
1 Introduction

Multilevel models are models for grouped or hierarchical data, e.g. data on patients (level
1) who are nested in hospitals (level 2) which in turn may be nested in regions (level 3).
The observations on different level 1 units belonging to the same level 2 (or higher level)
unit cannot be assumed to be independent because they are likely to be influenced by the
same (often unobserved) level 2 (or higher level) variables, e.g. hospital characteristics.
Where it makes sense to consider these higher level units as drawn from some population
then these influences can be modelled by random effects. If the response variable is
continuous, the most commonly used multilevel model is a linear mixed model.

A three-level linear mixed model with levels 1, 2, 3 indexed by k, j, i, can be written as

yijk ¼ b0xijk þ uð2Þ0
ij zð2Þijk þ uð3Þ0

i zð3Þijk þ �ijk ð1Þ

Address for correspondence: S Rabe-Hesketh, Department of Biostatistics and Computing, Institute of Psychiatry, London

SE5 8AF, UK. E-mail: spaksrh@iop.kcl.ac.uk

� Arnold 2001 0962-2802(01)SM267RA

Multilevel models for censored and
latent responses

Sophia Rabe-Hesketh Department of Biostatistics and Computing, Institute of Psychiatry,
King’s College, London, UK, Shuying Yang MRC Biostatistics Unit, University of
Cambridge, UK and Andrew Pickles School of Epidemiology and Health Science,
The University of Manchester, UK

Multilevel models were originally developed to allow linear regression or ANOVA models to be applied to
observations that are not mutually independent. This lack of independence commonly arises due to clustering
of the units of observations into ‘higher level units’ such as patients in hospitals. In linear mixed models, the
within-cluster correlations are modelled by including random effects in a linear model.

In this paper, we discuss generalizations of linear mixed models suitable for responses subject to systematic
and random measurement error and interval censoring.

The first example uses data from two cross-sectional surveys of schoolchildren to investigate risk factors for
early first experimentation with cigarettes. Here the recalled times of the children’s first cigarette are likely to
be subject to both systematic and random measurement errors as well as being interval censored. We describe
multilevel models for interval censored survival times as special cases of generalized linear mixed models and
discuss methods of estimating systematic recall bias.

The second example is a longitudinal study of mental health problems of patients nested in clinics. Here the
outcome is measured by multiple questionnaires allowing the measurement errors to be modelled within a
linear latent growth curve model. The resulting model is a multilevel structural equation model. We briefly
discuss such models both as extensions of linear mixed models and as extensions of structural equation
models. Several different model structures are examined.

An important goal of the paper is to place a number of methods that readers may have considered as being
distinct within a single overall modelling framework.
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where yijk is the response, xijk is a vector of q explanatory variables, b is the corresponding
vector of regression coefficients, �ijk � Nð0,�2Þ is the residual (level 1) error term, u

ð2Þ
ij and

u
ð3Þ
i are vectors of mð2Þ and mð3Þ random effects or coefficients that vary at levels 2 and 3,

respectively, and z
ð2Þ
ijk and z

ð3Þ
ijk are the corresponding explanatory variables. The random

coefficients are assumed to have multivariate-normal distributions with zero means,
uð2Þ

ij � Nð0,Sð2ÞÞ and uð3Þ
i � Nð0,Sð3ÞÞ. The explanatory variables xijk, can vary at

any level in the hierarchy, zð2Þijk must vary at level 1 and zð3Þijk must vary at level 2 or below.
Each set of explanatory variables includes a constant and typically the zð3Þijk are subsets of
the z

ð2Þ
ijk which are subsets of the xijk. The parameters of linear mixed models can be

estimated by maximum likelihood (ML) or restricted ML in a large number of packages
including MLwiN,1 S-PLUS (lme), SAS (Proc Mixed) Stata (simple two-level models
only), HLM2 and VARCL.3 Introductory books on the linear mixed model include Bryk
and Raudenbush,4 Longford,5 Kreft and De Leeuw,6 Snijders and Bosker7 and Hox8

(available free from the internet).
Two important extensions to linear mixed models are considered in this paper,

generalized linear mixed models, and multilevel structural equation models. Section 2
introduces generalized linear mixed models, in particular models for discrete survival
times, and illustrates their application to schoolchildren’s retrospective reports of age of
onset of smoking. Here multilevel models are required because children are nested in
schools. Methods for handling bias in the recalled ages of onset are discussed. Section 3
introduces structural equation modelling of multilevel data, illustrated for data from a
cluster-sampled two-phase longitudinal study of mental health problems. Here structural
equation models allow a measurement model for the multiple fallible measures of mental
health to be combined with a multilevel model for occasions nested in patients nested in
clinics. ML estimation is used to handle data missing by design and due to attrition.

