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SUMMARY. Alternative parameterizations and problems of identification and estimation of multivariate 
random effects models for categorical responses are investigated. The issues are illustrated in the context of 
the multivariate binomial logit-normal (BLN) model introduced by Coull and Agresti (2000, Biometrics 56, 
73-80). We demonstrate that the BLN model is poorly identified unless proper restrictions are imposed on the 
parameters. Moreover, estimation of BLN models is unduly computationally complex. In the first application 
considered by Coull and Agresti, an identification problem results in highly unstable, highly correlated 
parameter estimates and large standard errors. A probit-normal version of the specified BLN model is 
demonstrated to be underidentified, whereas the BLN model is empirically underidentified. Identification 
can be achieved by constraining one of the parameters. We show that a one-factor probit model is equivalent 
to the probit version of the specified BLN model and that a one-factor logit model is empirically equivalent 
to the BLN model. Estimation is greatly simplified by using a factor model. 
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1. Introduction 
We discuss the parameterization of multivariate random ef- 
fects models for categorical responses. We investigate two fun- 
damental statistical problems, identification and equivalence, 
and suggest the use of factor models. 

Identification is essential for consistent estimation of model 
parameters. The identification problem has been given am- 
ple attention in econometrics, where complex structural mod- 
els have been used for a long time. This stands in contrast 
with biornetrics, where much simpler models have tradition- 
ally been used. However, identification issues can no longer be 
ignored in biornetrics due to the popularity of more complex 
models such as random effects models. A main objective of 
random effects models is to properly parameterize the depen- 
dence among responses. There are many ways of doing this; 
random intercept and random coefficient modeling are the 
standard approaches in biometrics. Such models are special 
cases of factor models, which have been employed in psycho- 
metrics for nearly 100 years (cf., Spearman, 1904) but are 
rarely used in biometrics. We show how factor models can be 
used to structure the covariance matrix of the random effects 
and to reduce the computational complexity of multivariate 
random effects models. The concept of equivalence concerns 

the possibility of empirically distinguishing between differ- 
ent statistical models. We may sometimes take advantage of 
equivalence in simplifying estimation problems through the 
use of factor models. 

The importance of these ideas for multivariate random ef- 
fects modeling of categorical data is best conveyed by consid- 
ering a specific model. We investigate the multivariate bino- 
mial logit-normal (BLN) model for multiple binary responses 
recently suggested by Coull and Agresti (2000). Specifically, 
we will consider the BLN model used in their first applica- 
tion, where a dataset originally presented in Haber (1986) was 
analyzed. Infection status during four influenza outbreaks in 
Michigan in 1977, 1978, 1980, and 1981 was recorded for 263 
subjects, yielding four binary repeated responses per subject. 
Our investigation will be informal, but we will refer to the 
literature for extensive formal treatments when appropriate. 
2. The Multivariate Binomial Logit-Normal (BLN) 

2.1 The BLN Model as a Random Effects Logit Model 
Let ysr be the binary response for subject s, s = 1,. . . , N ,  
during the r th  influenza outbreak, r = 1 , .  . . , 4 ,  and let 
ys = (ysl, . . . , ys4)’ be the response vector for subject s with 
corresponding probability vector 7rs. The following model is 

Model 
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proposed by Coull and Agresti (2000): 

logit(lrs) = XsP + as, (1) 

where Xs is a covariate matrix, P is a vector of fixed co- 
efficients, and as is a vector of random intercepts with 
as - N ( 0 , E ) .  The logits therefore have a multivariate 
normal distribution and, conditional on the lrs, the responses 
are independent Bernouilli. In the influenza example, the 
covariate matrix is simply 

r i  o o 01 
0 1 0 0  

xs=/u 0 1 0 1 ’  
Lo 0 0 11 

so that the parameters represent the intercepts for each of 
the four responses. 

The advantage of specifying a vector of random effects, 
one for each response, is that the covariance matrix can 
be unconstrained, whereas the conventional (single) random 
intercept model implies that all correlations between the logits 
are one. Instead of estimating the 10 variances and covariances 
freely, Coull and Agresti (2000) impose a structure on the 
covariance matrix. In their retained model, the matrix is 

r g2- p1z2 P P ~  ~ 2 0 3  

(3) 
mu‘ ff‘ p l u l  p2u‘ 

P2U2 p202 p 2 2  u2 

X = var(a,) = 

The first three logits are therefore equicorrelated with 
correlation p1, whereas the correlation between the first three 
logits and the fourth is p2. This structure may be given 
a biological interpretation. The correlation among the first 
three logits, which is expected to be positive, could be due 
to a common susceptibility or frailty. On the other hand, a 
negative correlation is expected between the first three and 
the last logit if the final outbreak shares viruses with the 
preceding. In such a case, a prior infection would protect 
against infection during the last outbreak. 

