummy variable for the self-assessment question which we will rename to self

```
. rename i6 self
. for var china age male educyrs: gen s_X=self*X
-> gen s_china=self*china
-> gen s_age=self*age
-> gen s_male=self*male
-> gen s_educyrs=self*educyrs
```

The linear predictors can now be defined in the gllamm command using

gllamm xsay s_china s_age s_male s_educyrs i1 i2 i3 i4 i5, ...

Each response is modelled as a scaled ordinal probit, with a separate scale for the selfassessment question $(sd(\epsilon_i) = 1)$ and for the vignettes $(sd(u_{ij}) = \sigma)$. In gllamm, we must therefore specify a 'scaled ordinal probit link' using link(soprobit) and introduce heteroscedasticity using the s(het) option where het is an equation for the log of the scale:

. gen vign = 1-self . eq het: vign self

We can use Stata's constraints command to set the scale for the self-assessment question to 1. In gllamm the relevant parameter is the log standard deviation [lns1]self which must then be set to 0

```
. constraint def 1 [lns1]self=0
```

We now specify the model in (1) for the thresholds with the same covariates $\mathbf{v}_i = \mathbf{x}_i$ as for the linear predictor of the self-assessment question

```
. eq thresh: china age male educyrs
```

this model will be passed to gllamm using the ethresh(thresh) option. Since the six responses are treated as a single ordinal response, we only need to specify a single threshold model and there is no need to explicitly constrain the γ^k parameters to be the same across items.

Since the model does not contain any random effects or latent variables, we can estimate the model using the **init** option (stands for initial values, omitting any latent variables):

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
xsay						
s_china	3628872	.0904038	-4.01	0.000	5400754	1856989
s_age	.0058606	.0028128	2.08	0.037	.0003476	.0113735
s_male	.1134398	.0809884	1.40	0.161	0452945	.2721741
s_educyrs	.019557	.0082068	2.38	0.017	.0034721	.035642
i1	1.282264	.1606217	7.98	0.000	.9674518	1.597077
i2	1.193919	.1600941	7.46	0.000	.8801404	1.507698
i3	.8424784	.1589611	5.30	0.000	.5309204	1.154036
i4	.7919615	.1589452	4.98	0.000	.4804346	1.103488
i5	.6188468	.1590183	3.89	0.000	.3071766	.930517
_cut11						
china	-1.059206	.0591826	-17.90	0.000	-1.175202	9432106
age	.0019404	.0013004	1.49	0.136	0006083	.0044891
male	.0434652	.0363915	1.19	0.232	0278608	.1147912
educyrs	0010787	.0037971	-0.28	0.776	0085209	.0063636
_cons	.4389508	.1513253	2.90	0.004	.1423586	.735543
_cut12						
china	1607994	.0708768	-2.27	0.023	2997154	0218834
age	0020513	.0018631	-1.10	0.271	0057029	.0016003
male	0572983	.0504858	-1.13	0.256	1562487	.041652
educyrs	.0016812	.005509	0.31	0.760	0091162	.0124787
_cons	2621123	.1117188	-2.35	0.019	481077	0431475
_cut13						
china	.3439344	.0525479	6.55	0.000	.2409423	.4469264
age	0010884	.0016392	-0.66	0.507	0043012	.0021244
male	.0432661	.0472464	0.92	0.360	0493352	.1358675
educyrs	0023726	.0050643	-0.47	0.639	0122985	.0075533
_cons	4853311	.1039865	-4.67	0.000	6891409	2815214
 _cut14						
china	.6279309	.0829145	7.57	0.000	.4654214	.7904403
age	.0042546	.0023514	1.81	0.070	0003541	.0088632
male	0977914	.072163	-1.36	0.175	2392283	.0436456
educyrs	.0266069	.0073255	3.63	0.000	.0122492	.0409646
_cons	-1.613507	.1485483	-10.86	0.000	-1.904656	-1.322357
	•					

```
Variance at level 1
```

equation for log standard deviaton:

vign: -.23828219 (.04228416)
self: 0 (0)

In terms of the model parameters, the estimates are given in Table 1 under 'Real Data'. These estimates are very close to the estimates in Table 2 of King et al. (2002).

Since the real data cannot be made available, we created artificial data by simulating the responses from the model just estimated using a 'post-estimation' command for gllamm, gllasim:

. drop xsay . set seed 12345 . gllasim xsay

The data file *effic1.dta* available from the **gllamm** webpage contains these simulated responses in the same 'wide' form as the original data, so that all commands described in this section can be repeated. However, the estimates will be a little different due to sampling variability (see also Table 1 under 'Simulated Data'):

