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1 Introduction

King et al. (2002) introduce a method for analyzing ordinal survey responses taking into
account individual differences in interpretation of the survey questions. In addition to
answering a survey question relating to their own situation (the ‘self-assessment’ question),
respondents answer the same question in relation to a number of hypothetical individuals
described by written vignettes. The responses to the vignettes are then used as anchors for
the self-assessment question by specifying a joint ‘chopit’ (compound hierarchical ordinal
probit) model for the self-assessment question and vignettes.

The purpose of this document is to show how the political efficacy example discussed in
Section 8.1 of King et al. (2002) can be estimated using the Stata program gllamm (Rabe-
Hesketh, Pickles, and Skrondal, 2001; Rabe-Hesketh, Skrondal, and Pickles, 2002b). The
gllamm program, simulated data and do-file for this example are available from

http://www.iop.kcl.ac.uk/IoP/Departments/BioComp/programs/gllamm.html

2 Brief description of the political efficacy example

2.1 The data

Surveys were carried out for the WHO in China (n = 371) and Mexico (n = 551) in 2002.
Respondents were asked

How much say do you have in getting the government to address issues that
interest you?
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and given the following set of ordinal categories in which to respond: (1) ‘no say at all’, (2)
‘little say’, (3) ‘some say’, (4) ‘a lot of say’ and (5) ‘unlimited say’.

The respondents were also given five vignettes describing hypothetical individuals with
varying degrees of political efficacy and were asked the same question as above regarding
each hypothetical individual (with appropriate substitutions for ‘you’). Possible covariates
include country, age, sex and years of education.

2.2 Model for self-assessment question

The response yi for person i is modelled as an ordinal probit model with underlying response

y∗i = x′iβ + εi,

where xi are covariates, β are fixed effects and εi is a residual error term

εi ∼ N(0, 1).

The observed responses k=1, · · · ,K are generated via a threshold model with person-specific
thresholds τk

i

yi = k if τk−1
i ≤ y∗i < τk

i ,

where −∞ = τ0
i < τ1

i < · · · < τK
i = ∞. The thresholds are modelled as

τ1
i = γ1′vi

τk
i = τk−1

i + exp(γk′vi), k = 2, · · · ,K, (1)

where vi are covariates and γk are parameters.

Here the underlying response y∗i can be interpreted as the true preceived political efficacy
of respondent i, on a scale that is comparable across individuals. The observed responses
result from different individuals applying different thresholds τk

i and are therefore no longer
comparable.

2.3 Model for vignettes

In order to anchor the self-assessment questions against the vignettes, it must be assumed
that there is a true political efficacy θj associated with the hypothetical person described
in the jth vignette j = 1, · · · , J . The true perception of the survey respondents differs from
this only by a random error term

z∗ij = θj + uij ,

uij ∼ N(0, σ2).

Note that, in contrast to the self-assessment question, the standard deviation σ of the error
term is now a free parameter. It is further assumed that the observed responses are generated
by applying the same thresholds as for the self-assessment question, i.e.,

zij = k if τk−1
i ≤ z∗ij < τk

i ,

where the thresholds are modelled as in (1).
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3 Estimation using gllamm

We will now analyze the original data, but note that the data provided in effic1.dta differ
from these since the responses were simulated as discussed below. We have six responses
or items per person; the self-assessment question yi and the vignettes zi1 to zi5 with corre-
sponding variables names xsayself and xsay1 to xsay5.

