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Basic idea of latent variable models

» What is a latent variable?
e Random variable »; for unit j whose realized values are hidden
e (Hierarchical Bayes: n; exchangeable, prior has free hyperparameters)
e Properties must be indirectly inferred based on a statistical model
connecting observed variables y’; = (y1;,y2;, - - -, Ynj) t0 n;
» Basic construction principle of latent variable models:
Conditional independence of observed variables given latent variable

Path diagram

e Pr(y.|n;) = 1Pr Yii|n; unit j
(v;lm;) 1131 (ijIn;) @

e Dependence among y;; for unit j
induced by n;
= Infer properties of n; from Pr(y ;)
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Outline

Classical latent variable models
e Factor analysis
e ltem response theory
e Generalized linear mixed models
e Latent class models
e (Skip structural equation models)

Generalized linear latent and mixed models (GLLAMMS)

Examples of GLLAMMs
e Several examples
e Multilevel structural equation models
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Uses of latent variables

Hypothetical constructs

True variables (free from measurement error)
Unobserved heterogeneity

Missing data

Device to induce dependence between different response types
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» Common factor n; underlies different continuous variables y;;

e Spearman’s (1904) factor g explains correlations between test
scores in different subjects (French, English, Math, Music, etc.)

Factor analysis

» Unidimensional factor model for ith variable for unit j:

Yi; = Bi + Ay + €45

B, is intercept

A, is factor loading

n; ~ N(0, ) is common factor
€;; ~ N(0, 6;) is unique factor

or  E(yijlnj) = vij = Bi + Xinj

Item response model

» Measurement model for binary data

¢ In educational testing, ability n; explains performance in test
items (y;; = 1: correct, y;; = 0: incorrect)

» Two-parameter logistic (2-PL) model for ith item for person j

logit[Pr(y;; =1|n;)] =

unit j

e For identification, sety =1o0or A\; =1 €1 €9

e [3; is item intercept

e )\; is item discrimination

e 1, ~ N(0, ) is person ability
e —f;/); is item difficulty

Pr(y:;=1n;)

3 Pr(yi;=1lnj=—PBi/Ai) = 0.5

e Raschmodel: \; =1

» Measurement model — It is often assumed that \; =1 and 0; = ¢

Multidimensional measurement model

» Several latent traits, e.g. verbal and spatial intelligence

» Model for vector of linear predictors v

v; = B+An;, n;~N(0,¥)

» Common factor model with logit link
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vij = Bi+ \inj
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Generalized linear mixed model (GLMM)

» Regression model for clustered data where latent variables n; induce
within-cluster dependence of y;; given covariates

e Longitudinal: 7 is occasion or time-point (level 1), j is unit (level 2)

e Cross-sectional: 7 is unit (level 1), j is cluster (level 2)

e Say ‘level-1 unit i’ and ‘level-2 unit j’

» Ex: Independent clusters (between-item) two-dimensional model
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» Generalized linear mixed model (GLMM)

unit 5 v; = X;B8+2Z;n;,

» EX: n; = 3, Zj :Xj (n]- X 2)
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Similarity of measurement model and GLMM

» Models for v

Measurement model: v; = 18+ An;

Generalized linear mixed model: v; = X;B8+Z;n;

» Measurement model resembles GLMM where:
e Items correspond to level-1 units and persons to level-2 units
¢ Identity matrix I replaces covariate matrix X;

o A replaces Z;
o A does not vary between persons; elements are parameters
o Z; varies between level-2 units; elements are fixed constants

» Will see that GLLAMMSs unify measurement models and GLMMs
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GLLAMM response model:
Unifying latent variable models

» Level-1 units i nested in level-2 units j, etc. up to level L

L M
v = X843 S aZOAY
=2 m=1

e Measurement model:

v 10 0]fg 10 0]y, B+ \
mi =10 1 0 ﬁ2]+n§§) 0 1 0 {&]— Ba + {2 A
va; 0 0 1|LPs 0 0 1|L*s B + 0\ s
v, x B 7.(2) AP

3 15 1

e Generalized linear mixed model:

vij 1z, 5 1 T1j B+ ng) + (B2 + Wé?)xlj
2 2
vaj | = |1 @y [5; + 77%;') 1|+ ";j) x5 | = | B+ 7753) + (B2 + 77%))12;'
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Exploratory latent class model

» Unit 5 falls into group (latent class) ¢ with probability 7. (c =1,...,C)

» Each latent class characterized by different set of response
probabilities for binary variables y;; (i = 1,...,n)
¢ In medical diagnosis, latent classes are diseases and variables
are diagnostic test results

» Exploratory latent class model

o n-dimensional discrete latent variable n;
discrete values {e1, . . ., ec} with probabilities {r1, ..., 7c}

e Conditional response probabilities for class c:

logit[Pr(y;j=1|n; =e.)] = e
logit[Pr(yi; =1|n;)] = iy

» GLMM with discrete random effects:

Vj = 1773 GLLAMM — p.10

Response types in GLLAMM

Ordinary GLMs: Extensions:
Links Ordinal responses
identity Families ordinal logit
reciprocal Gaussian ordinal probit
logarithm gamma ordinal compl. log-log
logit Poisson scaled ordinal probit
probit binomial Nominal & Rankings

compl. log-log multinomial logit

» Mixed responses: different links and families for different units

» Heteroscedasticity: Variance or dispersion parameter ¢ can be
modelled as logf = z(V'a
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Structural model for continuous latent variables

