Generalized Linear Latent and Mixed Models

Sophia Rabe-Hesketh

University of California, Berkeley Cal

& Institute of Education, University of London

Australian Statistical Conference Adelaide, July 2012

. - p.1

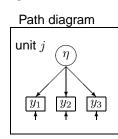
Basic idea of latent variable models

- What is a latent variable?
 - Random variable η_i for unit j whose realized values are hidden
 - (Hierarchical Bayes: η_i exchangeable, prior has free hyperparameters)
 - Properties must be indirectly inferred based on a statistical model connecting observed variables $\mathbf{y}_j' = (y_{1j}, y_{2j}, \dots, y_{nj})$ to η_j
- Basic construction principle of latent variable models:
 Conditional independence of observed variables given latent variable

$$\bullet \ \mathsf{Pr}(\mathbf{y}_j|\eta_j) \ = \ \prod_{i=1}^{n_j} \mathsf{Pr}(y_{ij}|\eta_j)$$

• Dependence among y_{ij} for unit j induced by η_i

 \Rightarrow Infer properties of η_j from $Pr(y_j)$



Outline

- ► Classical latent variable models
 - Factor analysis
 - Item response theory
 - · Generalized linear mixed models
 - · Latent class models
 - (Skip structural equation models)
- ► Generalized linear latent and mixed models (GLLAMMs)
- Examples of GLLAMMs
 - · Several examples
 - Multilevel structural equation models

GLLAMM - p.2

Uses of latent variables

- Hypothetical constructs
- ► True variables (free from measurement error)
- Unobserved heterogeneity
- Missing data
- Device to induce dependence between different response types

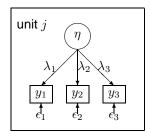
GLIAMM – p.3 GLIAMM – p.4

Factor analysis

- \blacktriangleright Common factor η_i underlies different continuous variables y_{ij}
 - Spearman's (1904) factor g explains correlations between test scores in different subjects (French, English, Math, Music, etc.)
- ▶ Unidimensional factor model for *i*th variable for unit *j*:

$$y_{ij} = \beta_i + \lambda_i \eta_j + \epsilon_{ij}$$
 or $E(y_{ij}|\eta_j) = \nu_{ij} = \beta_i + \lambda_i \eta_j$

- β_i is intercept
- λ_i is factor loading
- $\eta_i \sim N(0, \psi)$ is common factor
- $\epsilon_{ij} \sim N(0, \theta_i)$ is unique factor
- For identification, set $\psi = 1$ or $\lambda_1 = 1$



▶ Measurement model – It is often assumed that $\lambda_i = 1$ and $\theta_i = \theta$

GLLAMM - p.5

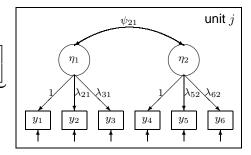
Multidimensional measurement model

- ► Several latent traits, e.g. verbal and spatial intelligence
- ▶ Model for vector of linear predictors ν_i

$$\nu_i = \beta + \Lambda \eta_i, \quad \eta_i \sim N(\mathbf{0}, \mathbf{\Psi})$$

▶ Ex: Independent clusters (between-item) two-dimensional model

$$\begin{bmatrix}
\nu_{1j} \\
\nu_{2j} \\
\nu_{3j} \\
\nu_{4j} \\
\nu_{5j} \\
\nu_{6j}
\end{bmatrix} = \begin{bmatrix}
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\beta_5 \\
\beta_6
\end{bmatrix} + \begin{bmatrix}
1 & 0 \\
\lambda_{21} & 0 \\
\lambda_{31} & 0 \\
0 & 1 \\
0 & \lambda_{52} \\
0 & \lambda_{62}
\end{bmatrix} \underbrace{\begin{bmatrix}
\eta_{1j} \\
\eta_{2j} \\
\eta_{j}
\end{bmatrix}}_{\boldsymbol{\eta}_{j}}$$

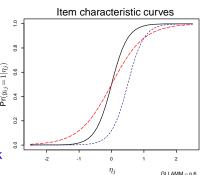


Item response model

- ▶ Measurement model for binary data
 - In educational testing, ability η_j explains performance in test items ($y_{ij} = 1$: correct, $y_{ij} = 0$: incorrect)
- ▶ Two-parameter logistic (2-PL) model for *i*th item for person *j*

$$logit[Pr(y_{ij}=1|\eta_j)] = \nu_{ij} = \beta_i + \lambda_i \eta_j$$

- β_i is item intercept
- λ_i is item discrimination
- $\eta_i \sim N(0, \psi)$ is person ability
- $-\beta_i/\lambda_i$ is item difficulty $\Pr(y_{ij}=1|\eta_j=-\beta_i/\lambda_i)=0.5$
- Rasch model: $\lambda_i = 1$
- ▶ Common factor model with logit link