. use effic0, clear

. list xsay* in 1/5

xsayself xsay1 xsay2 xsay3 xsay4 xsay5
1. 1 5 1 2 5 2
2. 0 3 1 1 3 4
3. 1 1 1 5 5 5
4. 2 3 2 2 1 1
5. 2 4 3 2 2 1

Here the value 0 stands for ‘missing’. In order to use gllamm, the responses must be stacked
into a single variable. We will use the reshape command to achieve this and also delete
items with missing values:

. rename xsayself xsay6

. reshape long xsay, i(id) j(item)
(note: j = 1 2 3 4 5 6)

Data wide -> long

Number of obs. 981 -> 5886
Number of variables 12 -> 8
j variable (6 values) -> item
xij variables:

xsay1 xsay2 ... xsay6 -> xsay

. drop if xsay==0
(806 observations deleted)

. list id xsay item in 1/6

id xsay item
1. 1 5 1
2. 1 1 2
3. 1 2 3
4. 1 5 4
5. 1 2 5
6. 1 1 6

The linear predictors in the probit models (or the means of the underlying responses)
are x′β for the self-assessment question and θ1 to θ5 for the vignettes. To define these linear
predictors using a single set of covariates or ‘design matrix’, we need to generate dummy
variables, i1 to i6 for items 1 to 6:

. tab item, gen(i)

item Freq. Percent Cum.

1 844 16.61 16.61
2 842 16.57 33.19
3 841 16.56 49.74
4 845 16.63 66.38
5 849 16.71 83.09
6 859 16.91 100.00

Total 5080 100.00

. sort id item

(Continued on next page)
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. list id xsay i1-i6 in 1/6

id xsay i1 i2 i3 i4 i5 i6
1. 1 5 1 0 0 0 0 0
2. 1 1 0 1 0 0 0 0
3. 1 2 0 0 1 0 0 0
4. 1 5 0 0 0 1 0 0
5. 1 2 0 0 0 0 1 0
6. 1 1 0 0 0 0 0 1

The covariates x (china, age, male and educyrs) must now be multiplied by the dummy
variable for the self-assessment question which we will rename to self

. rename i6 self

. for var china age male educyrs: gen s_X=self*X

-> gen s_china=self*china

-> gen s_age=self*age

-> gen s_male=self*male

-> gen s_educyrs=self*educyrs

The linear predictors can now be defined in the gllamm command using

gllamm xsay s_china s_age s_male s_educyrs i1 i2 i3 i4 i5, ...

Each response is modelled as a scaled ordinal probit, with a separate scale for the self-
assessment question (sd(εi) = 1) and for the vignettes (sd(uij) = σ). In gllamm, we must
therefore specify a ‘scaled ordinal probit link’ using link(soprobit) and introduce het-
eroscedasticity using the s(het) option where het is an equation for the log of the scale:

. gen vign = 1-self

. eq het: vign self

We can use Stata’s constraints command to set the scale for the self-assessment question
to 1. In gllamm the relevant parameter is the log standard deviation [lns1]self which
must then be set to 0

. constraint def 1 [lns1]self=0

We now specify the model in (1) for the thresholds with the same covariates vi = xi as for
the linear predictor of the self-assessment question

. eq thresh: china age male educyrs

this model will be passed to gllamm using the ethresh(thresh) option. Since the six
responses are treated as a single ordinal response, we only need to specify a single threshold
model and there is no need to explicitly constrain the γk parameters to be the same across
items.

Since the model does not contain any random effects or latent variables, we can estimate
the model using the init option (stands for initial values, omitting any latent variables):

. gllamm xsay s_china s_age s_male s_educyrs i1 i2 i3 i4 i5, /*
> */ i(id) link(soprobit) s(het) constr(1) ethresh(thresh) /*
> */ init

number of level 1 units = 5080

Condition Number = 1643.3401

gllamm model with constraints:
( 1) [lns1]self = 0.0

log likelihood = -7062.131187808051
(Continued on next page)
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

xsay
s_china -.3628872 .0904038 -4.01 0.000 -.5400754 -.1856989

s_age .0058606 .0028128 2.08 0.037 .0003476 .0113735
s_male .1134398 .0809884 1.40 0.161 -.0452945 .2721741

s_educyrs .019557 .0082068 2.38 0.017 .0034721 .035642
i1 1.282264 .1606217 7.98 0.000 .9674518 1.597077
i2 1.193919 .1600941 7.46 0.000 .8801404 1.507698
i3 .8424784 .1589611 5.30 0.000 .5309204 1.154036
i4 .7919615 .1589452 4.98 0.000 .4804346 1.103488
i5 .6188468 .1590183 3.89 0.000 .3071766 .930517