2 Generalized linear mixed models

Generalized linear mixed models can be used if the response variable is not conditionally
normally distributed. A three-level generalized linear mixed model can be written as

gðE½Yijkjxijk, zð2Þijk , zð3Þijk , uð2Þ
ij , uð3Þ

i 	Þ ¼ b0xijk þ uð2Þ0
ij zð2Þijk þ uð3Þ0

i zð3Þijk ð2Þ

where g is the link function and the conditional distribution of Yijk given the explanatory
variables and random effects is from the exponential family. Familiar examples are
logistic models for binomial responses and extensions to ordered and unordered
multicategory responses, e.g. the proportional-odds and multinomial-logit models. The
random effects are usually assumed to have multivariate-normal distributions but
sometimes other distributions are assumed, e.g. a gamma distribution, because closed
form solutions for the marginal or integrated likelihood are available. In general, the
marginal likelihood cannot be evaluated exactly and parameters are estimated by
approximate methods such as PQL/MQL9 (used in MLwiN), quadrature10–12 (used in
Stata) or adaptive quadrature13 (used in SAS), Markov Chain Monte Carlo14 (used in
BUGS and MLwiN). In economics, Geweke, Hajivassiliou and Keane15 independently
developed a method (known as GHK) of importance sampling for simulated moments
that uses factorization to simulate conditional probabilities, making tractable problems
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involving high dimensional integrals. Other simulation-based methods are reviewed in
McCulloch.16

The fixed effects b are conditional effects, conditioning on the random effects. Whereas
these effects are equal to the marginal effects with an identity link, this is not generally
the case17 (see also Diggle et al.18). An alternative approach to modelling clustered non-
normal data is to use generalized estimating equations to model the marginal effects
directly and assume a particular correlation structure for the responses although this does
not correspond to any likelihood.

2.1 Multilevel discrete-time survival models
Survival times are frequently discrete or grouped. Reasons for this could be that the

opportunities for the event occur at discrete times, as in the number of cycles to
pregnancy, or that screening tests or surveys are carried out at discrete times, or simply
that the times are reported in months or years, as is often the case with recalled onset data.
If there are many ties among the survival times, methods for continuous survival time
data such as Cox’s regression are less satisfactory and discrete-time survival models
should be used. Some of these models can be derived by assuming that the event actually
occurred in continuous time but that we only know the interval in which the event
occurred, i.e. treating the survival times as explicitly interval censored.

To introduce the ideas and notation, we will consider the example to be analysed later,
where the outcomes are the ages when children reported having their first cigarette (ages
of onset of experimenting with cigarettes). The survey responses provide six possible ages
of onset (before age 11, age 11, 12, 13, 14, or age 15 and later) corresponding to the
intervals tk
1 � T < tk where T is the unobserved continuous time of onset, t0 ¼ 0,
t1 ¼ 11, t2 ¼ 12, t3 ¼ 13, t4 ¼ 14, t5 ¼ 15 and t6 ¼ 1. As in the case of continuous
survival times, times are right censored if the event has not occurred at the time of data
collection. We consider two approaches to modelling discrete survival times, the
proportional-odds model for ordinal data (with censoring) and models based on the
discrete-time hazard.

2.1.1 Proportional-odds model for ordinal data
We can use the proportional-odds model for ordinal data19 to model the discrete

survival times. The only modification of the standard model is to allow for right censoring.
The proportional-odds model assumes that the log of the odds that the event occurred
before tk is given by

ln
PrðT < tkÞ

1 
 PrðT < tkÞ
¼ b0x þ �k ð3Þ

where b is a vector of regression coefficients, x is a vector of explanatory variables and �k

is a constant. (Note that the linear predictor of the proportional-odds model is normally
defined as 
b0x þ �k, but we reversed the sign of b so that, as with hazards-based models,
positive coefficients imply earlier onset.) Therefore the probability that T < tk is

Pk ¼ PrðT < tkÞ ¼
expðb0x þ �kÞ

1 þ expðb0x þ �kÞ
ð4Þ
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and the probability that the survival time lies in the kth interval tk
1 � T < tk is

pk ¼ Prðtk
1 � T < tkÞ ¼ Pk 
 Pk
1 ð5Þ

with P0 ¼ 0 and P6 ¼ 1. In the absence of censoring, this is the likelihood contribution of
all observations whose survival times lie in the kth interval. For observations that are
censored after the kth interval, the likelihood contribution is 1 
 Pk. The proportional-
odds model has been used for continuous survival time data by Bennett,20 and for discrete
survival time data by Hedeker et al.21

The proportional-odds model can also be interpreted as a linear model for an
underlying or latent continuous response y

y ¼ b0x þ � ð6Þ

where � has a logistic distribution. (If a standard-normal distribution is assumed for �,
the ordinal-probit model is obtained.) The event occurs in the kth interval if
�k
1 � y < �k, i.e.

PrðT < tkÞ ¼ Prð y < �kÞ ð7Þ

The latent response y can therefore be thought of as a monotonic transformation of T
so that y ¼ �k corresponds to T ¼ tk. By constraining the threshold parameters �k to
be equally spaced, the appropriateness of the linear regression model in (6) for the
(untransformed) continuous time can be assessed.