Coull and Agresti (2000) estimate the model using four-di- 
mensional Gaussian quadrature, where the correlated random 
effects as are represented by a linear combination of indepen- 
dent standard normal random effects z using the Cholesky 
decomposition of the covariance matrix Q ,  with QQ’ = E, 
so that as = Qz. Integration is achieved by summing over a 
four-dimensional grid of quadrature points, in this case, using 
20 quadrature points per dimension. 

The likelihood can be expressed as 

x dzldz2d~3d~4,  

(4) 

where f(.) denotes standard normal densities, y = (y;, . . . , 
yh)’, X = (XI,.. . , XN), and xir and q: are the rth rows of 

The parameter estimates for the  BLN model reported in 
Coull and Agresti (2000) were P = (-4.0, -4.4, -4.7, -4.5), 
B = 4.05, and 81 = 0.43 and 82 = -0.25. The deviance was 
G2 = 6.3 with 8 (= (24 - 1) - 7) d.f. No standard errors were 
reported. 
2.2 The BLN Model as a Random Effects Latent Response 

The BLN model can alternatively be written as a latent 
response model, 

Model 

yst = XSP + as +us. (5) 
The elements of us have i.i.d. standard logistic distributions, 
with zero expectation and variance r2 f 3, and are independent 
of as. y; are latent responses generating the observed 
responses 

1 if y:, > O 
0 otherwise. 

Ysr  = 

The covariance matrix of the latent responses, conditional 
on the covariates, is 

a =  cov(ys* 1 X,) 

where v2 i s  equal to rr2/3. Note that 0 = X + cov(u;). 
2.3 The Multivariate Binomial Probit-Normal Model 
If a probit link is used instead of a logit link for the model, the 
elements of us in (5) have i.i.d. standard normal distributions 
instead of logistic distributions. Since the sum of two normal 
random variables (as + us) is normal, it follows that y: I 
Xs is multivariate normal for the binomial-probit normal 
(BPN) model. The covariance matrix of the latent responses 
conditional on the covariates is given by (7), where u2 in this 
case equals one. 

3. Identification 
A parametric statistical model is said to be identified if there 
is one and only one set of parameters that produces a given 
probability distribution for the observed variables. 

Under suitable assumptions, a necessary and sufficient 
condition for identification at  a parameter point is that 
the information matrix is nonsingular at the point. We 
refer to Koopmans and Reiersd (1950), Rothenberg (1971), 
and Bekker, Merckens, and Wansbeek (1994) for extensive 
treatment of identification, including formal definitions, 
assumptions, and theorems. Identification is crucial since it is 
closely related to the prospects of consistent estimation (cf., 
Gabrielsen, 1978). 

We note that Coull and Agresti (2000) did not discuss the 
identification status of the BLN model. 
3.1 Identification in the BPN Model 
For the BPN model, all information on the latent responses 
is contained in the first- and second-order moments since yi  1 
X, is multivariate normal. Since the observed responses are 
dichotomized versions of the latent responses, the probability 
distribution of the observed responses contains no information 
on the scale of the latent responses. Therefore, the information 

Xs and Q ,  respectively. in BPN models is contained in the first- and second-order 
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moments of the normalized latent responses (where the scale 
is set to unity, i.e., y ~ * ~ / ( u ~  + 

The marginal probability of the r th  response is 

prob(y,, = 1 1 x s T )  = prob(y& > 0 1 x s T )  = @ ~ (A) 1 

(8) 
where @ denotes the cumulative standard normal distribution. 
It follows that the thresholds (or integration limits) 

r = 1,2,3,4, (9) 
Pr 
m’ rr = - 

are identified. The thresholds are simply the means of the 
normalized latent responses. 

From equation (7), the off-diagonal elements of the 
correlation matrix of the latent responses are 

and 

P2U2 
P14 = P24 = p34 = - 

u 2  + 1’ 

These tetrachoric correlations pzJ (Pearson, 1900) are well 
known to be identified. 

