Understanding Variability in Multilevel Models for Categorical Responses

Sophia Rabe-Hesketh

University of California, Berkeley

& Institute of Education, University of London

Joint work with Anders Skrondal

Hierarchical Linear Modeling SIG AERA Annual Meeting, Vancouver, April 2012

Example: PISA

(Programme for International Student Assessment)

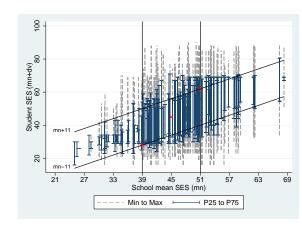
- ▶ PISA study assesses reading, math and science achievement among 15-year-old students in tens of countries every 3 years
 - Here consider U.S. data from 2000
- ▶ Schools j were randomly sampled and then students i were randomly sampled from the selected schools
- ▶ Variables:
 - Reading proficiency y_{ij} (1=yes, 0=no)
 - Student SES x_{ij}
 - \diamond mn: School mean SES \overline{x}_{i}
 - \diamond dv: Deviation of student SES from school mean $x_{ij} \overline{x}_{ij}$
- ► Sample size (listwise)
 - 2069 students in 148 schools
 - Number of students per school: 1 to 28, mean/median 14

Outline

- ► Two-level logistic random-intercept model (1: students, 2: schools)
- Measures of residual variability and dependence
 - Median odds ratio
 - Intraclass correlation of latent responses
 - Intraclass correlation of observed responses
 - Standard deviation of probabilities
 - Variance partition coefficient
- Graphical displays of variability
 - Densities of probabilities
 - Percentiles of probabilities
 - Probabilities for schools in the data
- Ordinal responses and three-level data
 (1: students, 2: teachers, 3: schools)

- p.2

PISA: Distribution of SES



- For schools. mn:
 - 25th & 75th %tiles: 39 & 51
- Mean & Median: 45
- ► For students, dv:
 - 25th & 75th %tiles: -11 & 11
 - Mean & Median: 0
- Three covariate patterns:

\mathbf{x}_{ij}	mn	dv	ses	
lo	39	-11	28	
me	45	0	45	
hi	51	11	62	

- p.3

Two-level logistic random-intercept model

► Two-level logistic random-intercept model for unit i (level 1) nested in cluster j (level 2)

$$\begin{aligned} \text{logit}[\Pr(y_{ij} = 1 | \mathbf{x}_{ij}, \zeta_j)] &= \log \underbrace{\left[\frac{\Pr(y_{ij} = 1 | \mathbf{x}_{ij}, \zeta_j)}{\Pr(y_{ij} = 0 | \mathbf{x}_{ij}, \zeta_j)}\right]}_{\text{Odds}} \\ &= \beta_1 + \beta_2 \text{dv}_{ij} + \beta_3 \text{mn}_j + \zeta_j \end{aligned}$$

- \mathbf{x}_{ij} is vector of covariates $(dv_{ij}, mn_j)'$
- β_1 is the fixed intercept
- β_2 and β_3 are fixed regression coefficients
- ζ_j is a random intercept $\zeta_j \sim N(0, \psi)$
- lacksquare Sometimes write $\mathbf{x}_{ij}' oldsymbol{eta} \equiv eta_1 + eta_2 \mathrm{dv}_{ij} + eta_3 \mathrm{mn}_j$

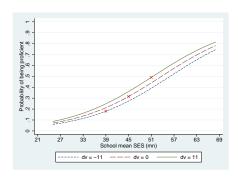
- p.5

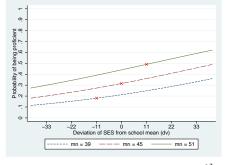
Predicted conditional probabilities $\widehat{p}(\mathbf{x}_{ij}, \zeta_i)$

