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Example: PISA
(Programme for International Student Assessment)

» PISA study assesses reading, math and science achievement among
15-year-old students in tens of countries every 3 years

e Here consider U.S. data from 2000
» Schools j were randomly sampled and then students i were
randomly sampled from the selected schools
» Variables:
¢ Reading proficiency y;; (1=yes, 0=no)
e Student SES z;;
o mn: School mean SES 7
o dv: Deviation of student SES from school mean z;; — 7.,
» Sample size (listwise)
e 2069 students in 148 schools
e Number of students per school: 1 to 28, mean/median 14
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Two-level logistic random-intercept model (1: students, 2: schools)
Measures of residual variability and dependence
e Median odds ratio
e Intraclass correlation of latent responses
e Intraclass correlation of observed responses
e Standard deviation of probabilities
e Variance partition coefficient
Graphical displays of variability
e Densities of probabilities
e Percentiles of probabilities
e Probabilities for schools in the data

Ordinal responses and three-level data
(1: students, 2: teachers, 3: schools)
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PISA: Distribution of SES

» For schools, mn:
e 25th & 75th %tiles: 39 & 51
e Mean & Median: 45

» For students, dv:
e 25th & 75th %tiles: -11 & 11
e Mean & Median: 0

» Three covariate patterns:
Xij mn dv ses

lo 39 -11 28

‘ ; !
27 33 39 45 51 57 63 69
School mean SES (mn) me 45 0 45

‘ Min to Max +———— P25 to P75 hi 51 11 62
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Two-level logistic random-intercept model

» Two-level logistic random-intercept model for unit i (level 1) nested in
cluster j (level 2)

Pr(yi; = 1|xij,¢5)

Pr(yi; = 0[xij,¢5)
Odds

= Bi+ Bodvy; + Bamn; + ¢

logit[Pr(y;; = 1|x:5,(j)] log

e x;; is vector of covariates (dv;;, mn;)’

e (3, is the fixed intercept

e (35 and f3 are fixed regression coefficients
e (; is arandom intercept ¢; ~ N (0, )

» Sometimes write xgjﬁ = 01 + B2dv;; + Pamn;
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Predicted conditional probabilities p(x;;, ¢;)
» Conditional probability with estimates 31, 32, 33 plugged in

eXp(/% + §2dvz'j + B:zmnj +(5)

P(xij, G) = Pr(yij = 1x45, () = =
1+ exp(ﬁl + ﬁgdvij + ﬁgmnj + CJ)

» Plug in interesting values of x,; and ¢;, e.g., ¢; = 0 (mean & median)
e 5(l0,0) = 0.18, p(me,0) = 0.32, H(hi,0) = 0.49
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Maximum likelihood estimates of model parameters

Null model Full model
Param.  Covariate Est (SE) Est (SE) OR (95% CI)
51 —0.71 (0.10) —4.79 (0.43)
10832 dv/10 0.18 (0.03) 1.2 (1.1,1.3)
10833 mn/10 0.89 (0.09) 2.4 (2.1,2.9)
) 0.82 0.28
log[Odds(ys; = 1|xi5,¢;)] = B1+ Bedvi; + Bzmn; + 5
Odds(yij = 1xi5,¢) = exp(B1)exp(B2)2Vis exp(B3)™ exp((;)

» Conditional odds ratio associated with 10-point increase in dv;; for given mn; and ;:

exp(fB1) exp(B2)* 10 exp(B3)™ exp(¢;)
exp(B1) exp(B2)? exp(B3)™ exp(;)
e Comparing two students from same school (given mn ; and ¢;) whose SES differs
by 10 points, student with higher SES has 1.2 times the odds of being proficient
as other student — odds are 20% greater

= exp(B2)'? = exp(1082)

» Conditional odds ratio associated with 10-point increase in mn ; for given dv;; and (;:

e Comparing two schools that differ in their mean SES by 10 points and have the
same random intercept, odds of a student (with SES at the school mean) being
proficient are 2.4 times as great for higher-SES school
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Median odds ratio

» Model for conditional odds
Odds(yij = 1[x5,¢;) = exp(B1) exp(B2) 3V exp(B3) ™ exp(¢;)