Generalized linear mixed model (GLMM)

- ▶ Regression model for clustered data where latent variables η_j induce within-cluster dependence of y_{ij} given covariates
 - Longitudinal: *i* is occasion or time-point (level 1), *j* is unit (level 2)
 - Cross-sectional: *i* is unit (level 1), *j* is cluster (level 2)
 - Say 'level-1 unit i' and 'level-2 unit j'
- ► Generalized linear mixed model (GLMM)

$$u_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \boldsymbol{\eta}_j, \quad \boldsymbol{\eta}_j \sim N(\mathbf{0}, \boldsymbol{\Psi})$$

ightharpoonup Ex: $n_i = 3$, $\mathbf{Z}_i = \mathbf{X}_i \ (n_i \times 2)$

$$\underbrace{\begin{bmatrix} \nu_{1j} \\ \nu_{2j} \\ \nu_{3j} \end{bmatrix}}_{\mathbf{y}_{j}} = \underbrace{\begin{bmatrix} 1 & x_{1j} \\ 1 & x_{2j} \\ 1 & x_{3j} \end{bmatrix}}_{\mathbf{X}_{i}} \underbrace{\begin{bmatrix} \beta_{1} \\ \beta_{2} \end{bmatrix}}_{\boldsymbol{\beta}} + \underbrace{\begin{bmatrix} 1 & x_{1j} \\ 1 & x_{2j} \\ 1 & x_{3j} \end{bmatrix}}_{\mathbf{Z}_{i}} \underbrace{\begin{bmatrix} \eta_{1j} \\ \eta_{2j} \end{bmatrix}}_{\boldsymbol{\eta}_{j}}$$

GLLAMM – p.7

Similarity of measurement model and GLMM

▶ Models for ν_j

Measurement model: $u_j = \mathbb{I} \beta + \Lambda \eta_j$

Generalized linear mixed model: $\nu_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \boldsymbol{\eta}_j$

- ▶ Measurement model resembles GLMM where:
 - Items correspond to level-1 units and persons to level-2 units
 - Identity matrix ${\mathbb I}$ replaces covariate matrix ${\mathbf X}_j$
 - Λ replaces \mathbf{Z}_i
 - \diamond Λ does not vary between persons; elements are parameters
 - \diamond \mathbf{Z}_{j} varies between level-2 units; elements are fixed constants
- ▶ Will see that GLLAMMs unify measurement models and GLMMs

GLI AMM - p.9

GLLAMM response model: Unifying latent variable models

 \blacktriangleright Level-1 units *i* nested in level-2 units *j*, etc. up to level *L*

$$\boldsymbol{\nu} = \mathbf{X}\boldsymbol{\beta} + \sum_{l=2}^{L} \sum_{m=1}^{M_l} \eta_m^{(l)} \mathbf{Z}_m^{(l)} \boldsymbol{\lambda}_m^{(l)}$$

Measurement model:

$$\underbrace{\begin{bmatrix} \nu_{1j} \\ \nu_{2j} \\ \nu_{3j} \end{bmatrix}}_{\pmb{\nu}_j} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\pmb{X}_j} \underbrace{\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}}_{\pmb{\beta}} + \eta_{1j}^{(2)} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\pmb{Z}_{1j}^{(2)}} \underbrace{\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}}_{\pmb{\lambda}_{1}^{(2)}} = \begin{bmatrix} \beta_1 + \eta_{1j}^{(2)} \lambda_1 \\ \beta_2 + \eta_{1j}^{(2)} \lambda_2 \\ \beta_3 + \eta_{1j}^{(2)} \lambda_3 \end{bmatrix}}_{\pmb{\beta}}$$