▶ Conditional probability with estimates $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$ plugged in

$$\widehat{p}(\mathbf{x}_{ij}, \zeta_j) \equiv \widehat{\Pr}(y_{ij} = 1 | \mathbf{x}_{ij}, \zeta_j) = \frac{\exp(\widehat{\beta}_1 + \widehat{\beta}_2 d\mathbf{v}_{ij} + \widehat{\beta}_3 m\mathbf{n}_j + \zeta_j)}{1 + \exp(\widehat{\beta}_1 + \widehat{\beta}_2 d\mathbf{v}_{ij} + \widehat{\beta}_3 m\mathbf{n}_j + \zeta_j)}$$

- ▶ Plug in interesting values of \mathbf{x}_{ij} and ζ_i , e.g., $\zeta_i = 0$ (mean & median)
 - $\widehat{p}(\text{lo},0) = 0.18$, $\widehat{p}(\text{me},0) = 0.32$, $\widehat{p}(\text{hi},0) = 0.49$





Maximum likelihood estimates of model parameters

		Null model Full model		model
Param.	Covariate	Est (SE)	Est (SE)	OR (95% CI)
β_1		-0.71 (0.10)	-4.79 (0.43)	
$10\beta_2$	dv/10		0.18 (0.03)	1.2 (1.1,1.3)
$10\beta_3$	mn/10		0.89 (0.09)	2.4 (2.1,2.9)
ψ		0.82	0.28	

$$\log[\operatorname{Odds}(y_{ij} = 1 | \mathbf{x}_{ij}, \zeta_j)] = \beta_1 + \beta_2 \operatorname{dv}_{ij} + \beta_3 \operatorname{mn}_j + \zeta_j$$

$$\operatorname{Odds}(y_{ij} = 1 | \mathbf{x}_{ij}, \zeta_j) = \exp(\beta_1) \exp(\beta_2)^{\operatorname{dv}_{ij}} \exp(\beta_3)^{\operatorname{mn}_j} \exp(\zeta_j)$$

▶ Conditional odds ratio associated with 10-point increase in dv_{ij} for given mn_j and ζ_j :

$$\frac{\exp(\beta_1)\exp(\beta_2)^{a+10}\exp(\beta_3)^{\mathsf{mn}_j}\exp(\zeta_j)}{\exp(\beta_1)\exp(\beta_2)^a\exp(\beta_3)^{\mathsf{mn}_j}\exp(\zeta_j)}=\exp(\beta_2)^{10}=\exp(10\beta_2)$$

- Comparing two students from same school (given mn_j and ζ_j) whose SES differs by 10 points, student with higher SES has 1.2 times the odds of being proficient as other student – odds are 20% greater
- ▶ Conditional odds ratio associated with 10-point increase in mn_j for given dv_{ij} and ζ_j :
 - Comparing two schools that differ in their mean SES by 10 points and have the same random intercept, odds of a student (with SES at the school mean) being proficient are 2.4 times as great for higher-SES school

Median odds ratio

Model for conditional odds

$$Odds(y_{ij} = 1 | \mathbf{x}_{ij}, \zeta_j) = \exp(\beta_1) \exp(\beta_2)^{\mathbf{d}\mathbf{v}_{ij}} \exp(\beta_3)^{\mathbf{m}\mathbf{n}_j} \exp(\zeta_j)$$

- Randomly sample schools, then students (for given x)
- \blacktriangleright Odds ratio, for two students i and i' from different schools j and j':

$$\frac{\mathsf{Odds}(y_{ij} = 1 | \mathbf{x}, \zeta_j)}{\mathsf{Odds}(y_{i'j'} = 1 | \mathbf{x}, \zeta_{j'})} = \exp(\zeta_j - \zeta_{j'})$$

▶ Odds ratio, comparing student with greater odds to other student:

$$OR = \exp(|\zeta_j - \zeta_{j'}|), \quad (\zeta_j - \zeta_{j'}) \sim N(0, 2\psi)$$

▶ Odds ratio $\exp(|\zeta_i - \zeta_{i'}|)$ varies randomly and has estimated median

$$\mathsf{OR}_{\mathsf{median}} \, = \, \exp\{\sqrt{2\widehat{\psi}}\Phi^{-1}(3/4)\}$$

[Larsen et al., 2000]

Median odds ratio (cont'd)