2.1.2 Models based on the discrete-time hazard
The discrete-time hazard hk for the kth interval is defined as the probability that the

event occurs in the kth interval given that it has not already occurred

hk ¼
Prðtk
1 � T < tkÞ

Prðtk
1 � TÞ ð8Þ

The likelihood contribution of someone whose survival time lies in the kth interval is

hk

Yk
1

l¼1

ð1 
 hlÞ ¼
Yk

l¼1

hyl

l ð1 
 hlÞð1
ylÞ with yk ¼ 1 ð9Þ

where yl is an indicator variable that is equal to 1 if the event occurred in the lth interval
and equal to 0 otherwise, i.e. yl ¼ 0 when l < k and yl ¼ 1 when l ¼ k. The likelihood
contribution of someone who was censored after the kth interval has the same form with

Yk

l¼1

ð1 
 hlÞ ¼
Yk

l¼1

hyl

l ð1 
 hlÞð1
ylÞ with yk ¼ 0 ð10Þ

The likelihood contributions of both censored and non-censored observations are just the
likelihood contributions of k-independent binary responses yl, l ¼ 1, . . . , k with Bernouilli
probabilities hl. Therefore, by expanding the data to k records per person and constructing
the indicator variable yl, discrete-time survival models can be fitted using standard
software for binary responses. One possibility is to use logistic regression with a separate
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constant for each interval

log½hl=ð1 
 hlÞ	 ¼ b0x þ �l ð11Þ

Note that this model is often referred to as a proportional-odds model. However, whereas
proportionality here applies to the conditional odds of the event happening in an interval
given that it has not already happened, proportionality in the previous section applied to
the odds of the event happening in a given interval or earlier. Another term for this model
is the continuation ratio logit model22 or the logistic model for discrete-time survival data.
To avoid confusion, we will refer to this model as the continuation ratio model. (See
Jenkins23 or Singer and Willett24 for very good introductions to the model.)

If a Cox proportional-hazards model is assumed for the unobserved continuous survival
times and the observed discrete survival times are treated as interval censored, it can be
shown that the likelihood contributions are equal to those in (9) and (10) if a
complementary log–log link is used for the discrete-time hazard,25–27 i.e.

logð
logð1 
 hlÞÞ ¼ b0x þ �l ð12Þ
Multilevel models for discrete-time survival data can be constructed by adding random

effects to the linear predictors in (3), (11) and (12) as in (2). If a single log-gamma
distributed random effect is used in the proportional-hazards model, closed form solutions
exist for the log-likelihood28 whereas generally, approximate methods must be used.21 For
the models based on the discrete-time hazard, standard mutlilevel software for binary
responses can be used (e.g. Stata, MLwiN and SAS). Software for estimation of the
proportional-odds model with random effects and censoring is less commonly available
(MIXOR11 can be used). Another variation of the models that we consider can be obtained
by choosing a probit link function. Such models then potentially fall within the scope of
structural equation models for categorical outcomes that are based on an underlying
multivariate-normal latent covariance matrix (see Section 3.2). Estimation within such
programs as Mplus29 and Mx30 then becomes possible but is probably only practical for
small cluster sizes.

2.2 Analysis of age of onset of smoking data
We will now analyse data from two of a series of cross-sectional studies,31,32 one from

1990 and the other from 1993, on the smoking behaviour of schoolchildren aged 11–15.
Both studies followed similar two-stage sampling designs with schools as primary
sampling units. The 1990 sample includes 3124 pupils from 125 schools and the
1993 sample includes 3140 different children in 110 different schools. The 5 years of
classes sampled within each survey and the 3-year interval between surveys resulted in
some age cohorts being sampled twice (e.g. the 14-year-olds in 1993 are in the same cohort
as the 11-year-olds in 1990). The sampling fraction for schools has been assumed to be
sufficiently low that the possibility of schools appearing in both the 1990 and 1993
samples could be ignored. The children were asked whether they had ever smoked a
cigarette, and if so, how old they were the first time they smoked. In 2% of observations
the child did not remember the age of onset (left censoring) and these observations were
dropped. When the age of onset was equal to the current age, the observation was treated
as right censored to avoid any potential biases due to children being surveyed after
different lengths of time since their last birthdays.
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The available explanatory variables that we consider as possible influences on age of
first experimentation with smoking are sex, cohort (modelled as a linear effect), a sex by
cohort interaction and a binary variable for the presence of a smoking parent at home. A
random intercept for school is included to account for the cluster sampling design. The
linear predictor for the jth pupil in the ith school is therefore