» Randomly sample schools, then students (for given x)

» Odds ratio, for two students ¢ and i’ from different schools j and ;'
=exp((; — (v
Odds(yi/j/ = 1‘X7 Cj,) (CJ Cj )

» Odds ratio, comparing student with greater odds to other student:
OR = exp(|¢; — Gjr[), (¢ — ) ~ N(0,2¢)
» Odds ratio exp(|¢; — ¢;+|) varies randomly and has estimated median
ORmegan = exp{y/2069™"(3/4)}

[Larsen et al., 2000]

—p8



Median odds ratio (cont’d)

» For two randomly drawn students from two randomly drawn schools,
estimated median odds ratio, comparing student from school with
larger random intercept to other student, is

ORmedian = 2.4 for null model

ORmedian = 1.7 for full model

» In null model, odds ratio due to random intercept exceeds 2.4 half the
time
e In full model, estimated odds ratio for 10-point increase in
school-mean SES is 2.4
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Equivalence of formulations

Latent response formulation

» Imagine latent (unobserved) continuous response y;;
(e.g., reading ability)

» Observed response is 1 if latent response is greater than 0
(e.g., proficient if ability greater than 0):

1 ify; >0
Yij = .
0 otherwise

» Model for latent response:
yi; = Bi+ Bedvij + Bamn; +(; +€ij, (G~ N(0,9), € ~ logistic
x,3

e Logistic distribution has mean 0 and variance 72 /3 and is similar
to normal distribution

» Model for observed response:

logit[Pr(yi; = 1[xij, )] = i + B2dvij + famnj + G ¢~ N(0,9)

Intraclass correlation of latent responses

» Model for y;; is standard multilevel/hierarchical linear model,
therefore use standard ICC

var((;) (0

ICClat = Var(¢;) + Var(e;;) - v+72)3

e Correlation between students 7 and 7’ in same school ;

* * w
Corlyiys yirj i Xirs) = CorlG + €44s G+ €i5) = =g g

e Proportion of variance that is between schools

Var(y;;|xi;) = Var((j + €;;) = Var((;) + Var(ei;) = ¢ +7°/3

» For PISA data, plug in 12

0.82
ICClat = m = 0.20 for null model

0.28
ICClat = m = 0.08 for full model
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Intraclass correlation of observed responses

» Correlation Cor(y;;, yirj|%:5, xi7;) of observed responses for students i
and i’ in same school j depends on covariates x;;, X;;
» For simplicity, assume x;; = x;/; = X
~ P11 (x) — B(x)?
ICCobs = Cor(yij, yirj|x) = =—t————
o v p(x)[1 — p(x)]

e Among schools and students with covariates x, randomly choose
a school and then randomly choose students from the school
¢ p(x) is probability that a student is proficient
© Pp1(x) is probability that two students are both proficient
o Population averaged or marginal probability

) = il = 1) = [ Bx,¢)g(6;:0,9) G
Average over random effects with Gaussian density ¢(¢;;0, ;E)

[Rodriguez & Elo, 2003]
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Kappa coefficient of observed responses

» Recall ) .
= Cor(yij, yir;|x) = IM
ICCobs = C (yzj )y Yi J| ) ]_)(X)[l — ﬁ(x)}

» Probabilities of agreement for students in same school:
Pr(yij = yirj = LX) =D11(X) = I1CCobs P(X)[1 — P(%)] + P(x)?

Pr(yij = yir; = 0x) = Ppo(X) = 1CCobs B(x)[1 — B(x)] + [1 — P(x)]*

» Probabilities of agreement for students in different schools:

Pr(yi; = yiry = 11x) = p(x)*
Pr(yi; = yirje = 0x) = [1-Dp(x)]* =1-2p(x)+b(x)
Pr(yij = yiryr|x) = 1-—2p(x)[1 —p(x)]

_ Pr(yi; = yir|x) — Pr(yi; = yirj |X)  1CCops 2p(x)[1 — P(x)]
K= = = ICCoqbs

1 —Pr(yij = yirj[x) 2p(x)[1 — p(x)]
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[Eldridae et al., 20091

Intraclass correlation of observed responses (cont’d)