Since the probability distribution of ys is completely 
determined by the thresholds and tetrachoric correlations, the 
parameters of the BPN model are not identified in this case. 
This can be seen by considering an arbitrary set of values 
for the model parameters PT, u, p i ,  and p2. We can change 
u and use equations (9)-(11) to obtain new values of the 
other parameters that generate the original thresholds and 
tetrachoric correlations. Underidentification is also evident 
from the fact that there are seven unknown parameters but 
only six identifying equations. In order for the model to be 
identified, suitable identification restrictions therefore need to 
be imposed. 

A convenient way to proceed is by fixing u, but u cannot 
be set to any positive value. Since lpll 5 1, the inequality 
u2 2 /p12(/(1- (pl2() must be satisfied, and similarly for ,514. 
When u is fixed, it follows from the tetrachoric correlations 
that p1 and p2 are identified. We also see that PI, p2, P3, and 
p4 are identified from the rT. 

Note that including a continuous covariate xsT in the design 
matrix does not alleviate the identification problem. The 
thresholds then become 

and a change in u can be counteracted by a suitable rescaling 
of the regression parameters. 

For a general treatment of identification in probit models 
with latent variables, see Skrondal (1996). 

3.2 Empirical Identafication in the BLN Model 
A model is said to be empirically underidentified for a 
sample if the estimated information matrix at the maximum 
likelihood estimates is nearly singular (cf., Wiley, 1973; 
McDonald and Krane, 1977). 

In this case, there are more than one set of parameters that 
produce almost identical maximum likelihoods, and standard 
errors and intercorrelations of parameter estimates corre- 

sponding to flat directions will be high. Collinearity among 
predictor variables in linear regression is a special case. The 
condition number, defined as the square root of the ratio of the 
largest to the smallest eigenvalue, is often used as a measure 
of how close a matrix is to singularity. 

We first consider the first- and second-order moments of the 
normalized latent responses for the BLN model. The marginal 
probability of the r th  response is 

prob(ysT = 1 1 xs) 
= prob(y,*, > 0 I xs) 

The shape of the cumulative probability distribution function 
of the standardized compound normal-logistic (asT + Gsr) /  

(u2 + r 2 / 3 ) l l 2  is determined by u, the standard deviation of 
the normally distributed asT, because the scale of the logistic 
random variable u s r  is fixed. The compound distribution 
becomes increasingly normal as u increases. For a given 
value of u, the marginal probability depends only on pT/ 
(u2 + ~ ~ / 3 ) ’ / ~ ,  the thresholds for the BLN model. These 
thresholds are analogous to the thresholds for the BPN model 
in (9) with 1 replaced by r 2 / 3 .  The correlations between the 
y&. (which are no longer called tetrachoric) take on the same 
form as in the probit case with the 1 in equations (10) and 
(11) replaced by r2 /3 .  We can constrain u to a constant and 
still obtain any set of thresholds and correlations as long as 

and similarly for p14. 

However, unlike the BPN model, the BLN model may 
be identified from third-order and higher order moments 
since y: is not multivariate normal (conditional on X,) but 
compound normal-logistic since as is normal and us logistic. 
Although u is not identified from the first- and second- 
order moments, it is likely to be identified from higher order 
moments because 0 determines the degree of normality of the 
compound distribution. However, because of the constraint in 
equation (14), there may not be a value of u that can generate 
both appropriate second-order and higher order moments of 
the latent responses for a particular dataset. 

We moreover expect that there is little information 
on u from the probability distribution of the observed 
(dichotomized) responses for a number of reasons: 

(1) The density of the sum y:, of two random variables, 
composed of a normal a s r  and a logistic usT, is fairly 
normal even for small u due to the similarity of the 
normal and logistic distributions. 

(2) The third-order and higher order moments of the latent 
responses y: have a high sampling variability. 

(3) The observed, dichotomized responses ys retain little 
of the information in the higher order moments of y:. 

Hence, we conjecture that the BLN model is empirically 
underidentified. 

