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Treatment of liver cirrhosis: A joint survival and marker model

1 The joint survival and marker model

1.1 Latent marker model

Let tij be the time of the ith measurement occasion for patient j. The observed marker is denoted
yij at tij and is related to the latent or ‘true’ marker η

(2)
ij via the measurement model

yij = β0 + η
(2)
ij + εij , (1)

where εij∼N(0, θ).
A structural model for the latent marker is specified as

η
(2)
ij = γ1tij + γ2Tj + η

(3)
j + ζ

(2)
ij , Var(ζ(2)

ij ) = 0, (2)

where η
(3)
j ∼N(0, ψ) is independently distributed from εij .

1.2 Hazard model with latent covariate

Let trj be the rth death time survived by patient j or the patient’s own time of death or censoring
and let the hazard at trj be denoted hrj . A proportional hazards model with the latent marker
η
(2)
rj (at time trj) as covariate is specified as:

ln hrj = α0 + α1trj + α2t
2
rj + α3t

3
rj + λη

(2)
rj + α4Tj . (3)

Here the latent marker η
(2)
rj at time trj is obtained by replacing tij in (2) by trj .

2 Formulation as generalized linear latent and mixed model
(GLLAMM)

The survival data are first expanded as described in Section 2.5.1 and shown in the bottom table of
Display 2.1 on page 43. However, since the baseline hazard will be modeled as a smooth function
of time, we cannot ignore periods of observation from the time of the last contribution to a ‘risk
set’ until censoring as in Cox regression. For instance, the expanded data in the display should
have another row with i = 1, r = 4, dir = 0.5 and yir = 0. The required data expansion can easily
be achieved using Stata’s stsplit command.

The model can now be estimated using Poisson regression with the failure or death indicator
Dir (yir in Display 2.1) as response variable. As explained in Section 2.5.1, we must use the log of
the corresponding time intervals of observation, wir (denoted dir in Display 2.1), as an offset. We
stack these responses and the marker measurements into a single response vector yhij , where h = 1
corresponds to a marker measurement and h = 2 to the death indicator, i denotes the occasion
(previously denoted r for the survival model) and j the patient. Let d1hij be a dummy variable
equal to 1 if h = 1 and 0 otherwise and let d2hij be a dummy for h = 2. The linear predictor for
the response model can then be written as a three-level model

νhij = β0d1hij + α0d2hij + α1trjd2hij + α2t
2
rjd2hij + α3t

3
rjd2hij + α4Tjd2hij (4)

+ (lnwij)d2hij + η
(2)
ij (d1hij + λd2hij) + η

(3)
j · 0,
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see (1) and (3). Note that η
(3)
j does not contribute to the response model and is hence multiplied

by zero. The structural model remains as in (2) and can be written as
[

η
(2)
ij

η
(3)
j

]
=

[
γ1 γ2

0 0

]

︸ ︷︷ ︸
Γ

[
tij
Tj

]
+

[
0 1
0 0

]

︸ ︷︷ ︸
B

[
η
(2)
ij

η
(3)
j

]
+

[
ζ
(2)
ij

ζ
(3)
j

]
.

3 Estimation using gllamm

The variable names resp, treat, t, t2, t3, lnw, d1 and d2 correspond to yhij , Tj , tij , t2ij , t3ij ,
lnwij , d1hij , and d2hij , respectively.

To specify the response model in (4), we must first create all the necessary interactions with
d2:

gen d2_t = d2*t
gen d2_t2 = d2*t2
gen d2_t3 = d2*t3
gen d2_treat = d2*treat

gen d2_lnw = cond(d2==1,lnw,0) /* lnw was missing if d2=0 */

We can now define equations for the linear combinations of variables multiplying the level-2 and
level-3 latent variables η

(2)
ij and η

(3)
j in the response model. For η

(2)
ij , we require (d1hij + λd2hij),

eq lev2: d1 d2 /* coefficient of first variable set to 1 */

whereas we require 0 for η
(3)
j :

gen zero = 0
eq lev3: zero

The fixed part of the structural model (first row of Γ) can be specified using an equation for the
first latent variable. To let gllamm know that this is the equation for the first latent variable, the
second character of the equation name must be a ‘1’:

eq f1: t treat

Finally, we can specify the B matrix by defining a matrix with elements equal to ‘1’ corresponding
to coefficients we wish to estimate, all other elements being set to 0:

matrix B = (0,1\ 0,0)

However, we do not wish to estimate b12 which should be fixed at 1. We therefore define a constraint

cons def 1 [b1_2]_cons = 1

and another constraint to set the variance of the level-2 disturbance in the structural model to
zero

cons def 2 [occ1_1]d1 = 0

We are now ready to specify the gllamm command:

gllamm resp d1 d2 d2_t d2_t2 d2_t3 d2_treat, i(occ id) link(ident log) /*
*/ lv(var) fam(gauss poiss) fv(var) nocons offset(d2_lnw) eqs(lev2 lev3) /*
*/ nip(1 20) constr(1 2) geqs(f1) bmat(B)

occ and id are identifiers for the individual observations and subjects respectively and var is a
variable equal to 1 for marker responses and equal to 2 for death indicator responses. The link()
and family() options, together with lv(var) and fv(var) specify a linear model with gaussian
errors for the marker responses and a log-linear Poisson model for the failure indicator responses.
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Since the variance of the level-2 disturbance is zero, we avoid integrating over the level-2
disturbance by specifying only one integration point for level 2 using the nip(1 20) option. The
output is:

number of level 1 units = 73046
number of level 2 units = 73046
number of level 3 units = 488

Condition Number = 409.06292

gllamm model with constraints:
( 1) [b1_2]_cons = 1
( 2) [occ1_1]d1 = 0

log likelihood = -8422.867933859132

Coef. Std. Err. z P>|z| [95% Conf. Interval]

d1 7.88475 .1157757 68.10 0.000 7.657834 8.111666
d2 -7.95779 .1190091 -66.87 0.000 -8.191044 -7.724537

d2_t -.1528312 .0508363 -3.01 0.003 -.2524685 -.0531939
d2_t2 .0952418 .0232594 4.09 0.000 .0496543 .1408294
d2_t3 -.007631 .0024718 -3.09 0.002 -.0124756 -.0027865

d2_treat -.1791224 .1242597 -1.44 0.149 -.4226669 .064422
d2_lnw (offset)

Variance at level 1
------------------------------------------------------------------------------

3.4301326 (.09655311)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (occ)

var(1): 0 (0)

loadings for random effect 1
d1: 1 (fixed)
d2: -.38306696 (.03896087)

***level 3 (id)

var(1): 3.7132765 (.25822641)

B-matrix:
------------------------------------------------------------------------------

B(1,2): 1 (0)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 2 covariates:
t: .14781708 (.01683579)
treat: -.6387828 (.18535363)

------------------------------------------------------------------------------

so that β̂0 = 7.88, γ̂1 = 0.15, γ̂2 = −0.64, ψ̂ = 3.71, θ̂ = 3.43 α̂0 = −7.96, α̂1 = −0.15, α̂2 = 0.10,
α̂3 = −0.01, α̂4 = −0.18 and λ̂ = −0.38. The estimates in Table 14.8 were obtained using more
quadrature points, namely, nip(1 30).

For more information on gllamm, see http://www.gllamm.org
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