b0xij þ u
ð2Þ
0i þ �k ð13Þ

All models were fitted using the Stata program gllamm (formerly known as
gllamm612,33) which maximizes the marginal log-likelihood approximated by Gaussian
quadrature (20 quadrature points were used). The continuation ratio and proportional-
hazards models were fitted by expanding the data as outlined in Section 2.1.2 and fitting
mixed logistic regression and mixed complementary log–log models, respectively. The
mixed proportional-odds model was fitted by treating the responses of children of
different current ages as distinct ordinal responses with different numbers of categories
(see Table 1). For example, those who were aged 11 when surveyed have an ordinal
response with two possible categories and those who were aged 12 have a response with
three categories, etc. The thresholds �k were constrained equal across responses. The
parameter estimates are given in the first three columns of Table 2. All three models lead
to essentially the same conclusions. Females are less at risk than males if no parent is
smoking at home. A parent smoking at home increases the risk of smoking for boys and
this effect is even greater for girls. There is a significant linear effect of cohort for girls
with the risk of having a first cigarette earlier increasing over time. There is no significant
cohort effect for boys. There is significant heterogeneity between schools in the ages of
onset (likelihood ratio test, p < 0:001 in all models.

One problem with these three models is that they assume that the recalled ages of onset
are reliable. Accounting for measurement error in age-of-onset data has received rather

Table 1 Ages, possible times of onset and associated probabilities

Age 11 12 13 14 15

Proportional-odds model T<11 T < 11 T < 11 T < 11 T < 11
( P1) ( P1) ( P1) ( P1) ( P1)

11� T 11� T < 12 11� T < 12 11� T < 12 11� T < 12
(1
P1) ( P2
P1) ( P2
P1) ( P2
P1) ( P2
P1)

– 12� T 12� T < 13 12� T < 13 12� T < 13
– (1
P2) ( P3
P2) ( P3
P2) ( P3
P2)

– – 13� T 13� T < 14 13� T < 14
– – (1
P3) ( P4
P3) ( P4
P3)
– – – 14� T 14� T < 15
– – – (1
P4) ( P5
P4)

– – – – 15� T
– – – – (1
P5)

Current-status model T<11 T < 12 T < 13 T < 14 T < 15
( P1) ( P2) ( P3) ( P4) ( P5)

11� T 12� T 13� T 14� T 15� T
(1
P1) (1
P2) (1
P3) (1
P4) (1
P5)
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little attention in the literature. We consider two alternative approaches. The first
approach is to discard the timing element of the children’s responses and simply model
their current status (ever experimented) as a function of their current age, using a simple
logistic regression model with the current smoking status indicator as the response
variable, as indicated in Table 1. This gives the results in column 4 of Table 2 which are
not very different from those for the proportional-odds model. Another approach is to
model recall bias directly. It has been suggested that recall errors are characterized by an
apparent shifting of events from the more distant past towards the time at which data
collection is made.34,35 This ‘telescoping’ could arise from an internal compression of the
time scale so that an event that occurred a time t ago is reported as occurring a time �t ago
with 0 < � < 1. Telescoping could also result from heteroscedastic measurement error in
which the error variance increases with the lag between the event and the time of
recollection even when the errors are symmetrically distributed. This is because more
events from the distant past, that are typically recalled with larger errors, are shifted into
the recent past than events in the recent past, that are typically recalled with smaller error,
are shifted back into the distant past.36 While Pickles et al.36 develop models to
distinguish between these processes, here we will only consider systematic telescoping.

In the proportional-odds model, we assume that the log odds that the recalled age of
onset is before a given age tk decreases linearly with the time that has passed since that
age, aij 
 tk, where aij is the child’s current age

ln
PrðTij < tkÞ

1 
 PrðTij < tkÞ
¼ b0xij þ u

ð2Þ
0i 
 a0wijðaij 
 tkÞ þ �k ð14Þ

a is a vector of coefficients and wij is a vector of explanatory variables that may predict
the degree of telescoping (positive coefficients imply a compression of the time scale). If
the proportional-odds model is interpreted as a latent response model, telescoping
corresponds to allowing the thresholds to depend on the time-lag, i.e. the thresholds are

�k 
 a0wðaij 
 tkÞ ð15Þ

Here we assume that the degree of telescoping depends on sex only, giving the parameter
estimates in the last column of Table 2. While there is no significant telescoping for girls, the
boys tend to stretch the time scale (rather than compress it), perhaps ‘showing off ’ with having
experimented earlier than they actually did. Note that separate identification of telescoping and
cohort effects is possible here because some of the cohorts of children are represented in both
surveys at different ‘current’ ages and therefore with different time lags.

3 Multilevel structural equation models

Multilevel structural equation models for continuous data can be approached in two ways.
The first, probably more accessible to medical statisticians, is to extend a familiar
multilevel model to tackle a latent variable problem. The second is to extend the simple
latent variable model to a multilevel context. We shall describe both for the case of a
multilevel latent growth curve model.
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3.1 Generalizing growth curve models to multilevels and multivariate
measurements

We begin by considering extensions to the multilevel linear growth model that can be
used when the data structure is hierarchical and any of the observed (response or
explanatory) variables are subject to measurement error. In so doing we generalize the
concept of a random effect to that of a latent variable. In the optimistic terminology of
psychological measurement theory, the latent variables represent the ‘true’ values of
underlying constructs that are measured by error-prone observed variables.