» PISA: Null model Full model

lo me hi
0.04 0.06 0.06
0.08 0.08 0.08

ICCobs 0.14
ICClat 0.20

logit[Pr(yi; = 1/¢;)] = B1+¢;
G~ N(0,9)
ICCops for 5y = 0to 8y = 3.7

ICCobs < ICCjat

vV v v vy

ICCops largest for g1 =0

1 2 3 4
Random-intercept standard deviation /2

Observed ————- Latent ‘

[Rodriguez & Elo, 2003]
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Standard deviation of probabilities

» Already considered median of p(x, ¢;)
Median[p(x, ¢;)] = p(x,0)
» Already considered mean of p(x, (;)
) = il = 1) = [ Bx,¢)g(6;:0,9) G
» Get standard deviation of p(x, ¢;) by integration or by simulation
sd[p(x, ;)] = 4/ Var[p(x, ;)]

Null model Full model

lo me hi
0.18 0.08 0.11 0.12
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Variance partition coefficient

» General result

Var(responses) = Var(School-mean response) + Mean (Within-school variance)

Total variance Between-school variance v, Within-school variance v;

» For school j:
e School-mean response: I\@(yij\x, ¢) =p(x,¢)
= Find variance over distribution of ¢;
e Within-school variance:  Var(y;;|x, ¢;) = p(x, ¢;)[1 — p(x, ()]
= Find mean over distribution of (;
» Total variance:
Var(yijlxij) = v2 +v1 = B(x)[1 — P(xi5)]
» Variance partition coefficient [Goldstein et al., 2002, Simulation, Method B]

VPC = 2

= ICCops 7 ICClat
Vo + U1
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Density of probabilities

» Conditional probabilities, conditional on ¢;, depend on ¢;
p(x,¢5) = Pr(yi; = 1xi; = x,¢5)

» When (; varies, corresponding probability p = p(x, {;) varies with

density 1

£(B) = g(log[p/(1 — P);; X'B, ) x )

Null model

Full model

Density
1
Density

4 6
Conditional probability

——— Median

Mean

[Duchateau & Janssen, 2005]
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Probabilty of being proficient

All results for PISA

x mn dv  p(x,0)  p(x) sd[p(x,¢j)] ICCat ICCebs VPC

9 1
-

0 1
-

Null model
- - - 0.331 0.354 0.180 0.200 0.143 0.143

Full model

o 39 -11 0.181 0.193 0.081 0.078 0.042 0.042
me 45 0 0.315 0.333 0.111 0.078 0.056 0.056
hi 51 11 0.491 0.491 0.124 0.078 0.062 0.062
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Percentiles of probabilities

» A given percentile of p(x, (;), for given x, can be found by plugging in
corresponding percentile of ¢; ~ N(0, zZ)

> Left figure: p(x, +1.961/%) and i(x, 0) versus mn with dv=0
e Randomly sample schools with a given mn:
Interval is 95% range of probabilities for students with dv= 0
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School mean SES (0n) [ =39 mn =51
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[——— Median [ 25th %iile to 97.5th %tile
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Probabilities for schools in the data Probabilities for schools in the data (cont’d)

» Probability p(x) of proficiency for a randomly sampled student with
covariates x in an existing school j All schools, x = (0, mn;) 19 randomly chosen schools, x = x;;

9 1
P

» Data on students in school j: <
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» Information about ¢; (Bayes theorem):
9(C350,¥)Pr(y;1X;, ¢;)

Pr X ) 21 27 3 3 15 51 57 63 69
y J J School mean SES (mn)

Probability of being proficient
3 5
h

0 1
L

Posterior ((; \yj, X,) =

0 1 2
P

T U T
45 62 79
Median ——--- 2.5th %tile to 97.5th %tile Student SES (mn+dv)

» Best prediction of probability (in terms of mean-squared error) is

p(x) = Posterior mean[p(x, ()]
= /ﬁ(x,C]-)Posterior(Cj|yj,Xj)de

e Not equal to p(x, (;), where (; is posterior mean of ¢;