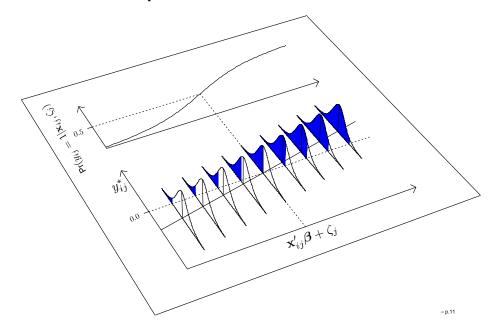
For two randomly drawn students from two randomly drawn schools, estimated median odds ratio, comparing student from school with larger random intercept to other student, is

 ${
m OR}_{
m median} = 2.4$ for null model ${
m OR}_{
m median} = 1.7$ for full model

- ▶ In null model, odds ratio due to random intercept exceeds 2.4 half the time
 - In full model, estimated odds ratio for 10-point increase in school-mean SES is 2.4

- p.9

Equivalence of formulations



Latent response formulation

- ▶ Imagine latent (unobserved) continuous response y_{ij}^* (e.g., reading ability)
- ➤ Observed response is 1 if latent response is greater than 0 (e.g., proficient if ability greater than 0):

$$y_{ij} = \begin{cases} 1 & \text{if } y_{ij}^* > 0 \\ 0 & \text{otherwise} \end{cases}$$

Model for latent response:

$$y_{ij}^* \ = \ \underbrace{\beta_1 + \beta_2 \mathrm{dv}_{ij} + \beta_3 \mathrm{mn}_j}_{\mathbf{x}_{ii}', \boldsymbol{\beta}} + \zeta_j + \epsilon_{ij}, \quad \zeta_j \sim N(0, \psi), \ \epsilon_{ij} \sim \mathsf{logistic}$$

- Logistic distribution has mean 0 and variance $\pi^2/3$ and is similar to normal distribution
- ▶ Model for observed response:

$$\mathsf{logit}[\mathsf{Pr}(y_{ij} = 1 | \mathbf{x}_{ij}, \zeta_j)] = \beta_1 + \beta_2 \mathsf{dv}_{ij} + \beta_3 \mathsf{mn}_j + \zeta_j, \quad \zeta_j \sim N(0, \psi)_{\mathsf{prior}}$$

Intraclass correlation of latent responses

lacktriangle Model for y_{ij}^* is standard multilevel/hierarchical linear model, therefore use standard ICC

$$\mathrm{ICC}_{\mathsf{lat}} = \frac{\mathsf{Var}(\zeta_j)}{\mathsf{Var}(\zeta_j) + \mathsf{Var}(\epsilon_{ij})} = \frac{\psi}{\psi + \pi^2/3}$$

ullet Correlation between students i and i' in same school j

$$\operatorname{Cor}(y_{ij}^*, y_{i'j}^* | \mathbf{x}_{ij}, \mathbf{x}_{i'j}) = \operatorname{Cor}(\zeta_j + \epsilon_{ij}, \zeta_j + \epsilon_{i'j}) = \frac{\psi}{\psi + \pi^2/3}$$

• Proportion of variance that is between schools

$$\operatorname{Var}(y_{ij}^*|\mathbf{x}_{ij}) = \operatorname{Var}(\zeta_j + \epsilon_{ij}) = \operatorname{Var}(\zeta_j) + \operatorname{Var}(\epsilon_{ij}) = \psi + \pi^2/3$$

For PISA data, plug in $\widehat{\psi}$

$$ICC_{lat} = \frac{0.82}{0.82 + 3.29} = 0.20$$
 for null model $ICC_{lat} = \frac{0.28}{0.28 + 3.29} = 0.08$ for full model