If there are several fallible measurements yijs of the ‘true’ outcome Tij for subject i at occa-
sion j, e.g. arising from different ‘instruments’ s, a possible measurement model for yijs is

yijs ¼ �s þ 	sTij þ �ijs ð16Þ

which has a factor analysis form where �s is the instrument-specific bias, 	s is an
instrument-specific scaling factor or ‘factor loading’ and �ijs is measurement error. For
identification, �1 ¼ 0 and 	1 ¼ 1 are imposed, fixing the location and scale of
measurement of Tij to be that of instrument 1. The variance of the measurement errors
�ijs are assumed to differ between the instruments.

We can then assume a growth curve model for the ‘true’ outcome

Tij ¼ 
0 þ 
1tij þ u
ð3Þ
0i þ u

ð3Þ
1i tij þ u

ð2Þ
0ij ð17Þ

where tij is time, 
0 is the mean intercept, u
ð3Þ
0i is subject i’s random deviation from the mean

intercept, 
1 is the mean slope, u
ð3Þ
1i is the deviation of subject i’s slope from the mean

slope and u
ð2Þ
0ij is a residual error term. Note that the level 1 units in this model are the

measurements of an individual at a given occasion using multiple scales, so that occasions
are at level 2 and subjects at level 3. Substituting (17) into (16) gives

yijs ¼ �s þ 	s
0 þ 	s
1tij þ 	su
ð3Þ
0i þ 	stiju

ð3Þ
1i þ 	su

ð2Þ
0ij þ �ijs ð18Þ

If the longitudinal data are balanced, with tij ¼ tj, this ‘latent growth curve model’ can
also be viewed as an ordinary structural equation model (see next section). The model
becomes a multilevel structural equation model only if higher level random effects are
introduced. Here we outline our own approach37,38 (Yang and Pickles, submitted) of
estimating such multilevel structural equation models by reparameterizing equations of
the form of (18) as follows:

yi ¼ Xibþ
XL

l¼2

Hlu
ðlÞ
i þ �i ð19Þ

where yi is the vector of responses yijs for the ith cluster and Xi represents the design
matrix for all the fixed effect explanatory variables. The uðlÞ

i are vectors of random effects
or latent variables that vary at level l ðl ¼ 2, . . . , L), the random measurement-specific
error �i occupying level 1. The uðlÞ

i are assumed to be normally distributed with mean 0
and covariance matrix SðlÞ. The residuals �i are normally distributed with mean 0 and
diagonal covariance matrix S.
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The fixed effects parameters b in (19) are simple functions of the intercepts and
regression coefficients of the growth curve and the intercepts and factor loadings of the
measurement model. The matrix Hl multiplying the latent variables in (19) has elements
that are products of regression coefficients or factor loadings and a design matrix.
Typically some standard restrictions to the full set of parameters are required to achieve
identifiability. Exactly what parameters and functions of parameters are estimated
depends upon the choice of restrictions and the corresponding design matrix.
Computation proceeds treating each cluster i as a single block, unbalanced data being
easily accommodated by allowing the block dimensions, and hence the number of rows of
Xi and Hl to vary with i.

If the mth element of u
ðlÞ
i , u

ðlÞ
mi , represents the ‘true’ value of some imperfectly measured

response, then the corresponding (mth) column of Hl contains the factor loadings. If the
vector uðlÞ

i is a set of random coefficients (e.g. intercept and slope), then the rows of Hl are
the vectors of explanatory variables zðlÞ0ijs (typically Hl contains some of the columns of X).

Although maximization of the full log-likelihood is possible, an iterative three-step ML
procedure has proved to be much faster (for ordinary multilevel models a two-step
iterative least squares estimation method has been used by Goldstein39,40 where fixed
effects are estimated in the same way). In the first step, we estimate the regression
coefficients b using least squares, assuming that the variance covariance matrix of yi is
known. The second step estimates any unknown parameters in Hl, based on the estimated
b, and the initial SðlÞ and S. In the third step, the variance covariance matrices SðlÞ and S
are estimated based on the parameter estimates from the previous steps. The second and
third steps are achieved by directly maximizing the multivariate-normal log-likelihood.
These three steps are iterated until convergence to the ML estimates. Finally, standard
errors are obtained by inverting a numerically derived Hessian for the full log-likelihood
estimated at the ML parameter estimates. This separation of point and precision
estimation can be used to advantage, by exploiting the opportunity to make a
reparameterization between them. This is helpful where the estimated parameters of b
and Hl involve functions of the fundamental parameters rather than being the
fundamental parameters themselves, or in other cases where the theoretically interesting
parameterization for which we want estimates and standard errors has inferior
optimization properties compared to a parameterization for which estimation is more
tractable.

