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Outline

• Ordered categorical responses

– Single-level models

– Multilevel models

∗ Two-level random intercept models

∗ Cluster-specific and population average effects

∗ Multilevel random coefficient models

– Estimation methods

– Analysis of cluster randomized trial of sex education

• Unordered categorical responses

– Single-level models

– Multilevel models

– Analysis of abuse of antibiotics in young children in China
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I. Ordered categorical responses

• Only a small number of responses or ‘categories’ are possible,

ys, s = 1, · · · , S

• The categories are ordered,

y1 < y2 < · · · < yS , we′ll set ys = s

• Examples:

– Severity of symptoms (e.g. pain): ‘none’, ‘moderate’,

‘severe’

– Frequency of symptoms: ‘never’, ‘occasionally’, ‘nearly

every day’, ‘every day’

– Response to treatment: ‘progressive disease’, ‘no change’,

‘partial remission’, ‘complete remission’

– Diagnosis: ‘non-autistic’, ‘PDD-NOS’ (pervasive

development disorder), ‘autistic’

– Test results (e.g. breathing): ‘normal’, ‘borderline’,

‘abnormal’

– Satisfaction with treatment: ‘very dissatisfied’, ‘dissatisfied’,

‘satisfied’, ‘very satisfied’
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Latent response models

• Underlying the observed ordinal response yi for subject i is a

latent (unobserved) continous response y∗
i .

• A threshold model determines the observed response:

yi =


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1 if y∗i ≤ κ1

2 if κ1 <y∗i ≤ κ2

...
...

...

S if κS−1 <y∗i ,

• For a probit model, y∗i ∼ N(0, 1), with S = 3 categories:

latent response

de
ns

ity
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• The latent response is modelled as a linear regression without

an intercept (for identification)

y∗i = β1x1i + β2x2i + · · · + εi

= β′xi + εi
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Generalized linear models

• The cumulative probabilities are modeled as

Pr(yi > s) = F (β′xi − κs), s = 1, · · · , S − 1,

giving cumulative models. F is the inverse link function

• Proportional odds model (logit link):

Pr(yi > s) =
exp(β′xi − κs)

1 + exp(β′xi − κs)

log





Pr(yi > s)

1 − Pr(yi > s)



 = β′xi − κs

– The exponentiated regression coefficients can be interpreted

as odds ratios for high versus low scores regardless of

cut-point (proportional odds):

Pr(yi > s)/[1 − Pr(yi > s)]

Pr(yj > s)/[1 − Pr(yj > s)]
= exp(β′{xi − xj})

• Cumulative models are equivalent to latent response models:

Model Link F−1 Distribution of εi Variance of εi

Proportional odds logit logistic π2/3

Ordinal probit probit standard normal 1

Compl. log-log Compl. log-log Gumbel π2/6
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Two-level random intercept models

• Subjects i nested in clusters j (e.g. hospitals). Include a

random intercept uj for clusters in the latent response model

y∗ij = β′xij + uj + εij, uj ∼ N(0, τ 2), uj indep. of εij.

• The total residual ξij = uj + εij has variance

var(ξij) =















τ 2 + 1 for probit models

τ 2 + π2/3 for logit models

• The covariance between the total residuals ξij and ξi′j of two

subjects in the same cluster is τ 2 and the intraclass

correlation is

ρ ≡ Cor(ξij, ξi′j) =















τ 2/(τ 2 + 1) for probit models

τ 2/(τ 2 + π2/3) for logit models

• The latent responses for two units in the same cluster are

conditionally independent given the random intercept:

Cor(y∗ij, y
∗
i′j|xij, uj) = 0

If we do not condition on the random intercept, the correlation

is the intraclass correlation

Cor(y∗ij, y
∗
i′j|xij) = ρ
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Cluster-specific versus population average effects

• For a probit model, the ‘marginal’ or population average

response probabilities are

Pr(yij > s) = Pr(y∗i > κs) = Pr(β′xij + ξij > κs)

= Pr(−ξij ≤ β′xij − κs)

= Pr





ξij√
τ 2 + 1

≤ β′xij − κs√
τ 2 + 1





= Φ





β′xij − κs√
τ 2 + 1



 ,

where ξij = uj + εij.