- p.12

Intraclass correlation of observed responses

- ► Correlation $Cor(y_{ij}, y_{i'j} | \mathbf{x}_{ij}, \mathbf{x}_{i'j})$ of observed responses for students i and i' in same school j depends on covariates \mathbf{x}_{ij} , $\mathbf{x}_{i'j}$
- ▶ For simplicity, assume $\mathbf{x}_{ij} = \mathbf{x}_{i'j} = \mathbf{x}$

$$\mathrm{ICC}_{\mathrm{obs}} = \widehat{\mathrm{Cor}}(y_{ij}, y_{i'j} | \mathbf{x}) = \frac{\overline{p}_{11}(\mathbf{x}) - \overline{p}(\mathbf{x})^2}{\overline{p}(\mathbf{x})[1 - \overline{p}(\mathbf{x})]}$$

- Among schools and students with covariates x, randomly choose a school and then randomly choose students from the school
 - $\diamond \overline{p}(\mathbf{x})$ is probability that a student is proficient
 - $\diamond \ \overline{p}_{11}(\mathbf{x})$ is probability that two students are both proficient
 - Population averaged or marginal probability

$$\overline{p}(\mathbf{x}) = \widehat{\mathsf{Pr}}(y_{ij} = 1|\mathbf{x}) = \int \widehat{p}(\mathbf{x}, \zeta_j) g(\zeta_j; 0, \widehat{\psi}) \, d\zeta_j$$

Average over random effects with Gaussian density $g(\zeta_j;0,\widehat{\psi})$

[Rodríguez & Elo, 2003]

- p.13

Kappa coefficient of observed responses

► Recall

$$ICC_{obs} = \widehat{Cor}(y_{ij}, y_{i'j} | \mathbf{x}) = \frac{\overline{p}_{11}(\mathbf{x}) - \overline{p}(\mathbf{x})^2}{\overline{p}(\mathbf{x})[1 - \overline{p}(\mathbf{x})]}$$

▶ Probabilities of agreement for students in same school:

$$\begin{split} \Pr(y_{ij} = y_{i'j} = 1 | \mathbf{x}) &\equiv \overline{p}_{11}(\mathbf{x}) &= \operatorname{ICC}_{\mathsf{obs}} \overline{p}(\mathbf{x}) [1 - \overline{p}(\mathbf{x})] + \overline{p}(\mathbf{x})^2 \\ \Pr(y_{ij} = y_{i'j} = 0 | \mathbf{x}) &\equiv \overline{p}_{00}(\mathbf{x}) &= \operatorname{ICC}_{\mathsf{obs}} \overline{p}(\mathbf{x}) [1 - \overline{p}(\mathbf{x})] + [1 - \overline{p}(\mathbf{x})]^2 \end{split}$$

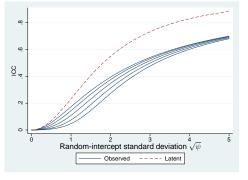
▶ Probabilities of agreement for students in different schools:

$$\begin{array}{lcl} \Pr(y_{ij} = y_{i'j'} = 1 | \mathbf{x}) & = & \overline{p}(\mathbf{x})^2 \\ & \Pr(y_{ij} = y_{i'j'} = 0 | \mathbf{x}) & = & [1 - \overline{p}(\mathbf{x})]^2 = 1 - 2\overline{p}(\mathbf{x}) + \overline{p}(\mathbf{x})^2 \\ & \Pr(y_{ij} = y_{i'j'} | \mathbf{x}) & = & 1 - 2\overline{p}(\mathbf{x})[1 - \overline{p}(\mathbf{x})] \end{array}$$

$$\kappa = \frac{\Pr(y_{ij} = y_{i'j} | \mathbf{x}) - \Pr(y_{ij} = y_{i'j'} | \mathbf{x})}{1 - \Pr(y_{ij} = y_{i'j'} | \mathbf{x})} = \frac{\mathsf{ICC}_{\mathsf{obs}} \, 2\overline{p}(\mathbf{x}) [1 - \overline{p}(\mathbf{x})]}{2\overline{p}(\mathbf{x}) [1 - \overline{p}(\mathbf{x})]} = \mathsf{ICC}_{\mathsf{obs}}$$

Intraclass correlation of observed responses (cont'd)

► PISA:		Null model	F	Full model		
		_	lo	me	hi	
	ICC _{obs}	0.14	0.04	0.06	0.06	
	ICClat	0.20	0.08	0.08	0.08	