_cut11
china -1.059206 .0591826 -17.90 0.000 -1.175202 -.9432106
age .0019404 .0013004 1.49 0.136 -.0006083 .0044891
male .0434652 .0363915 1.19 0.232 -.0278608 .1147912

educyrs -.0010787 .0037971 -0.28 0.776 -.0085209 .0063636
_cons .4389508 .1513253 2.90 0.004 .1423586 .735543

_cut12
china -.1607994 .0708768 -2.27 0.023 -.2997154 -.0218834
age -.0020513 .0018631 -1.10 0.271 -.0057029 .0016003
male -.0572983 .0504858 -1.13 0.256 -.1562487 .041652

educyrs .0016812 .005509 0.31 0.760 -.0091162 .0124787
_cons -.2621123 .1117188 -2.35 0.019 -.481077 -.0431475

_cut13
china .3439344 .0525479 6.55 0.000 .2409423 .4469264
age -.0010884 .0016392 -0.66 0.507 -.0043012 .0021244
male .0432661 .0472464 0.92 0.360 -.0493352 .1358675

educyrs -.0023726 .0050643 -0.47 0.639 -.0122985 .0075533
_cons -.4853311 .1039865 -4.67 0.000 -.6891409 -.2815214

_cut14
china .6279309 .0829145 7.57 0.000 .4654214 .7904403
age .0042546 .0023514 1.81 0.070 -.0003541 .0088632
male -.0977914 .072163 -1.36 0.175 -.2392283 .0436456

educyrs .0266069 .0073255 3.63 0.000 .0122492 .0409646
_cons -1.613507 .1485483 -10.86 0.000 -1.904656 -1.322357

Variance at level 1

equation for log standard deviaton:

vign: -.23828219 (.04228416)
self: 0 (0)

In terms of the model parameters, the estimates are given in Table 1 under ‘Real Data’.
These estimates are very close to the estimates in Table 2 of King et al. (2002).

Since the real data cannot be made available, we created artificial data by simulating
the responses from the model just estimated using a ‘post-estimation’ command for gllamm,
gllasim:

. drop xsay

. set seed 12345

. gllasim xsay

The data file effic1.dta available from the gllamm webpage contains these simulated re-
sponses in the same ‘wide’ form as the original data, so that all commands described in this
section can be repeated. However, the estimates will be a little different due to sampling
variability (see also Table 1 under ‘Simulated Data’):
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Table 1: Estimates using gllamm

Real Data Simulated Data
coeff. s.e. coeff. s.e.

� china -0.363 0.090 -0.222 0.088
age 0.006 0.003 0.002 0.003
male 0.113 0.081 0.187 0.080
education 0.020 0.008 0.011 0.008

1 china -1.059 0.059 -1.068 0.059
age 0.002 0.001 0.001 0.001
male 0.043 0.036 0.038 0.036
education -0.001 0.004 0.000 0.004
constant 0.439 0.151 0.218 0.152

2 china -0.161 0.071 -0.127 0.070
age -0.002 0.002 -0.002 0.002
male -0.057 0.050 -0.083 0.050
education 0.002 0.006 0.003 0.005
constant -0.262 0.112 -0.258 0.106

3 china 0.344 0.053 0.268 0.051
age -0.001 0.002 0.001 0.002
male 0.043 0.047 0.017 0.047
education -0.002 0.005 -0.001 0.005
constant -0.485 0.104 -0.489 0.099

4 china 0.628 0.083 0.677 0.082
age 0.004 0.002 0.002 0.002
male -0.098 0.072 -0.148 0.070
education 0.027 0.007 0.030 0.007
constant -1.614 0.148 -1.498 0.146