– Therefore, the marginal effects of xij are β/
√

τ 2 + 1. To

achieve a given marginal effect, β must increase if τ 2

increases.

• The ‘conditional’ probabilities for a given cluster j are

Pr(yij > s|uj) = Φ





β′xij + uj − κs

1



 .

– Therefore, the conditional or cluster-specific effects β of xij

are greater than the marginal or population average effects

β/
√

τ 2 + 1.

Slide 8

'

&

$

%

Cluster-specific versus population average effects

cluster-specific, population average
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Multilevel random coefficient models

• Consider clustered longitudinal data with occasions i (level 1)

nested in subjects j (level 2) in hospitals k (level 3)

• Example of a three-level random coefficient model:

y∗ijk = [u
(2)
0jk + u

(3)
0k ] + [β1 + u

(2)
1jk + u

(3)
1k ]x1ijk + β2x2ijk + εijk

– u
(2)
0jk and u

(3)
0k are random intercepts at levels 2 and 3.

– u
(2)
1jk and u

(3)
1k are random coefficients of x1ijk.

– The random coefficients have zero means and the fixed

effect β1 of x1ijk represents the mean effect.

– Random effects at the same level are correlated, (u
(2)
0jk, u

(2)
1jk)

is bivariate normal.

• General three-level random coefficient model

y∗ijk = β′xijk + u
(2)′
jk z

(2)
ijk + u

(3)′
jk z

(3)
ijk + εijk
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Estimation

• Estimation of multilevel models with categorical responses,

also known as generalised linear mixed models (GLMMs), is

not easy because the likelihood does not generally have a

closed form.

• Marginal Quasilikelihood (MQL) and Penalized Quasilikelihood

(PQL) are approximate methods avaiblable in MLwiN and HLM.

– Two versions are available, first and second order

(MQL-1,MQL-2,PQL-1,PQL-2), the last being the best.

– Even PQL-2 sometimes produces biased estimates,

particularly when the clusters are small.

– The methods do not provide a likelihood.

• Maximum likelihood estimation requires evaluation of integrals

since the likelihood is marginal with respect to the random

effects.

– Numerical integration using Gauss-Hermite quadrature is

used in MIXOR/MIXNO (two-level only), aML, SAS PROC

NLMIXED (two-level only) and gllamm.

– Adaptive quadrature is superior to ‘ordinary quadrature’

which sometimes doesn’t work (e.g. large clusters, counts).

This is available in SAS PROC NLMIXED (two-level only) and

gllamm.

– HLM provides a 6th order Laplace approximation for

two-level models with dichotomous responses.
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Cluster randomized trial of sex education

• Schools were randomised to receive sex education or not

• Assessments pre randomisation, 6 months and 18 months post

randomisation

• One outcome is a question relating to ‘Contraceptive

self-efficacy’:

– “If my partner and I were about to have intercourse without

either of us having mentioned contraception, it would be

easy for me to produce a condom (if I brought one)”

– The questions is answered in terms of five ordinal categories:

‘not at all true of me’, ‘slightly true of me’, ‘somewhat true

of me’, ‘mostly true of me’, ‘completely true of me’.

• The data are multilevel with responses (level 1) from 1184

pupils (level 2) from 46 schools (level 3).

• Only 570 pupils always responded, 400 responded on some

occasions and 114 never responded.
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Models

• Occasions t, subjects j, schools k

• Covariates

– x1t [Time] (0, 1, 3)

– x2jk [Treat] (yes=1,no=0)

– x3tjk [Treat] × [Time]

• Model the probability of exceeding a category s, s = 1, 2, 3, 4

logit[Pr(ytijk > s)] = β1x1t +β2x2jk +β3x3tjk +u
(2)
jk +u

(3)
k −κs

• Estimation using adaptive quadrature in gllamm:

gllamm use treat time treat_time, i(id school) /*

*/ link(ologit) family(binom) adapt

• Conditional and marginal probabilities:

gen u1 = 0

gen u2 = 0

gllapred p_cond, mu us(u) above(2)

gllapred p_marg, mu marg above(2)
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Estimates