 \blacktriangleright logit[Pr($y_{ij} = 1 | \zeta_i$)] = $\beta_1 + \zeta_i$

$$\blacktriangleright \zeta_i \sim N(0, \psi)$$

$$\blacktriangleright$$
 ICC_{obs} for $\beta_1=0$ to $\beta_1=3.7$

$$\blacktriangleright \ \ \mathsf{ICC}_{obs} < \mathsf{ICC}_{lat}$$

$$\blacktriangleright \ \ \mathsf{ICC}_{\mathsf{obs}} \ \mathsf{largest} \ \mathsf{for} \ \beta_1 = 0$$

[Rodríguez & Elo, 2003]

- p.14

Standard deviation of probabilities

▶ Already considered median of $\widehat{p}(\mathbf{x}, \zeta_i)$

$$\mathsf{Median}[\widehat{p}(\mathbf{x},\zeta_i)] = \widehat{p}(\mathbf{x},0)$$

► Already considered mean of $\widehat{p}(\mathbf{x}, \zeta_i)$

$$\overline{p}(\mathbf{x}) = \widehat{\Pr}(y_{ij} = 1 | \mathbf{x}) = \int \widehat{p}(\mathbf{x}, \zeta_j) g(\zeta_j; 0, \widehat{\psi}) \, d\zeta_j$$

▶ Get standard deviation of $\widehat{p}(\mathbf{x}, \zeta_i)$ by integration or by simulation

$$\mathsf{sd}[\widehat{p}(\mathbf{x},\zeta_j)] = \sqrt{\mathsf{Var}[\widehat{p}(\mathbf{x},\zeta_j)]}$$

Null model	F	Full model		
	lo	me	hi	
0.18	0.08	0.11	0.12	

[Eldridge et al., 2009]

Variance partition coefficient

▶ General result

$$\underbrace{\mathsf{Var}(\mathsf{responses})}_{\mathsf{Total \ variance}} = \underbrace{\underbrace{\mathsf{Var}(\mathsf{School\text{-}mean \ response})}_{\mathsf{Between\text{-}school \ variance}} + \underbrace{\underbrace{\mathsf{Mean}(\mathsf{Within\text{-}school \ variance})}_{\mathsf{Within\text{-}school \ variance}} }_{\mathsf{Within\text{-}school \ variance}}$$

- ► For school *j*:
 - School-mean response: $\widehat{\mathsf{Mean}}(y_{ij}|\mathbf{x},\zeta_j) = \widehat{p}(\mathbf{x},\zeta_j)$ \Rightarrow Find variance over distribution of ζ_j
 - Within-school variance: $\widehat{\text{Var}}(y_{ij}|\mathbf{x},\zeta_j) = \widehat{p}(\mathbf{x},\zeta_j)[1-\widehat{p}(\mathbf{x},\zeta_j)]$ \Rightarrow Find mean over distribution of ζ_i
- ▶ Total variance:

$$\widehat{\mathsf{Var}}(y_{ij}|\mathbf{x}_{ij}) = v_2 + v_1 = \overline{p}(\mathbf{x}_{ij})[1 - \overline{p}(\mathbf{x}_{ij})]$$

▶ Variance partition coefficient [Goldstein et al., 2002, Simulation, Method B]

$$\mathsf{VPC} = \frac{v_2}{v_2 + v_1} = \mathsf{ICC}_{\mathsf{obs}} \neq \mathsf{ICC}_{\mathsf{lat}}$$

- p.17

- p.19

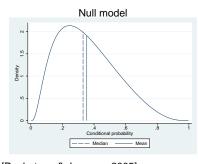
Density of probabilities

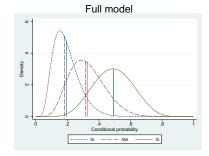
▶ Conditional probabilities, conditional on ζ_j , depend on ζ_j

$$\widehat{p}(\mathbf{x}, \zeta_j) \equiv \Pr(y_{ij} = 1 | \mathbf{x}_{ij} = \mathbf{x}, \zeta_j)$$