[Skrondal & Rabe-Hesketh, 2009] e e
Probabilities for schools in the data (cont’d) Three-level ordinal cumulative logit model
» In previous graphs, p(x) varies between schools for given value of dv
because mn; and ¢; vary » Tennessee class-size experiment
» Isolate variability due to ¢; by setting mn; = 45 and dv;; =0 » In 4th grade, teachers assessed student participation
(boxplot on right) » 2217 students i of 262 teachers j in 75 schools k

» Ordinal response variable:
o e Teacher’s rating of how frequently student pays attention y;
e Rated as: 1 (never), 2, 3 (sometimes), 4, 5 (always)

» No covariates for simplicity

dv=0 mn=45, dv=0
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Three-level ordinal cumulative logit model: ORegian
» Model probability of exceeding a category s = 1,2, 3,4

logit[Pr(yijr > s, (4] = —rs + P+ ¢

e Teacher random intercept gﬁ) ~ N(0,9®), @ =0.44
¢ School random intercept 4,53) ~ N(0,9®), $® =0.12

» Odds ratio, comparing students of teachers j and j’ in school k

Pr(yijr > S|§§i)a C,E?’)) 2 A2
@ @y~ PGk~ Gik)
Pr(yijre > |Gk G )

» Median of odds ratio, comparing student with larger odds to other
student:

ORmedian
Different teacher, same school 1.88
Different teacher, different school 2.04
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Three-level ordinal cumulative logit model: I1CCqps
» Two randomly chosen students 4, i’ from same school (either different
or same teachers)

» Pearson correlation, Cor(yijk, ik ), Cor(yijk, virjk ), o Kendall's 7:

ICClat ICCobs

Cor Th
Same school, different teacher 0.031 0.029 0.025
Same school, same teacher 0.145 0.136 0.118
» Method:

e 5x 5 table of response for student i (rows) versus response for
student i’ (columns)

Tst(school) = Pr(yix = 8,yirjrr = 1)

Tst(teacher,school) = Pr(y;jx = s, yirjk = 1)

e Use these probabilities as frequency weights for cor and 7,

-p27

Probability

Three-level ordinal cumulative logit model: ICC,;

» Latent response y;;,

Yijk = Cﬁ) + C;Eg) + €ijk, €ijk ~ logistic

» Observed response y;;
e results from cutting up y;;, at cut-points or thresholds x; t0 4:
1 | 2 | 3 | 4 | 5

] I 7
R1 R2 R3 R4

» Intraclass correlations of latent responses
e Same school, different teacher:

$(2)
ICCjat(school) = = as =0.031
9@ 4@ 4 72/3
e Same school, same teacher:
H(2) 1 (3
ICCjat(teacher, school) = —= L A+w =0.145
1/)(2) —|—1/)(3) +7T2/3 —p.26

Probabilities for teachers and schools in the data

» Probability that student pays attention more than “sometimes” (y > 3)

» Randomly chosen student, for:

Teachers in data Schools in data (new teacher)
~ | | ~
° [ | 2@ I
N — N
Integrate over posterior of Cﬁ), C,(:’) Integrate over prior of (J(.i) and posterior of C,(CS)
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Software

Stata was used for the results and graphs
e Datasets and Stata commands available from
http://lwww.gllamm.org/pres.html
Models estimated by ML with adaptive quadrature
[Rabe-Hesketh et al., 2005]
Commands for binary logit models: xtlogit, xtmelogit
e xtrho [Rodriguez & Elo, 2003] for ICCgps = VPC
Command for binary, ordinal, or multinomial logit models (and other
response types): gllamm [Rabe-Hesketh et al., 2005]

e gllapred used to obtain p(x), p(x), P (x), etc.
[Rabe-Hesketh & Skrondal, 2009]
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Discussion

Have discussed measures and graphs for interpreting variability
implied by model with estimated parameters

Ignored parameter uncertainty (no SEs or CIs)
Did not consider variance explained by covariates

Extensions

¢ Include random coefficient of x;;
o for p(x), p(x), and ICCops, integrate over all random effects
o ICCiat and ORpedian NOW depend on z;;

e More levels: Straightforward

e Relax normality assumption for random effects: ‘non-parametric
maximum likelihood estimation’ (NPMLE)

e Other response types
< Nominal responses: Similar to binary responses
o Counts: No ICC,, but can obtain IRR jedian @Nd ICCops
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