Single-level model Two-level model Three-level model

Parameter Est (SE) Est (SE) Est (SE)

β1 [Time] -0.12 (0.06) -0.13 (0.06) -0.13 (0.06)

β2 [Treat] -0.05 (0.14) -0.02 (0.19) -0.02 (0.19)

β3 [Time]×[Treat] 0.17 (0.08) 0.17 (0.09) 0.17 (0.09)

var(u
(2)
jk ) – 2.03 (0.31) 2.03 (0.31)

var(u
(2)
k ) – – 0.00 (0.00)

κ1 -3.54 (0.17) -4.41 (0.23) -4.41 (0.23)

κ2 -2.43 (0.13) -3.15 (0.19) -3.15 (0.19)

κ3 -1.18 (0.12) -1.58 (0.16) -1.58 (0.16)

κ4 0.16 (0.12) 0.25 (0.15) 0.25 (0.15)

Log-likelihood -2531 -2471 -2471
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Conditional relationships

• Probability of responding at least ‘mostly true of me’ (category

3)

• Relationship between the probability and occasion for the two

treatment groups, when the random intercept is -1, 0 and 1:

intervention group, control group
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Observed and predicted marginal proportions

intervention group, control group, • predicted, ◦ observed
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II. Unordered categorical responses

• Only a small number of responses or ‘categories’ are possible,

a, a = 1, · · · , A.

• The categories cannot be ordered a priori.

• Examples:

– Treatment decision: ‘chemotherapy’, ‘surgery’, ‘none’

– Health insurance choice: ‘NHS’, ‘PPP’, etc.

– Method of birth control: ‘pill’, ‘condom’, etc.

– Diagnosis: ‘meningitis’, ‘influenza’, ‘common cold’

• Unordered categorical responses often correspond to a ‘first

choice’ among a set of alternatives.

8
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Random Utility Models

• Unobserved ‘utility’ U a
i associated with each alternative

a=1, ..., A for unit i=1, ..., N

• Random utility models composed as

Ua
i = V a

i + εa
i

– V a
i is the linear predictor

– εa
i is a residual term (independent over i and a)

• Alternative f is chosen if

Uf
i > U g

i for all g 6= f

εa
i independent Gumbel distributed

m

Pr(fi) =
exp(V f

i )
∑A

a=1 exp(V a
i )

[Conventional multinomial logit]
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Covariate effects on the utilities

Linear predictor for unit i and alternative a:

V a
i = ma + ga′xi + b′xa

i

• Covariates and parameters:

– ma alternative specific constants

– xi varies over subjects (but not alternatives) and has fixed

effects ga varying over alternatives

Examples: Age of subject

– xa
i varies over alternatives (and possibly subjects) and has

fixed effects b not varying over alternatives

Example: Cost of treatment (could differ between countries)

• Identification:

– Probability of choosing alternative 1 among alternatives 1, 2

and 3 can be expressed in terms of utility differences

Pr(U1−U2 > 0 and U 1−U3 > 0)

– Therefore the location of V a
i is arbitrary:

exp(V 1
i )

∑

a exp(V a
i )

=
exp(V 1

i + ci)
∑

a exp(V a
i + ci)

– Solution: Last alternative S serves as reference alternative,

set mS =0 and gS =0.

9
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Multilevel models

• Consider three-level data with patients i (level 1) treated by

doctors j (level 2) working in hospitals k (level 3).

• We can include random effects in the linear predictor:

V a
ijk = ma + γ

a(2)
0jk + γ

a(3)
0j

+[ga′ + γ
a(2)′
jk + γ

a(3)′
k ]xijk

+[b′ + β
(2)′
jk + β

(3)′
k ]xa

ijk

• Random intercepts: γ
a(2)
0jk and γ

a(3)
0k

• Random Coefficients I: γ
a(2)
jk and γ

a(3)
k are alternative specific

random coefficients for subject-specific covariates xijk.