The validity of our conjecture was investigated in the 
context of the influenza example. Using purpose-written code 
in Stata (StataCorp, 1999), we estimated the parameters 
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Table 1 
Parameter estimates, standard errors, and deviance 
for  constrained and unconstrained versions of the 
BLN model (20 quadrature points per dimension) 

Table 2 
Correlation matrices of parameter estimates for 
the B L N  model; above the diagonal, constrained 
model; below the diagonal, unconstrained model 

__ 
P1 
P2 
P3 
P4 
u 
P1 
P2 

G2 

Estimate 

-4.04 
-4.42 
-4.69 
-4.56 

4.06 
0.43 

-0.25 

6.28 

Standard errors P1 P2 P3 P4 U P1 P2 

Unconstrained 

6.85 
7.34 
7.77 
7.57 
7.99 
0.28 
0.20 

Constrained 

0.39 
0.41 
0.42 
0.42 

0.10 
0.12 

- 

of the BLN model retained by Coull and Agresti (2000) 
by maximum likelihood (using S t a t a ’ s  modified Newton- 
Raphson algorithm). The parameter estimates were nearly 
identical to those of Coull and Agresti and are shown in 
Table 1. 

We estimated the information matrix of the parameter 
estimates for both the Coull and Agresti (2000) version of 
the BLN model and a version where cr was constrained 
to 4.06. This particular constraint, equal to the maximum 
likelihood estimate, was simply chosen to enable us to 
compare the magnitude of the estimated standard errors 
for the models on the same scale. The information matrices 
were estimated by the negative Hessian matrix of the log- 
likelihood function, which was obtained using numerical first 
and second derivatives of the log-likelihood computed by 
S t a t a ’ s  maximum likelihood functions. For the constrained 
model, the condition number for the information matrix 
was merely 5.2. In contrast, the condition number for the 
unconstrained model was 179.5, which is extremely large (the 
smallest eigenvalue was less than 0.004). Thus, the estimated 
information matrix for the BLN model as specified by Coull 
and Agresti is almost singular. 

Inverting the estimated information matrices, we obtained 
the estimated covariance matrices of the parameter esti- 
mates. As can be seen in Table 1, the estimated standard 
errors decreased substantially when cr was fixed. The cor- 
relations of the parameter estimates are shown in Table 2. 
For the unconstrained model, the parameter estimates were 
highly intercorrelated, most correlations approaching f l ,  the 
smallest correlation (in absolute value) being -0.79, whereas 
the highest correlation for the constrained model was 0.19. 

These results all suggest that the BLN model is empirically 
underidentified. An identification restriction, similar to the 
BPN model, should be imposed to obtain stable estimates. 

We have argued that, although the BLN model is not 
identified from the first- and second-order moments, it may be 
identified from higher order moments. Having demonstrated 
empirical underidentification, we now investigate whether this 
is due to the scarce information in the higher order moments. 
For a range of values of u, we computed the other parameters 
to preserve the thresholds and correlations implied by the 
maximum likelihood solution using equations (9), (lo), and 
(11). The models with these different sets of parameter values 
imply identical first- and second-order moments of the latent 

P1 1 0.190 0.187 -0.083 - 0.050 -0.025 
p2 0.997 1 0.185 -0.080 - 0.062 -0.033 
P3 0.997 0.998 1 -0.077 - 0.069 -0.037 
P4 0.997 0.997 0.997 1 0.014 -0.045 
c -0.998 -0.998 -0.999 -0.998 1 

0.941 0.942 0.942 0.941 -0.942 1 -0.106 

- 

- - 

p2 -0.814 -0.815 -0.815 -0.815 0.815 -0.788 1 

responses but different higher order moments (the greater u, 
the more the moments will resemble those of the multivariate 
normal distribution). The deviance G2 of these models is 
plotted against cr in Figure 1, where u increases from 1.35, 
the lowest value consistent with the correlations of the 
latent responses, to 8. The deviance hardly changes at all 
although the higher order moments were deliberately ignored 
in determining the other parameters for each value of u. 
This provides direct evidence for the scarcity of information 
in the higher order moments of the latent responses. Note 
that the curve in Figure 1 represents an upper bound for the 
deviance corresponding to  the profile likelihood for u since the 
other parameters are not estimated by maximum likelihood. 
Estimating the model with u fixed at 8.2, e g ,  gives a deviance 
of only 6.53. 

It should be noted that empirical underidentification does 
not imply lack of theoretical identification because singularity 
is assessed at the parameter estimates (not the true values) 
and fallible numerical methods are used (e.g., McDonald 
and Krane, 1979). Also note that the empirical identification 
problem is a general feature of BLN models whatever the 
number of responses unless proper parameter restrictions are 
imposed. 