Generalized linear mixed model:

$$\underbrace{\begin{bmatrix} \nu_{1j} \\ \nu_{2j} \\ \nu_{3j} \end{bmatrix}}_{\boldsymbol{\nu}_{j}} = \underbrace{\begin{bmatrix} 1 & x_{1j} \\ 1 & x_{2j} \\ 1 & x_{3j} \end{bmatrix}}_{\boldsymbol{X}_{j}} \underbrace{\begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \beta \end{bmatrix}}_{\boldsymbol{\beta}} + \eta_{1j}^{(2)} \underbrace{\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}}_{\boldsymbol{Z}_{1j}^{(2)}} + \eta_{2j}^{(2)} \underbrace{\begin{bmatrix} x_{1j} \\ x_{2j} \\ x_{3j} \end{bmatrix}}_{\boldsymbol{Z}_{2i}^{(2)}} = \begin{bmatrix} \beta_{1} + \eta_{1j}^{(2)} + (\beta_{2} + \eta_{2j}^{(2)})x_{1j} \\ \beta_{1} + \eta_{1j}^{(2)} + (\beta_{2} + \eta_{2j}^{(2)})x_{2j} \\ \beta_{1} + \eta_{1j}^{(2)} + (\beta_{2} + \eta_{2j}^{(2)})x_{3j} \end{bmatrix}}_{\boldsymbol{Z}_{2i}^{(2)}}$$

Exploratory latent class model

- ▶ Unit j falls into group (latent class) c with probability π_c (c = 1, ..., C)
- ► Each latent class characterized by different set of response probabilities for binary variables y_{ij} (i = 1, ..., n)
 - In medical diagnosis, latent classes are diseases and variables are diagnostic test results
- Exploratory latent class model
 - n-dimensional discrete latent variable η_j discrete values $\{\mathbf{e}_1, \dots, \mathbf{e}_C\}$ with probabilities $\{\pi_1, \dots, \pi_C\}$
 - Conditional response probabilities for class *c*:

$$\begin{aligned} \text{logit}[\text{Pr}(y_{ij} = 1 | \boldsymbol{\eta}_j = \mathbf{e}_c)] &= e_{ic} \\ \text{logit}[\text{Pr}(y_{ij} = 1 | \boldsymbol{\eta}_j)] &= \eta_{ij} \end{aligned}$$

GLMM with discrete random effects:

$$oldsymbol{
u}_j = \mathbf{I} oldsymbol{\eta}_j$$

Response types in GLLAMM

Ordinary GLMs:

Links
identity
reciprocal
logarithm
logit
probit
compl. log-log

Families
Gaussian
gamma
Poisson
binomial

Extensions:

Ordinal responses
ordinal logit
ordinal probit
ordinal compl. log-log
scaled ordinal probit

Nominal & Rankings multinomial logit

- ▶ Mixed responses: different links and families for different units
- ► Heteroscedasticity: Variance or dispersion parameter θ can be modelled as log $\theta = \mathbf{z}^{(1)\prime} \alpha$

GLIAMM – p.11 GLIAMM – p.12

Structural model for continuous latent variables

► Regressions of latent variables on latent and observed variables at the same or higher levels

$$\eta = B\eta + \Gamma w + \zeta$$

$$\boldsymbol{\eta} = (\overbrace{\eta_1^{(2)}, \eta_2^{(2)}, \dots, \eta_{M_2}^{(2)}}^{\text{Level } l}, \underbrace{\eta_1^{(l)}, \eta_2^{(l)}, \dots, \eta_{M_l}^{(l)}}_{\text{Level } l, \dots, \eta_{M_l}^{(L)}, \dots, \eta_{M_l}^{(L)}, \dots, \eta_{M_L}^{(L)})'$$

- $M = \sum_{l} M_{l}$ latent variables:
- lackbox B is an upper triangular $M \times M$ matrix of regression coefficients
- ightharpoonup is an $M \times p$ matrix of regression coefficients
- ▶ w is a p dimensional vector of explanatory variables
- \blacktriangleright ζ is an M dimensional vector of disturbances

$$\begin{split} \pmb{\zeta} &= (\overline{\zeta_1^{(2)}, \zeta_2^{(2)}, \dots, \zeta_{M_2}^{(2)}}, \dots, \overline{\zeta_1^{(l)}, \zeta_2^{(l)}, \dots, \zeta_{M_l}^{(l)}}, \dots, \overline{\zeta_1^{(L)}, \zeta_2^{(L)}, \dots, \zeta_{M_L}^{(L)}})' \\ \pmb{\zeta}^{(l)} &\sim N(\mathbf{0}, \pmb{\Psi}^{(l)}), \text{ independent across levels} \end{split}$$