▶ When ζ_j varies, corresponding probability $\widehat{p} \equiv \widehat{p}(\mathbf{x}, \zeta_j)$ varies with density

$$f(\widehat{p}) = g(\log[\widehat{p}/(1-\widehat{p})]; \mathbf{x}'\widehat{\boldsymbol{\beta}}, \psi) \times \frac{1}{\widehat{p}(1-\widehat{p})}$$





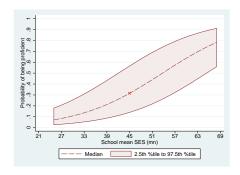
All results for PISA

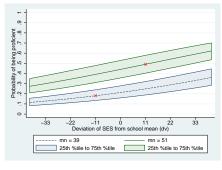
\mathbf{x}	mn	dv	$\widehat{p}(\mathbf{x},0)$	$\overline{p}(\mathbf{x})$	$sd[\widehat{p}(\mathbf{x},\zeta_j)]$	ICC_{lat}	ICC _{obs}	VPC
Null	mod	el						
_	-	_	0.331	0.354	0.180	0.200	0.143	0.143
Full	mode	el						
lo	39	-11	0.181	0.193	0.081	0.078	0.042	0.042
me	45	0	0.315	0.333	0.111	0.078	0.056	0.056
hi	51	11	0.491	0.491	0.124	0.078	0.062	0.062

- p.18

Percentiles of probabilities

- ▶ A given percentile of $\widehat{p}(\mathbf{x}, \zeta_j)$, for given \mathbf{x} , can be found by plugging in corresponding percentile of $\zeta_i \sim N(0, \widehat{\psi})$
- ▶ Left figure: $\widehat{p}(\mathbf{x}, \pm 1.96\sqrt{\widehat{\psi}})$ and $\widehat{p}(\mathbf{x}, 0)$ versus mn with $\mathbf{dv} = 0$
 - Randomly sample schools with a given mn: Interval is 95% range of probabilities for students with ${
 m d} v {=} 0$





[Duchateau & Janssen, 2005]

Probabilities for schools in the data

- ▶ Probability $\widetilde{p}(\mathbf{x})$ of proficiency for a randomly sampled student with covariates \mathbf{x} in an existing school j
- ightharpoonup Data on students in school j:

$$\mathbf{y}_j = (y_{1j}, \dots, y_{n_j j})'$$
 and $\mathbf{X}_j = \left[egin{array}{c} \mathbf{x}_{1j}' \ dots \ \mathbf{x}_{n_j j}' \end{array}
ight]$

▶ Information about ζ_i (Bayes theorem):

$$\mathsf{Posterior}(\zeta_j|\mathbf{y}_j,\mathbf{X}_j) = \frac{g(\zeta_j;0,\psi)\mathsf{Pr}(\mathbf{y}_j|\mathbf{X}_j,\zeta_j)}{\mathsf{Pr}(\mathbf{y}_j|\mathbf{X}_j)}$$

▶ Best prediction of probability (in terms of mean-squared error) is

$$\begin{split} \widetilde{p}(\mathbf{x}) &= & \mathsf{Posterior} \; \mathsf{mean}[\widehat{p}(\mathbf{x}, \zeta_j)] \\ &= & \int \widehat{p}(\mathbf{x}, \zeta_j) \mathsf{Posterior}(\zeta_j | \mathbf{y}_j, \mathbf{X}_j) \, d\zeta_j \end{split}$$

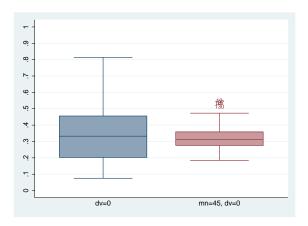
• Not equal to $\widehat{p}(\mathbf{x},\widetilde{\zeta}_j)$, where $\widetilde{\zeta}_j$ is posterior mean of ζ_j

[Skrondal & Rabe-Hesketh, 2009]