		Real Data		Simulat	ed Data
		coeff.	s.e.	coeff.	s.e.
β	china	-0.363	0.090	-0.222	0.088
	age	0.006	0.003	0.002	0.003
	male	0.113	0.081	0.187	0.080
	education	0.020	0.008	0.011	0.008
γ^1	china	-1.059	0.059	-1.068	0.059
	age	0.002	0.001	0.001	0.001
	male	0.043	0.036	0.038	0.036
	education	-0.001	0.004	0.000	0.004
	constant	0.439	0.151	0.218	0.152
γ^2	china	-0.161	0.071	-0.127	0.070
	age	-0.002	0.002	-0.002	0.002
	male	-0.057	0.050	-0.083	0.050
	education	0.002	0.006	0.003	0.005
	constant	-0.262	0.112	-0.258	0.106
γ^3	china	0.344	0.053	0.268	0.051
	age	-0.001	0.002	0.001	0.002
	male	0.043	0.047	0.017	0.047
	education	-0.002	0.005	-0.001	0.005
	constant	-0.485	0.104	-0.489	0.099
$oldsymbol{\gamma}^4$	china	0.628	0.083	0.677	0.082
	age	0.004	0.002	0.002	0.002
	male	-0.098	0.072	-0.148	0.070
	education	0.027	0.007	0.030	0.007
	constant	-1.614	0.148	-1.498	0.146
θ_1	vignette 1	1.282	0.160	1.016	0.159
θ_2	vignette 2	1.194	0.160	0.947	0.159
θ_3	vignette 3	0.842	0.159	0.639	0.158
$ heta_4$	vignette 4	0.792	0.159	0.554	0.158
θ_5	vignette 5	0.619	0.159	0.394	0.158
$\ln(\sigma)$	log scale for vignettes	-0.238	0.042	-0.237	0.041

Table 1: Estimates using gllamm

```
. matrix a=e(b)
```

. gllamm xsay s_china s_age s_male s_educyrs i1 i2 i3 i4 i5, /*
> */ i(id) link(soprobit) s(het) constr(1) ethresh(thresh) /*
> */ init from(a) long

number of level 1 units = 5080

Condition Number = 1639.1856

gllamm model with constraints:
 (1) [lns1]self = 0.0

log likelihood = -7055.990593194162

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
xsay						
s_china	2220871	.0883742	-2.51	0.012	3952974	0488769
s_age	.0019784	.0027754	0.71	0.476	0034612	.007418
s_male	.187026	.08026	2.33	0.020	.0297194	.3443327
s_educyrs	.0110663	.0081896	1.35	0.177	004985	.0271177
i1	1.016296	.1590159	6.39	0.000	.7046307	1.327962
i2	.9471709	.158769	5.97	0.000	.6359893	1.258352
i3	.6385328	.158199	4.04	0.000	.3284685	.9485972
i4	.5536792	.1582356	3.50	0.000	.2435431	.8638153
i5	.3936774	.1584527	2.48	0.013	.0831159	.7042389
_cut11						
china	-1.067561	.0586146	-18.21	0.000	-1.182444	9526787
age	.0014611	.0012901	1.13	0.257	0010674	.0039895
male	.0380037	.0361159	1.05	0.293	0327821	.1087896
educyrs	0002502	.0037184	-0.07	0.946	0075381	.0070377
_cons	.2177559	.1520234	1.43	0.152	0802044	.5157163
_cut12						
china	126661	.0695481	-1.82	0.069	2629728	.0096507
age	0025451	.0018357	-1.39	0.166	0061431	.0010528
male	0825773	.0504054	-1.64	0.101	18137	.0162155
educyrs	.0027462	.0051001	0.54	0.590	0072499	.0127423
_cons	25809	.105963	-2.44	0.015	4657737	0504063
_cut13						
china	.2679189	.0508883	5.26	0.000	.1681796	.3676582
age	.0005807	.0016031	0.36	0.717	0025613	.0037228
male	.0170187	.0466373	0.36	0.715	0743887	.1084261
educyrs	0014223	.0047722	-0.30	0.766	0107756	.007931
_cons	4891784	.0992565	-4.93	0.000	6837176	2946392
_cut14						
china	.6767611	.0815664	8.30	0.000	.5168938	.8366284
age	.0024734	.0023321	1.06	0.289	0020974	.0070442
male	1478691	.0701101	-2.11	0.035	2852824	0104558
educyrs	.0295294	.0067523	4.37	0.000	.0162952	.0427637
_cons	-1.498073	.145767	-10.28	0.000	-1.783771	-1.212375

Variance at level 1

equation for log standard deviaton:

vign: -.23655207 (.04105994)
self: 0 (0)

King et al. (2002) describe a more general model for the situation when there are several selfassessment questions with a set of vignettes for one of them. Their general model includes a shared random effect for the self-assessment questions, a common threshold model for one self-assessment question and the corresponding vignettes and separate threshold models for the other self-assessment questions. Such models and various extensions can also be estimated in gllamm, since they are special cases of GLLAMMs (Generalized Linear Latent And Mixed Models), see for example Rabe-Hesketh et al. (2002a).

References

- King, G., Murray, C. J. L., Salomon, J. A., and Tandon, A. 2002. Enhancing the validity of cross-cultural comparability of survey research. Submitted for publication. Downloadable from gking.harvard.edu/files/vign.pdf.
- Rabe-Hesketh, S., Pickles, A., and Skrondal, A. 2001. GLLAMM Manual. Tech. Rep. 2001/01, Department of Biostatistics and Computing, Institute of Psychiatry, King's College, University of London.

Downloadable from www.iop.kcl.ac.uk/iop/departments/biocomp/programs/gllamm.html.

- Rabe-Hesketh, S., Skrondal, A., and Pickles, A. 2002a. Generalized multilevel structural equation modeling. *Psychometrika*. Conditionally accepted.
- —. 2002b. Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal 2:1–21.