GLLAMM - p.13

Estimation and prediction in Stata program gllamm

- To obtain the likelihood of GLLAMM's, the latent variables must be integrated out
 - Sequentially integrate over latent variables, starting with the lowest level using a recursive algorithm
 - Use Gauss-Hermite quadrature to replace integrals by sums
 - Scale and translate quadrature locations to match the peak of the integrand using adaptive quadrature
- ▶ Maximum likelihood estimates obtained using Newton-Raphson
- ► Model-based and robust standard errors (sandwich estimator)
- ► Empirical Bayes (EB) predictions of latent variables and EB standard errors obtained as byproducts of adaptive quadrature

Structural model for discrete latent variables

▶ Probability that unit j belongs to class c = 1, ..., C may depend on covariates \mathbf{v}_i through a multinomial logit model

$$\pi_{jc} \; = \; rac{\exp(\mathbf{v}_j^\prime oldsymbol{arrho}^c)}{\sum_d \exp(\mathbf{v}_j^\prime oldsymbol{arrho}^d)},$$

where ϱ^c are parameters with $\varrho^C = 0$ for identification

 Nonparametric maximum likelihood (NPML) estimator if number of classes increased to maximize likelihood

GLLAMM - p.14

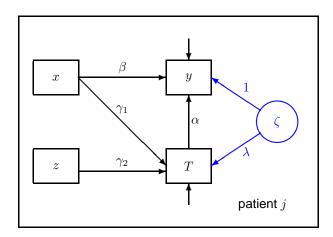
Examples of GLLAMMs

- Mixed response types
 - Ex 1: Random coefficient dependent dropout
 - Ex 2: Endogenous treatment model
- ▶ Continuous latent variables regressed on observed and latent var.
 - Ex 1: Item response model with differential item functioning (DIF)
 - Ex 2: Covariate measurement error model
 - Ex 3: Missing covariate model
- ▶ Discrete latent variables regressed on observed variables
 - Ex 1: Complier average causal effect (CACE) models
- Multilevel latent variables
 - Ex 1: Multilevel structural equation models (SEMs)

continue

GLIAMM – p.15 GLIAMM – p.16

Endogenous treatment model

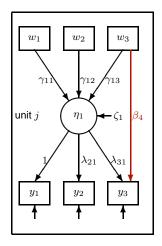


Treatment endogenous

back

GLLAMM - p.17

Item response model with DIF



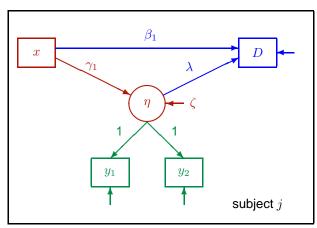
MIMIC model with direct effect

back

GLLAMM - p.18

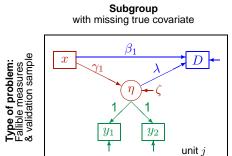
Covariate measurement error

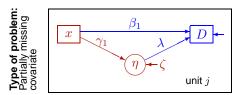
► Exposure model + Measurement model + Disease model



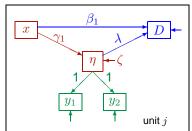
back

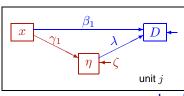
Missing covariate model





Subgroup with complete data





back

GLLAMM - p.20

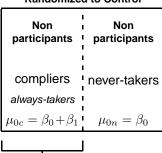
Complier average causal model

Randomized to Treatment

Non **Participants** participants compliers never-takers always-takers $\mu_{1c} = \beta_0 + \beta_2$ $\mu_{1n} = \beta_0$

CACE

Randomized to Control



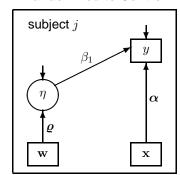
GLLAMM - p.21

Complier average causal model (cont'd)

Randomized to Treatment

subject j \mathbf{x}

Randomized to Control

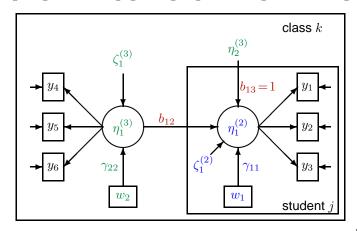


- ▶ c is dummy variable for complier (or always taker), versus never-taker
- $c=\eta$ is latent in control group (no access to treatment)
- Complier average treatment effect: $\beta_2 \beta_1$

back GLLAMM - p.22

Multilevel SEM ► Structural model

$$\begin{vmatrix} \eta_{1jk}^{(2)} \\ \eta_{1jk}^{(3)} \\ \eta_{2k}^{(3)} \end{vmatrix} = \begin{bmatrix} 0 & b_{12} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \eta_{1jk}^{(2)} \\ \eta_{1jk}^{(3)} \\ \eta_{2k}^{(3)} \end{bmatrix} + \begin{bmatrix} \gamma_{11} & 0 \\ 0 & \gamma_{22} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} w_{1jk} \\ w_{2k} \end{bmatrix} + \begin{bmatrix} \zeta_{1jk}^{(2)} \\ \zeta_{1jk}^{(3)} \\ \zeta_{2k}^{(3)} \end{bmatrix}$$