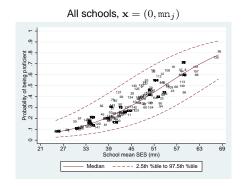
- p.21

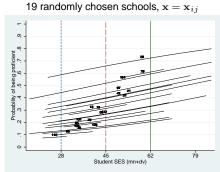
Probabilities for schools in the data (cont'd)

- ▶ In previous graphs, $\widetilde{p}(\mathbf{x})$ varies between schools for given value of $d\mathbf{v}$ because \min_j and ζ_j vary
- ▶ Isolate variability due to ζ_j by setting $mn_j = 45$ and $dv_{ij} = 0$ (boxplot on right)



Probabilities for schools in the data (cont'd)





- p.22

Three-level ordinal cumulative logit model

- ► Tennessee class-size experiment
- ▶ In 4th grade, teachers assessed student participation
- lacksquare 2217 students i of 262 teachers j in 75 schools k
- ► Ordinal response variable:
 - Teacher's rating of how frequently student pays attention y_{ijk}
 - Rated as: 1 (never), 2, 3 (sometimes), 4, 5 (always)
- ▶ No covariates for simplicity

-p.23 -p.24

Three-level ordinal cumulative logit model: OR_{median}

lacktriangle Model probability of exceeding a category s=1,2,3,4

$$\operatorname{logit}[\Pr(y_{ijk} > s | \zeta_{jk}^{(2)}, \zeta_k^{(3)})] = -\kappa_s + \zeta_{jk}^{(2)} + \zeta_k^{(3)}$$

- Teacher random intercept $\zeta_{ik}^{(2)} \sim N(0,\psi^{(2)}), \ \widehat{\psi}^{(2)} = 0.44$
- School random intercept $\zeta_k^{(3)} \sim N(0,\psi^{(3)}), \ \ \widehat{\psi}^{(3)} = 0.12$
- ▶ Odds ratio, comparing students of teachers j and j' in school k

$$\frac{\Pr(y_{ijk} > s | \zeta_{jk}^{(2)}, \zeta_k^{(3)})}{\Pr(y_{ij'k} > s | \zeta_{j'k}^{(2)}, \zeta_k^{(3)})} = \exp(\zeta_{jk}^{(2)} - \zeta_{j'k}^{(2)})$$

Median of odds ratio, comparing student with larger odds to other student:

	OR_{median}
Different teacher, same school	1.88
Different teacher, different school	2.04

- p.25

Three-level ordinal cumulative logit model: ICCobs

- ▶ Two randomly chosen students i, i' from same school (either different or same teachers)
- ▶ Pearson correlation, $Cor(y_{ijk}, y_{i'j'k})$, $Cor(y_{ijk}, y_{i'jk})$, or Kendall's τ_b :

	ICC _{lat}	ICC _{obs}	
		Cor	$ au_b$
Same school, different teacher	0.031	0.029	0.025
Same school, same teacher	0.145	0.136	0.118

- ▶ Method:
 - 5× 5 table of response for student i (rows) versus response for student i' (columns)

$$\begin{split} \overline{\pi}_{st}(\mathsf{school}) &= & \Pr(y_{ijk} = s, y_{i'j'k} = t) \\ \overline{\pi}_{st}(\mathsf{teacher}, \mathsf{school}) &= & \Pr(y_{ijk} = s, y_{i'jk} = t) \end{split}$$

ullet Use these probabilities as frequency weights for Cor and au_b

Three-level ordinal cumulative logit model: ICC lat

▶ Latent response y_{ijk}^*

$$y_{ijk}^* = \zeta_{jk}^{(2)} + \zeta_k^{(3)} + \epsilon_{ijk}, \quad \epsilon_{ijk} \sim \text{logistic}$$

- ightharpoonup Observed response y_{ijk}
 - results from cutting up y_{ijk}^* at cut-points or thresholds κ_1 to κ_4 :



- ► Intraclass correlations of latent responses
 - Same school, different teacher:

$$\text{ICC}_{\mathsf{lat}}(\mathsf{school}) = \frac{\widehat{\psi}^{(2)}}{\widehat{\psi}^{(2)} + \widehat{\psi}^{(3)} + \pi^2/3} = 0.031$$