This algorithm has been programmed in S-PLUS for Windows, using the function
nlmin( ) (StatSci 1993) for the log-likelihood maximization of steps 2 and 3 above. For
increased speed, the likelihood is evaluated by a linked C-program. The program is
available from the authors. Note that the model can also be estimated in gllamm (see e.g.
Rabe-Hesketh et al.41) but the current quadrature approximation is unlikely to work as
well for normally distributed responses as the iterative method outlined above.

3.2 Generalizing structural equation models
Here we derive our multilevel growth curve model starting from a standard structural

equation model. Books on structural equation models include Dunn et al.42 and Bollen43

and software to fit these models include EQS,44 Mplus,29 Amos,45 Mx30 and LISREL.46

Commonly such models consist of two parts, a measurement model and a structural
model. In the measurement part, the observed variables are regressed on the latent
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variables, though if required exogeneous explanatory variables measured without error
can also be included among the predictors. In the structural model latent variables are
regressed on other latent and explanatory variables.

Using the notation of Muthén,47 the measurement part of the model can be written as

yi ¼ nþLhi þ Kxi þ ei ð20Þ

where yi is a p-dimensional response vector, n is a p-dimensional vector of constants or
intercepts, hi is an m-dimensional vector of latent variables, L is an p � m matrix of
regression coefficients (factor loadings), xi is a vector of q 
 1 explanatory variables, K is an
m � ðq 
 1Þ matrix of regression coefficients and ei is a p-dimensional vector of residuals.

This measurement part can be used to define linear growth curve models or other two-
level models for balanced data (see e.g. Dunn et al.;42 Little et al.48).

The structural part of the model can be written as

hi ¼ aþ Bhi þ Gwi þ zi ð21Þ

where a is an m-dimensional parameter vector, B is an m � m matrix of regression
coefficients for regressions of latent variables on other latent variables (the diagonals are
zero), G is an m � ðr 
 1Þ matrix of regression coefficients for regressions on the observed
variables wi and zi is an m-dimensional vector of residuals.

Typically, n and a are not of interest in structural equation modelling and estimation is
based only on the sample covariance matrix. However, for growth curve modelling, ‘mean
structure analysis’ is used where n and a are estimated together with the other parameters
using both the sample covariance matrix and the sample means. If there are missing data,
the problem can be set up as a multiple group analysis where the data are split into groups
with different patterns of missing data and all parameters are constrained equal between
groups.49 This method is not practical when there are many different patterns of missing
data or when the number of observations for some patterns are small. Several packages
(e.g. Mplus, Amos and Mx) employ full information ML estimation for data with missing
values. (Here estimation is based on the whole data matrix.)

Substituting the structural equation into the measurement equation gives

yi ¼ nþLðI 
 BÞ
1aþ Kxi þLðI 
 BÞ
1Gwi þLðI 
 BÞ
1zi þ ei ð22Þ

The correspondence between this general structural equation model and the parameter-
ization in equation (19) can be seen by setting L ¼ 2, u

ð2Þ
i ¼ zi and H2 ¼ LðI 
 BÞ
1.

The first four terms correspond to the fixed part of (19). Whereas the framework in (19)
implies that the values of the explanatory variables will differ between the observations
represented in yi and the coefficients will not, the structural equation approach assumes
constant xi and wi with observation (or response)-specific coefficients. Use of dummy
variables in (19) and parameter constraints in (22) allows both frameworks to accom-
modate both scenarios.

Multilevel structural equation models can be defined by allowing the observed variables
xi and wi and the latent variables hi to vary at different levels. Consistent with the
previous section, we will refer to the variables of a multivariate response as level 1 units so
that zi is a level 2 latent variable. Most attempts to define and estimate multilevel
structural equation models have been restricted to three-level models and consist of
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specifying separate structural equation models for the between- and the within-level 3
covariance matrix,50–53 although McDonald and Goldstein define more general multilevel
structural equation models.54,55 One approach, based on splitting the sample covariance
into a between and within matrix53,56 yields ML parameter estimates only in the balanced
case.57 Muthén’s Mplus program extends this method to the unbalanced case using the
MUML estimator (Muthén’s ML-based estimator)57,58 which is not an ML estimator.
When data are missing, the program analyses complete cases only, but a multiple group
analysis can be used to accommodate different missing data patterns.

In practice direct ML estimation is now possible in both the balanced and unbalanced
case,50 e.g. using an EM algorithm.59,60 Alternatively, ML estimation in the general
unbalanced and missing at random case is possible using our approach described in the
previous section.

3.3 Latent growth model for clustered two-phase longitudinal survey data
The Psychological Problems in General Health Care Study61,62 involved a multicentre

two-phase design. All subjects were screened using a 12 item ‘General Health Question-
naire’ (GHQ) at the first phase (time 1). Patients were selected to enter into a second
phase (interview) based on their GHQ-12 screen scores. The individuals in the second
phase were followed up by additional surveys using a novel 34-item version soon after the
screening test (time 2), and the 28-item version (GHQ-28) at 3 months (time 3) and then 1
year later (time 4). The interest is to study the changes of GHQ over time in the
population of people in primary care.