4. Factor Models 
A factor structured latent response model has the following 
form: 

= % X S  + A h ?  + %r, (15) 

where qs is a vector of m factors that have a multivariate 
normal distribution, A, is a vector of factor loadings of the 
r th  latent response on the rn factors, 7, is a vector of fixed 
effects, and usr an error term. Seminal contributions to the 
identification of factor models for directly observed responses 
include Reiersml (1950a) and Anderson and Rubin (1956), 
and a modern account is given by Bekker et al. (1994). 
However, there is a paucity of research regarding identification 
of factor structured latent response models. The only detailed 
treatment we are aware of is Skrondal (1996). 

Here we consider two versions of the factor structured latent 
response model: 

0 The factor structured logit (FSL) model, where usr is 

0 The factor structured probit (FSP) model, where usr is 
logistic. 

standard normal. 
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Figure 1. Deviance (G') for different values of u. The other 
parameters have been computed to preserve the first- and 
second-order moments implied by the maximum likelihood 
solution. 

The BLN model with an unstructured covariance matrix 
can be formulated as a special case of the general FSL model. 
Specifically, as many correlated factors are specified as there 
are responses and A, are zero vectors apart from ones in 
position T .  However, typically the number of factors required 
will be much smaller than the number of responses. Consider 
the one-factor model, 

= ̂ /r + A T v S  + U S T .  (16) 

The FSL version of this model is known as the (two- 
parameter) logistic test or item-response model in psychc- 
metrics (e.g., Birnbaum, 1968) and was presented in equation 
(11) of Coull and Agresti (2000). If there are at least three 
responses, the model is identified as long as the variance of the 
latent variable is constrained to an arbitrary positive constant 
(typically one) or, alternatively, if one of the factor loadings is 
constrained to an arbitrary nonzero constant (typically one). 
In this article, we use the latter approach. However, the choice 
of restriction is immaterial in the sense that the resulting 
models are equivalent as described in the subsequent section. 

The advantage of using a one-factor model to structure the 
covariance matrix is that we now only have to integrate over 
one random effect, qs. The likelihood is 

x dvs, (17) 

where + is the factor variance, f(qs; +) is the normal density 
with variance +, and F represents the cumulative standard 
normal distribution for the FSP model and the cumulative 
logistic distribution for the FSL model. 

5. Equivalence 
Consider two statistical models, both identified and with the 
same number of unknown parameters. The models are said to 

be equivalent if they are reparameterizations, i.e., there 
are one-to-one functions relating the parameters across the 
models t o  produce identical probability distributions for the 
observed variables. 

Equivalence is a fundamental statistical issue since it is 
impossible to distinguish between equivalent models empiri- 
cally. This is, of course, detrimental when the models repre- 
sent different substantive data-generating processes. On the 
other hand, we may sometimes take advantage of equivalence 
in simplifying estimation problems, as is shown below. 

We refer to Luijben (1991) and Bekker et al. (1994) for 
extensive treatments of equivalence, including formal defini- 
tions, assumptions, and theorems. 

5.1 Equivalence Between the BPN and FSP Models 
Consider a one-factor FSP model with the constraints A1 = 
A2 = A3 = 1. If var(vs) = $J, the covariance matrix of the 
latent responses becomes 

Therefore, the thresholds are 

and 

and the tetrachoric correlations are 

and 

Note that these equations imply the same restrictions as 
the identified BPN model. There are no restrictions on the 
thresholds for either model since there is a free parameter for 
each threshold. The tetrachoric correlations are constrained 
in both models but in an identical way; the tetrachoric 
correlations involving the fourth occasion are constrained 
to be equal and the remaining correlations are specified as 
equal. Thus, the thresholds and the tetrachoric correlations 
are structured in the same way for the restricted one- 
factor FSP model and the BPN model. Since the probability 
distribution of probit models is completely characterized by 
these quantities, it follows that the restricted one-factor FSP 
model is equivalent to the BPN model. 

Equating the structures put on the thresholds and tetra- 
choric correlations for the BPN and FSP models, functions 
relating the parameters across models can be expressed as 
follows: 
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and 

where u2 is fixed to  ensure identification. 
5.2 Empirzcal Equavalence Between the BLN and the Factor 

We say that two models are empirically equivalent for a 
sample if there are one-to-one functions relating the para- 
meters across models such that almost identical likelihoods 
are produced. 