• Random Coefficients II: β
(2)
jk and β

(3)
k are random coefficients

for alternative-specific covariates xa
ijk.
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Use and abuse of antibiotics for API∗

• Acute respiritory tract infection (API) can lead to pneumonia

and death if not properly treated, but inappropriate frequent

use of antibiotics can lead to drug resistance.

• In the 1990’s the WHO introduced a program of case

management for children under 5 in China.

• Doctor’s antibiotic prescription was rated as ‘abuse’ if there

were no clinical indicators:

1. Abuse of serveral antibiotics

2. Abuse of one antibiotic

3. Correct use of antibiotics (reference-category)

• Data are multilevel with 2565 children i (level 1) treated by

134 doctors j (level 2) in 36 hospitals k (level 3).

• Covariates (xijk) include

– [Age] Age in years (0-5)

– [Temp] Body temperature, centered at 36oC

– [Paymed] Pay for medication (yes=1, no=0)

– [Selfmed] Self medication (yes=1, no=0)

– [Wrdiag] Wrong diagnosis (yes=1, no=0)

– [WHO] Hospital in WHO program (yes=1, no=0)

– [DRed] Doctor’s education (self-taught to med. school)

∗ Thanks to Min Yang for providing the data
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Models

• Children i treated by doctors j working in hospitals k

• There are no alternative-specific covariates

V a
ijk = ma + γ

a(2)
jk + γ

a(3)
j + ga′xijk

• Data:

doc child alt choice

1 1 1 0

1 1 2 1

1 1 3 0

1 2 1 0

1 2 2 0

1 2 3 1

• Estimation in gllamm

gen categ1 = alt == 1

gen categ2 = alt == 2

eq c1: categ1

eq c2: categ2

gllamm alt age temp ... , i(doc hosp) /*

*/ nrf(2 2) eqs(c1 c2 c1 c2) /*

*/ link(mlogit) family(binom) /*

*/ expanded(child choice m) basecat(3)
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Estimates

Abuse several Abuse one

Parameter Est (SE) Est (SE)

ga
0 [Cons] -1.64 (0.49) 0.23 (0.32)

ga
1 [Age] 0.09 (0.09) 0.19 (0.08)

ga
2 [Temp] -0.27 (0.13) -1.01 (0.12)

ga
3 [Paymed] 0.91 (0.41) 0.30 (0.31)

ga
4 [Selfmed] -0.78 (0.29) -0.42 (0.24)

ga
5 [Wrdiag] 1.80 (0.26) 2.08 (0.23)

ga
6 [WHO] – –

ga
7 [DRed] – –

Doctor-level variances

var(γ
a(2)
0 ) 0.43 (0.27) 0.51 (0.26)

Cov(γ
1(2)
0 , γ

2(2)
0 ) -0.47 (0.15)

Hospital-level variances

var(γ
a(3)
0 ) 2.50 (0.93) 0.23 (0.18)

Cov(γ
1(3)
0 , γ

2(3)
0 ) 0.68 (0.31)

Log-likelihood -730.6
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More Estimates

Abuse several Abuse one

Parameter Est (SE) Est (SE)

ga
0 [Cons] -5.72 (0.99) -0.23 (0.55)

ga
1 [Age] 0.07 (0.09) 0.17 (0.08)

ga
2 [Temp] -0.27 (0.13) -0.96 (0.12)

ga
3 [Paymed] 0.92 (0.40) 0.12 (0.32)

ga
4 [Selfmed] -0.86 (0.29) -0.49 (0.24)

ga
5 [Wrdiag] 1.85 (0.26) 2.08 (0.23)

ga
6 [WHO] -2.40 (0.62) -0.88 (0.33)

ga
7 [DRed] -0.62 (0.17) 0.08 (0.11)

Doctor-level variances

var(γ
a(2)
0 ) 0.46 (0.28) 0.43 (0.22)

Cov(γ
1(2)
0 , γ

2(2)
0 ) -0.44 (0.13)

Hospital-level variances

var(γ
a(3)
0 ) 0.88 (0.45) 0.11 (0.12)

Cov(γ
1(3)
0 , γ

2(3)
0 ) 0.31 (0.20)

Log-likelihood -716.2
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