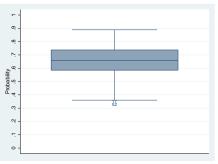
• Same school, same teacher:

$$\mathsf{ICC}_{\mathsf{lat}}(\mathsf{teacher},\mathsf{school}) = \frac{\widehat{\psi}^{(2)} + \widehat{\psi}^{(3)}}{\widehat{\psi}^{(2)} + \widehat{\psi}^{(3)} + \pi^2/3} = 0.145$$

Probabilities for teachers and schools in the data

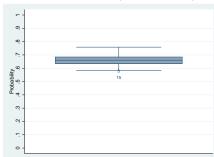
- ightharpoonup Probability that student pays attention more than "sometimes" (y > 3)
- Randomly chosen student, for:

Teachers in data



Integrate over posterior of $\zeta_{ik}^{(2)}$, $\zeta_{k}^{(3)}$

Schools in data (new teacher)



Integrate over prior of $\zeta_{jk}^{(2)}$ and posterior of $\zeta_{k}^{(3)}$

Software

- Stata was used for the results and graphs
 - Datasets and Stata commands available from http://www.gllamm.org/pres.html
- ► Models estimated by ML with adaptive quadrature [Rabe-Hesketh et al., 2005]
- ▶ Commands for binary logit models: xtlogit, xtmelogit
 - ullet xtrho [Rodríguez & Elo, 2003] for ICC_{obs} = VPC
- Command for binary, ordinal, or multinomial logit models (and other response types): gllamm [Rabe-Hesketh et al., 2005]
 - gllapred used to obtain $\overline{p}(\mathbf{x})$, $\widetilde{p}(\mathbf{x})$, $\overline{p}_{st}(\mathbf{x})$, etc. [Rabe-Hesketh & Skrondal, 2009]

- p.29

References

- Duchateau, L. & Janssen, P. (2005). Understanding heterogeneity in generalized linear mixed and frailty models. The American Statistician 59, 143-146.
- Eldridge, S. M, et al. (2009). The intra-cluster correlation coefficient in cluster randomized trials: A review of definitions. *International Statistical Review* 77, 378-394.
- Goldstein, H., et al. (2002). Partitioning variation in multilevel models. *Understanding Statistics* 1, 223-331.
- ► Larsen, K., et al. (2000). Interpreting parameters in the logistic regression model with random effects. *Biometrics* 56, 909-914.

Rabe-Hesketh, S. & Skrondal, A. (2012). *Multilevel and Longitudinal Modeling Using Stata (Third Edition)*. College Station, TX: Stata Press.

- Rabe-Hesketh, S. & Skrondal, A. (in prep). Understanding variability in multilevel models for categorical responses.
- Rabe-Hesketh, S., et al. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. *Journal of Econometrics* 128, 301-323.
- Skrondal, A. & Rabe-Hesketh, S. (2009). Prediction in multilevel generalized linear models. *Journal of the Royal Statistical Society, Series A* 172, 659-687.
- Rodríguez, G. & Elo, I. (2003). Intra-class correlation in random-effects models for binary data. The Stata Journal 3, 32-46.

Discussion

- ▶ Have discussed measures and graphs for interpreting variability implied by model with estimated parameters
- Ignored parameter uncertainty (no SEs or CIs)
- ▶ Did not consider variance explained by covariates
- Extensions
 - Include random coefficient of x_{ij}
 - \diamond for $\overline{p}(\mathbf{x})$, $\widetilde{p}(\mathbf{x})$, and ICC_{obs}, integrate over all random effects
 - \diamond ICC_{lat} and OR_{median} now depend on x_{ij}
 - · More levels: Straightforward
 - Relax normality assumption for random effects: 'non-parametric maximum likelihood estimation' (NPMLE)
 - Other response types
 - Nominal responses: Similar to binary responses
 - ♦ Counts: No ICC_{lat}, but can obtain IRR_{median} and ICC_{obs}

- p.30

- p.31