Using the same arguments as in the previous section, we 
expect that one-factor FSL and FSP models can generate the 
same first- and second-order moments of the latent responses 
as the BLN model. Any difference in the likelihoods can 
only be due to higher order moments, which were shown in 
Section 3.2 to have minimal effect on the goodness of fit. We 
therefore expect the one-factor FSL (and FSP) model to have 
nearly identical fit to the (constrained or unconstrained) BLN 
model of Coull and Agresti (2000). Of course, the advantage 
of the FSL and FSP models is that the dimensionality of 
integration is substantially reduced. 

The constrained single-factor models were fitted using 
the Stata program gllamm (Rabe-Hesketh, Pickles, and 
Skrondal, 2000; Rabe-Hesketh, Pickles, and Taylor, 2001) 
using 20 quadrature points. The parameter estimates and 
their standard errors are given in Table 3. The parameter 
estimates changed at most in the fifth decimal place when 40 
quadrature points were used, and the condition numbers for 
the estimated information matrices were 3.5 and 3.9 for the 
FSL and FSP models, respectively. 

Functions approximately relating the BLN and FSL 
parameters are obtained by substituting n2/3 for 1 in the 
formulas derived in Section 5.1. Substituting the maximum 
likelihood estimates for the FSL parameters, we obtain values 
that are very close to, the maximum likelihood estimates 
for the BLN model: p = (-3.87,-4.27,-4.55,-4.30), 61 
= 0.41, and j 2  = -0.25. The fit of the BLN, FSL, and 
FSP models was also almost identical, being G2 = 6.28, 
6.58, 6.26, respectively. This is due to the fact that, as 
expected, the implied first- and second-order moments of all 
three models were nearly identical: for the BLN, FSL, and 
FSP models, respectively, the thresholds are estimated as 

-1.05, -1.03, -1.06, ?4 = -1.03, -0.97, -1.03. The correla- 
tions of the latent responses are estimated as p12 = pi3 = 
p22 = 0.36,0.34,0.36 and pi4 = p24 = p34 = -0.21, -0.21, 
-0.20. The greater similarity of the probit estimates with the 
BLN estimates could be due to the dominance of the normal 
component in the BLN model since the estimated variances of 
the normal and logistic components were 16.4 (=4.052) and 
3.3 (=7r2/3), respectively. 

We conclude that the BLN model is empirically equivalent 
to the factor structured alternatives FSL and FSP. There 
seems to be no biological argument in favor of the BLN 
specification as compared with the factor structured models. 
Coull and Agresti’s (2000) motivation for the BLN model 
appears to be the desire to fit a realistic correlation structure 

Models 

= -0.91,-0.87, -0.91, ?2 = -0.99,-0.96,-1.00, ?3 = 

Table 3 
Parameter estimates, standard errors, and 

deviance for the factor structured logit (FSL) 
and probit (FSP) models (20 quadrature points) 

Logit model Probit model 

Estimate SE Estimate SE 

71 -1.95 0.24 -1.14 0.13 
72 -2.15 0.25 -1.24 0.14 
73 -2.29 0.26 -1.32 0.14 

-1.88 0.25 -1.09 0.12 
1.71 0.60 0.56 0.19 

-0.54 0.32 -0.49 0.28 
T 
A4 

G2 6.58 - 6.26 - 

to the responses. However, the one-factor models are clearly 
preferred to the BLN model since they require integration in 
only one dimension instead of four. In practice, estimating the 
BLN model took about 8000 times as long as estimating the 
factor models (20 quadrature points used per dimension). 

6. Discussion 
The conclusion of our investigation is that (1) factor 
models should be more widely used in biometrics and (2) 
the fundamental statistical concepts of identification and 
equivalence should be given more attention in biometrics. 

The BLN model is empirically underidentified unless 
proper restrictions are imposed on the parameters. This 
does not invalidate the BLN model per se but implies that 
identification must be taken seriously when BLN models 
are specified. Otherwise, identification problems such as that 
uncovered for the application of Coull and Agresti (2000) may 
be encountered. 