Multilevel SEM (cont'd)

Response model (measurement model)

$$\underbrace{\begin{bmatrix} \nu_{1jk} \\ \nu_{2jk} \\ \nu_{3jk} \\ \nu_{5k} \\ \nu_{6k} \end{bmatrix}}_{\boldsymbol{\nu}_{k}} = \underbrace{\mathbf{I}\boldsymbol{\beta}}_{\mathbf{X}_{k}} + \eta_{1jk}^{(2)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\mathbf{Z}_{1k}^{(2)}} + \eta_{1k}^{(3)} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{Z}_{1k}^{(3)}} \underbrace{\begin{bmatrix} 1 \\ \lambda_{2}^{(2)} \\ \lambda_{3}^{(2)} \\ \lambda_{1}^{(2)} \end{bmatrix}}_{\mathbf{Z}_{1k}^{(3)}} + \eta_{1k}^{(3)} \underbrace{\begin{bmatrix} 1 \\ \lambda_{2}^{(3)} \\ \lambda_{3}^{(3)} \\ \lambda_{3}^{(3)} \end{bmatrix}}_{\boldsymbol{\lambda}_{1}^{(3)}} + \eta_{2k}^{(3)} \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{\boldsymbol{\lambda}_{2}^{(3)}} \underbrace{\begin{bmatrix} 1 \\ \lambda_{2}^{(3)} \\ \lambda_{3}^{(3)} \end{bmatrix}}_{\boldsymbol{\lambda}_{1}^{(3)}} + \underbrace{\begin{bmatrix} 1 \\ \lambda_{2}^{(3)} \\ \lambda_{3}^{(3)} \end{bmatrix}}_{\boldsymbol{\lambda}_{2}^{(3)}} + \underbrace{\begin{bmatrix} 1 \\ \lambda_{2}^{(3)} \\ \lambda_{3}^{(3)} \end{bmatrix}}_{\boldsymbol{\lambda}_{3}^{(3)}} + \underbrace{\begin{bmatrix} 1 \\ \lambda_{2}^{(3)} \\ \lambda_{$$

▶ Column of zeros is necessary because $\eta_{2k}^{(3)}$ has no measures

back

Concluding remarks

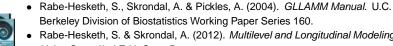
- ▶ Many more possible models in GLLAMM framework
- Advantage of modeling framework
 - Helps recognize commonalities between models
 - One program to estimate all models
 - Facilitates formulation and estimation of new models
- Features not covered in GLLAMM framework
 - Interactions among latent variables
 - Models with both discrete and continuous latent variables
- Problems with complex models
 - Difficult to establish identification and equivalence
 - Estimation can take a long time
 - Models may look naive but less naive than simpler (constrained) versions

Some references related to GLLAMM

► Generalized Linear Latent and Mixed Modeling (GLLAMM) Framework:

GLI AMM - p.25

- Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2004). Generalized multilevel structural equation modelling. Psychometrika 69 (2), 167-190.
- Skrondal, A. & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Chapman & Hall/ CRC.
- Estimation and prediction:
 - Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics 128, 301-323.
 - Rabe-Hesketh, S. & Skrondal, A. (2006). Multilevel modelling of complex survey data. Journal of the Royal Statistical Society, Series A 169, 805-827.
 - Skrondal, A. & Rabe-Hesketh (2009). Prediction in multilevel generalized linear models. Journal of the Royal Statistical Society, Series A 172, 659-687.
- ▶ gllamm Software:



Berkeley Division of Biostatistics Working Paper Series 160.

• Rabe-Hesketh, S. & Skrondal, A. (2012). Multilevel and Longitudinal Modeling Using Stata (3rd Ed.). Stata Press.

► Check out http://www.gllamm.org for more information!

GLI AMM - p. 26