» Regressions of latent variables on latent and observed variables at
the same or higher levels

n=Bn+Tw+(

Level 2 Level [ Level L
2 2 2 l l l L L L
U R S v S L SR VS| S N

e M =5, M; latent variables:

vV v vy

B is an upper triangular M x M matrix of regression coefficients
I'is an M x p matrix of regression coefficients
w is a p dimensional vector of explanatory variables
¢ is an M dimensional vector of disturbances

2) (2 (2 1 1 l L) (L L
C:(](_) 2)a""<]\/]lv'“71()72()7"'7](\417“'7:5 a2)7"'7C](\,12)/

¢W ~ N(0,®Y), independent across levels
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Estimation and prediction in Stata program gllamm

» To obtain the likelihood of GLLAMM's, the latent variables must be
integrated out

e Sequentially integrate over latent variables, starting with the
lowest level using a recursive algorithm

e Use Gauss-Hermite quadrature to replace integrals by sums

e Scale and translate quadrature locations to match the peak of the
integrand using adaptive quadrature

» Maximum likelihood estimates obtained using Newton-Raphson
» Model-based and robust standard errors (sandwich estimator)

» Empirical Bayes (EB) predictions of latent variables and EB standard
errors obtained as byproducts of adaptive quadrature
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Structural model for discrete latent variables

Probability that unit j belongs to class ¢ =1, ...,C may depend on
covariates v; through a multinomial logit model

B exp(v’;0°)
Yaexn(vie?)’

where ¢ are parameters with o© =0 for identification

7ch

Nonparametric maximum likelihood (NPML) estimator if number of
classes increased to maximize likelihood
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Examples of GLLAMMSs

Mixed response types
e Ex 1: Random coefficient dependent dropout
e Ex 2: Endogenous treatment model
Continuous latent variables regressed on observed and latent var.
e Ex 1: Item response model with differential item functioning (DIF)
e Ex 2: Covariate measurement error model
e EX 3: Missing covariate model
Discrete latent variables regressed on observed variables
e Ex 1: Complier average causal effect (CACE) models
Multilevel latent variables
e Ex 1: Multilevel structural equation models (SEMs)

continue
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Endogenous treatment model
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Treatment endogenous
Covariate measurement error
» Exposure model + Measurement model + Disease model
P
xr D le—
T T subject j
back
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Type of problem
Fallible measures
& validation sample

Type of problem:
Partially missing
covariate

Item response model with DIF

711

unit j

Y1

MIMIC model with direct effect

Missing covariate model

Subgroup
with missing true covariate

Subgroup
with complete data

back
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Complier average causal model

Randomized to Treatment

Randomized to Control

Participants

Non
participants

Non
participants

Non
participants

compliers | never-takers compliers ' never-takers
always-takers always-takers
tic = Po+B2| tin = Bo Hoe = Bo+ 51 L fon = Bo
|_|_l CACE |_|_l
» Structural model Multilevel SEM
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Complier average causal model (cont’d)

Randomized to Treatment

Randomized to Control

subject j

B2

subject j

A

» cis dummy variable for complier (or always taker), versus never-taker

» c¢ =7 islatent in control group (no access to treatment)

» Complier average treatment effect: 5, — 31

Multilevel SEM (cont’d)

» Response model (measurement model)
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» Column of zeros is necessary because né‘? has no measures
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Concluding remarks
» Many more possible models in GLLAMM framework

» Advantage of modeling framework
e Helps recognize commonalities between models
e One program to estimate all models
o Facilitates formulation and estimation of new models

» Features not covered in GLLAMM framework
e Interactions among latent variables
e Models with both discrete and continuous latent variables

» Problems with complex models
o Difficult to establish identification and equivalence
e Estimation can take a long time

e Models may look naive — but less naive than simpler
(constrained) versions
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Some references related to GLLAMM

» Generalized Linear Latent and Mixed Modeling (GLLAMM) Framework:
e Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2004). Generalized multilevel

structural equation modelling. Psychometrika 69 (2), 167-190.

e Skrondal, A. & Rabe-Hesketh, S. (2004). Generalized latent variable modeling:

Multilevel, longitudinal and structural equation models. Chapman & Hall/ CRC.

» Estimation and prediction:
e Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2005). Maximum likelihood

estimation of limited and discrete dependent variable models with nested random
effects. Journal of Econometrics 128, 301-323.

Rabe-Hesketh, S. & Skrondal, A. (2006). Multilevel modelling of complex survey
data. Journal of the Royal Statistical Society, Series A 169, 805-827.

Skrondal, A. & Rabe-Hesketh (2009). Prediction in multilevel generalized linear
models. Journal of the Royal Statistical Society, Series A 172, 659-687.

» gllamm Software:
e Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2004). GLLAMM Manual. U.C.

Berkeley Division of Biostatistics Working Paper Series 160.

e Rabe-Hesketh, S. & Skrondal, A. (2012). Multilevel and Longitudinal Modeling

Using Stata (3rd Ed.). Stata Press.

» Check out http://www.gllamm.org for more information!
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