Investigation of identification does not only serve to 
reveal underindentified specifications and suggest identifying 
restrictions. It may also lead to the discovery of identified 
models that are less restrictive than those conventionally 
used (e.g., Skrondal, 1996, Chapter 10). At first glance, the 
possibility of identification of all parameters in models with a 
logit link appears to be a definite advantage as compared with 
the probit models. The situation is somewhat similar to that 
discussed by Reiersprl (1950b), where an errors in variables 
model is identified if and only if at least one of the latent 
variables is not normally distributed. However, identification 
is based on scarce information and very large samples are 
likely to be required to ensure empirical identification of BLN 
models. Moreover, the fact that only first- and second-order 
moments can be used for identification in the probit models 
makes the analytical analysis of identification tractable. 

We recommend the latent response formulation of random 
effects models for categorical responses to facilitate the 
analysis of identification and equivalence. Formulating such 
models as generalized linear mixed models with logit (or 
probit) links, g ( . ) ,  would also give the misleading impression 
that the one-factor logit (or probit) model, g(nsr )  = yr+Arqs, 
is very restrictive because, as pointed out in Coull and Agresti 
(ZOOO), it specifies that all correlations among the logits (or 
probits) are equal t o  1 or -1. However, these restrictions do 
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not apply to the latent responses underlying the observed 
responses. 

Numerical integration is required over as many dimensions 
as there are responses in the approach of Coull and Agresti 
(2000). Presently, this is unfeasible if there are more than a 
few responses. To reduce the integration problem, we have 
suggested factor structured models. For the first example in 
Coull and Agresti, we have demonstrated that the probit 
version of their model is equivalent to a constrained one- 
factor model. Their BLN model is empirically equivalent to 
a constrained factor structured logit (FSL) model. For more 
complex situations, a higher dimensional factor model may 
be required. However, the dimensionality of the factor model 
will in practice be considerably lower than the number of 
responses. The factor approach is hence clearly superior from 
a computational point of view. 

Models commonly used in biostatistics can be derived as 
special cases of factor models. The random intercept model is 
obtained when all factor loadings are constrained to be equal 
to one in the one-factor model. For balanced data like those 
considered here, random coefficient models are obtained as 
multidimensional confirmatory factor models where loadings 
are constrained to particular constants (Skrondal, 1996). 
Factor modeling can be performed both in exploratory and 
confirmatory mode. In the exploratory mode, we initially 
suggest approximating the unstructured covariance matrix 
with a well-fitting factor model with as low a dimensionality as 
possible. Subsequently, the estimates from such a model may 
suggest factor models with fewer parameters. In the confirm- 
atory mode, theory, previous research, or the experimental 
design may prescribe a specific factor structure. 

Factor models with a variety of link functions and error 
distributions can be estimated by maximum likelihood 
using the software gllamm. The program handles multiple 
correlated factors, multilevel models, mixed responses, linear 
parameter constraints, and semiparametric maximum likeli- 
hood where no distributional assumptions need be imposed on 
the factors. The class of models considered in this article can 
also be fitted in SAS PROC NLMIXED. Useful treatments 
of factor models include Lawley and Maxwell (1971) for 
continuous responses and Bartholomew and Knott (1999) for 
continuous and categorical responses. 
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RESUME 

Nous 6tudions diffhrents parametrages et probliime d’identifi- 
cation et d’estimation d’un model multidimensionnel B effets 
aleatoires pour des variables B expliquer qui sont catBgorielles. 
Les rBsultats sont illustres avec le model binomial logit-nor- 
male multidimensionnel (BLN) introduit par Coull et Agresti 
(2000). Nous demontrons que le model BLN est ma1 identifie 
a moins que des restrictions particulihres ne soient imposkes 
sur les paramittres. De plus ces estimations conduisent B des 

calculs trop complexes. Dans la premikre application BtudiBe 
par Coull et Agresti, l’identification du modde est tr&s 
instable avec des paramgtres trks corrBlBs et d’Bcart-type 
klev6. On demontre qu’une version probit normale du 
model BLN est sous identifiBe alors que le BLN model 
est empiriquement sous identifi6. L’identification peut Btre 
peut 6tre complitte en imposant une contrainte sur l’un des 
paramktres. Nous montrons que le model probit B un facteur 
est Bquivalent ?L la probit version du moditle BLN specific et 
que le model logit B un facteur est empiriquement Bquivalent 
au BLN modhle. L’estimation est grandement simplifiee par 
l’utilisation d’un modde B facteur. 
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The authors replied as follows: 

We thank Rabe-Hesketh and Skrondal for pointing out the 
empirical underidentification of the u parameter in $the first 
example we presented. Our investigations of the model in this 
example focused on the impact of different starting values 
and different numbers of quadrature points, and we did not 
compute standard errors. We should have done so since, as 
the authors show, this would have indicated the problem. We 
used only {bi} and not 2 in our interpretations of the model 
fit, so the substantive conclusions we made using this model 
are correct. 