θ1 vignette 1 1.282 0.160 1.016 0.159
θ2 vignette 2 1.194 0.160 0.947 0.159
θ3 vignette 3 0.842 0.159 0.639 0.158
θ4 vignette 4 0.792 0.159 0.554 0.158
θ5 vignette 5 0.619 0.159 0.394 0.158

ln(σ) log scale for vignettes -0.238 0.042 -0.237 0.041
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. matrix a=e(b)

. gllamm xsay s_china s_age s_male s_educyrs i1 i2 i3 i4 i5, /*
> */ i(id) link(soprobit) s(het) constr(1) ethresh(thresh) /*
> */ init from(a) long

number of level 1 units = 5080

Condition Number = 1639.1856

gllamm model with constraints:
( 1) [lns1]self = 0.0

log likelihood = -7055.990593194162

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xsay
s_china -.2220871 .0883742 -2.51 0.012 -.3952974 -.0488769

s_age .0019784 .0027754 0.71 0.476 -.0034612 .007418
s_male .187026 .08026 2.33 0.020 .0297194 .3443327

s_educyrs .0110663 .0081896 1.35 0.177 -.004985 .0271177
i1 1.016296 .1590159 6.39 0.000 .7046307 1.327962
i2 .9471709 .158769 5.97 0.000 .6359893 1.258352
i3 .6385328 .158199 4.04 0.000 .3284685 .9485972
i4 .5536792 .1582356 3.50 0.000 .2435431 .8638153
i5 .3936774 .1584527 2.48 0.013 .0831159 .7042389

_cut11
china -1.067561 .0586146 -18.21 0.000 -1.182444 -.9526787
age .0014611 .0012901 1.13 0.257 -.0010674 .0039895
male .0380037 .0361159 1.05 0.293 -.0327821 .1087896

educyrs -.0002502 .0037184 -0.07 0.946 -.0075381 .0070377
_cons .2177559 .1520234 1.43 0.152 -.0802044 .5157163

_cut12
china -.126661 .0695481 -1.82 0.069 -.2629728 .0096507
age -.0025451 .0018357 -1.39 0.166 -.0061431 .0010528
male -.0825773 .0504054 -1.64 0.101 -.18137 .0162155

educyrs .0027462 .0051001 0.54 0.590 -.0072499 .0127423
_cons -.25809 .105963 -2.44 0.015 -.4657737 -.0504063

_cut13
china .2679189 .0508883 5.26 0.000 .1681796 .3676582
age .0005807 .0016031 0.36 0.717 -.0025613 .0037228
male .0170187 .0466373 0.36 0.715 -.0743887 .1084261

educyrs -.0014223 .0047722 -0.30 0.766 -.0107756 .007931
_cons -.4891784 .0992565 -4.93 0.000 -.6837176 -.2946392

_cut14
china .6767611 .0815664 8.30 0.000 .5168938 .8366284
age .0024734 .0023321 1.06 0.289 -.0020974 .0070442
male -.1478691 .0701101 -2.11 0.035 -.2852824 -.0104558

educyrs .0295294 .0067523 4.37 0.000 .0162952 .0427637
_cons -1.498073 .145767 -10.28 0.000 -1.783771 -1.212375

Variance at level 1

equation for log standard deviaton:

vign: -.23655207 (.04105994)
self: 0 (0)
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King et al. (2002) describe a more general model for the situation when there are several self-
assessment questions with a set of vignettes for one of them. Their general model includes
a shared random effect for the self-assessment questions, a common threshold model for
one self-assessment question and the corresponding vignettes and separate threshold models
for the other self-assessment questions. Such models and various extensions can also be
estimated in gllamm, since they are special cases of GLLAMMs (Generalized Linear Latent
And Mixed Models), see for example Rabe-Hesketh et al. (2002a).
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