The 34-item version includes all the items of the GHQ-12 and GHQ-28, but the
GHQ-28 includes only six of the GHQ-12 items. All items were scored on four-point scales
(the greater the score, the more distressed the patient). Normally, the total of all the items
of the questionnaire would be used as a measure of distress. However, such totals would
not enable analysis of changes over time since different versions of the GHQ were used at
different occasions. We therefore grouped the items into three subscales so that each
subscale is available on multiple occasions. The subscales were the six items measured at
all four occasions (subscale 1), the remaining six items of the 12-item GHQ (subscale 2)
and the 22 additional items in GHQ-28 (subscale 3). Thus in this study, all subjects had
subscales 1 and 2 measured at time 1, but only those who entered into the second phase
had (apart from missing data) subscales 1, 2 and 3 at time 2 and, subscales 1 and 3 at
times 3 and 4.

The data we consider in this paper are from a total of 2094 patients from the 42
participating Paris clinics. The size of the clinics varied from 2 to 232. Of these, 382
patients met the selection criteria and were involved in the second phase of the study.
Only 187 patients had all measurements at all occasions. A natural logarithm trans-
formation was applied to the subscale totals to adjust for skewness.

We will use indices i for clinics, j for subjects, r ¼ 1, 2, 3, 4, for occasions and s ¼ 1, 2, 3
for subscales. The different subscale scores at a particular time r can be assumed to
measure the same latent trait, ‘psychological distress’ at time r but on different scales and
with differing precision. An appropriate measurement model may be

yijrs ¼ �rs þ 	sð�r þ �ijrÞ þ �ijrs

¼ �rs þ 	s�ijr þ �ijrs ð23Þ
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where �rs is an occasion and subscale-specific bias, �r is the mean true psychological
distress at time r; �rs ¼ �rs þ 	s�r, �ijr is the deviation of subject ijth’s true distress from
the mean at time r, 	s is a factor loading and varð�ijrsÞ ¼ �2

s is the measurement error
variance. The factor loadings and measurement error variances reflect both the scale and
reliability of the instrument and are assumed to be constant over time. In order to identify
the scale of the latent variable, the factor loading for the first subscale is fixed at 1. We
assume that the deviation of subject ij’s true psychological distress from the population
mean can be modelled by a growth curve

�ijr ¼ u
ð3Þ
0ij þ u

ð3Þ
1ij tr þ u

ð4Þ
0i þ u

ð4Þ
1i tr þ u

ð2Þ
0ijr ð24Þ

where the level 3, subject-specific random effects, u
ð3Þ
0ij , u

ð3Þ
1ij � Nð0,Sð3ÞÞ are independent

of the level 4, clinic-specific random effects, u
ð4Þ
0i , u

ð4Þ
1i � Nð0,Sð4ÞÞ, which are independent

of the level 2, occasion-specific random effects u
ð2Þ
0ijr � Nð0, Þ and tr is equal to 0 at

occasions 1 and 2, 1 at occasion 3 and 4 at occasion 3.
The full model is

yijrs ¼ �rs þ 	s u
ð3Þ
0ij þ u

ð3Þ
1ij tr þ u

ð4Þ
0i þ u

ð4Þ
1i tr þ u

ð2Þ
0ijr

� �
þ �ijrs ð25Þ

By treating the realizations of u
ð2Þ
0ijr, r ¼ 1, . . . , 4 as four separate (uncorrelated) latent

variables at the subject level, as shown in path diagram form in Figure 1, the model
without the level 4, clinic-specific random effects can be written as a standard structural
equation model of the form of (20) and (21) and can be fitted using any structural
equation packages that allows estimation with missing values. In the path diagram, boxes
represent observed variables and circles represent latent variables. Arrows represent
regressions and their labels represent the corresponding regression coefficients. Error
terms of regressions are indicated by arrows pointing to the dependent variable. Double-
headed arrows represent correlations. We have put a frame around the observed and
latent variables that are clinic specific (subscript i) and another frame around all observed
and latent variables that additionally vary between patients within clinics (subscript ij).
The same model is written in the notation of equation (19) in the Appendix for a subject
who has complete data.

The model parameters can be estimated by standard ML since the structured missing
data arising from the two-phase design are missing at random.63 Mplus was used to fit three
different models without the level 4 random effects; the full model (Model 3), a model with
no random slope (Model 1) and a model with no occasion-specific errors (Model 2). The
results are given in Table 3. Using likelihood ratio tests, the occasion-specific error term is
highly significant ( p < 0:001) and the p-value for the random slope is 0.025.