We agree that identifiability is an important aspect of 
model formulation and model checking and believe readers 
will benefit from reading the authors’ impressive discussion of 
this. However, we  do not agree with some general comments 
in the article, such as the statement in the abstract that “. . . 
the BLN model is poorly identified unless proper restrictions 
are imposed on the parameters” and the statement at the 
end of Section 3 that ‘ I . .  . the empirical identification problem 
is a general feature of BLN models whatever the number of 
responses unless proper parameter restrictions are imposed.” 
For instance, this problem does not occur in other applications 
we have made of the model. Thus, we worry that readers may 
get the impression that the model itself is problematic. We 
believe the model is fine as long as one does not make an 
identification error, and of course this is true for any form of 
model. 

The developmental toxicity example in Section 3.2 of Coull 
and Agresti (2000) illustrates this. In this example, the 
condition numbers from SAS PROC NLMIXED for the BLN 
model with no constraints on the variance-covariance matrix 
(model (3) in Table 2 of our article) and the final model that 

. 

we used (model (4) in Table 2) are both approximately seven. 
Thus, the parameters in the BLN model are identifiable. 

Given that the parameters in a BLN model can be 
identified, the question becomes whether it is worthwhile to 
consider this class of models separately from the general factor 
structured logit models (FSL) described by Rabe-Hesketh and 
Skrondal. Indeed, the authors note that the BLN model is 
a special case of the FSL model since the latter specifies 
both factor loadings and a multivariate normal latent factor. 
We believe that this distinction is worthwhile for reasons of 
interpretability. Often, it is intuitively natural to envision 
correlation patterns among multivariate binomial responses 
as arising solely from correlated random effects in a logistic 
regression model. Focus on this smaller class of models 
is analogous to the separate study of the special class of 
generalized linear mixed models (McCulloch and Searle, 2001) 
within the larger class of generalized factor-analytic latent 
variable models. 

As an illustration of this interpretability advantage, 
consider the leading crowd data analyzed with a random 
effects model by Agresti et al. (2000) and also in a technical 
report version of our article. A sample of schoolboys was 
interviewed twice, several months apart, and asked about 
their self-perceived membership in the “leading crowd” and 
about whether one must sometimes go against his principles 
to be part of that leading crowd. Thus, there are two binary 
variables, which we refer t o  as membership and attitude, 
measured at each of two interview times for each subject. 
Agresti et al. (2000) analyzed these data with a multivariate 
logit model that is a special case of the general BLN model 
with random effects for attitude and for membership. In this 
example, it is easy to imagine the existence of underlying 
correlated membership and attitude variables. As elements 
of a multivariate normal covariance matrix, the estimates in 
2 are easily understood; these suggest that there is more 
heterogeneity with respect to membership than attitude and 
that the random effects have a weak positive correlation. This 
approach is also attractive in that it is a continuous analog 
to discrete latent class models proposed by Goodman (1974) 
based on two associated binary latent variables. More general 
factor-analytic models that set some factor loadings equal to 
one and estimate others do not provide direct estimates and 
associated standard errors of this latent correlation. 

We agree with Rabe-Hesketh and Skrondal that there are 
also advantages of the FSL formulation. Using the BLN 
formulation, one cannot specify a one-factor solution yet allow 
a general correlation structure among the multiple logits. As 
the authors mention, this flexibility may allow one to fit a 
simpler model, yielding a computational advantage in some 
settings. These models also represent a natural extension of 
the traditional factor analytic methods for normal data. 

In summary, we believe that the BLN formulation for 
multivariate binomial responses should not be summarily 
dismissed. The parameters in the models can be made 
identifiable, and they often have appealing interpretations. 
In choosing between the correlated random effects and factor 
formulations, we believe that one should weigh the advantages 
and disadvantages of each approach in the context of a given 
application. 
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