The set-up to apply the direct ML approach described at the end of Section 3.1 is given
in an Appendix. It gave essentially identical results as those from Mplus for the models
excluding the clinic-level random effects. However, unlike Mplus, this approach allows
the full model (Model 4) with clinic-specific random effects at level 4 to be fitted by ML.
(Mplus cannot be used to estimate the parameters of the four-level model by ML because
the number of patients per clinic varies between clinics and because of missing data,
although it may be possible to handle the eight patterns of missing data using multiple
group analysis.)
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The results for this model are shown in the last two columns of Table 3. These results
indicate a significant intercept variation among clinics. A further model, that is not
shown, allowed for an additional clinic-level (level 4) random slope, but this proved to be
non-significant.

4 Discussion

Approaching interval censored survival as a discretely observed latent continuous survival
time provided scope for interesting model developments in two main ways. Firstly, the
direct modelling of the survival time itself in the proportional-odds model readily
accomodates a number of processes of scientific interest that are more difficult to
represent in hazard model specifications. Our example introduced one such process,
namely measurement error in time. Of course, standard hazards model specifications have
the great advantage that they can be linked to parametric stochastic model theory, but the
majority of medical and social applications do not exploit this link, preferring to fit non-
parametric baseline hazards. It is arguable that comparable flexibility can be achieved

Figure 1 Path diagram of multilevel structural equation model for GHQ data
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when modelling survival time itself and that for analysing commonly experienced
outcomes, such as developmental milestones, that these are at least as natural a
parameterization as hazards models. Secondly, when time is considered as a continous
latent response it is straightforward to construct and estimate models for multivariate
responses based on standard multivariate methods such as structural equation modelling,
whether these be multivariate survival times, such as in twins studies64 or a combination
of survival times and other outcome measures.

Multilevel modelling has provided a framework within which to analyse data obtained
from studies with complex sample designs. Structural equation modelling has provided a
framework within which to analyse truly multivariate problems and in which account can
be taken of measurement error. In practice many studies have required analysis that
recognizes both problems, but until recently researchers have been forced to ignore or to
treat very pragmatically one or the other. Such compromise should no longer be
necessary.

We have attempted to emphasize the commonalities between multilevel and latent
variable modelling, but we have not exhausted this theme. For example, factor score
estimation and random effects estimation share a common basis, with the usual estimators
exhibiting ‘shrinkage’ in both cases. This commonality also extends to areas of relative
weakness, models diagnostics being a case in point.

The fusion of random effects and latent variable modelling has resulted in other novel
possibilities. Modelling with non-normal random effects has been explored both within
Bayesian Monte-Carlo Markov Chain Estimation and in ML estimation, where both
parametric and non-parametric (e.g. NPML) estimators have been considered.65,66 Rabe-
Hesketh and Pickles (submitted) have shown that the properties of NPML estimators for
random effects models also apply to circumstances where that random effect is a latent
variable, that is to models involving factor loadings. Since latent class analysis can be
considered as a simplified or approximate NPML estimator then multilevel latent class
models can be investigated within this framework.
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Appendix: model setup of the direct ML approach

The multilevel latent growth curve model for the GHQ data in (25) can be written in the
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yij ¼ Xnþ H2u
ð2Þ
ij þ H3u

ð3Þ
ij þ H4u

ð4Þ
i þ eij ð26Þ

For subjects who have complete data, i.e. those who have all of the nine measurements,
this becomes
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where I9 is an 9 � 9 identity matrix and the elements of n are the intercepts �rs. Assume
that S,�,Sð3Þ and Sð4Þ are variance covariance matrices of eij, u

ð2Þ
ij , u

ð3Þ
ij and u

ð4Þ
i ,

respectively. As described in Section 3.3, it is assumed that �ijrs are uncorrelated, and
the variance of �ijrs equals �2

s ðs ¼ 1, 2, 3Þ: u
ð2Þ
0ijr are mutually independent with a

common variance,  . The format of S,�,Sð3Þ and Sð4Þ are as follows:

S ¼ diagð�2
1, �2

2,�2
1, �2

2,�2
3,�2

1, �2
3,�2

1, �2
3Þ ð28Þ

� ¼ diagð , , , Þ ð29Þ

Sð3Þ ¼ S
ð3Þ
11 S

ð3Þ
12

S
ð3Þ
12 S

ð3Þ
22

" #
ð30Þ

and

Sð4Þ ¼ S
ð4Þ
11 S

ð4Þ
12

S
ð4Þ
12 S

ð4Þ
22

" #
ð31Þ

The unknown parameters of this model are �, 	2; 	3, and

s ¼ ð�2
1,�2

2,�2
3, ,S

ð3Þ
11 ,S

ð3Þ
12 ,S

ð3Þ
22 ,S

ð4Þ
11 ,S

ð4Þ
12 ,S

ð4Þ
22 Þ

For cases with an incomplete set of response measures the corresponding rows in the
above equation are extracted when the likelihood is computed. For example, only the first
two rows in the equation contribute to the likelihood for cases with the first-phase
screening variables y11 and y12 only. The estimation procedure first estimates � using least
squares, then the likelihood is maximized with respect to the factor loadings 	2 and 	3,
and finally the parameters in the covariance matrices, s.
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