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Abstract

Gauss–Hermite quadrature is often used to evaluate and maximize the likelihood for random

component probit models. Unfortunately, the estimates are biased for large cluster sizes and/or

intraclass correlations. We show that adaptive quadrature largely overcomes these problems. We

then extend the adaptive quadrature approach to general random coefficient models with limited

and discrete dependent variables. The models can include several nested random effects (intercepts

and coefficients) representing unobserved heterogeneity at different levels of a hierarchical dataset.

The required multivariate integrals are evaluated efficiently using spherical quadrature rules.

Simulations show that adaptive quadrature performs well in a wide range of situations.
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1. Introduction

We consider novel approaches to maximum likelihood estimation of random
effects models for limited and discrete dependent variables based on numerical
integration. The simplest model includes a single random component or intercept
that varies between clusters of observations and induces dependence within these
clusters. Random effects models are useful for modeling panel data or grouped
cross-sectional data where the responses for the same person or group cannot be
assumed to be independent after conditioning on exogenous variables. In the
grouped cross-sectional case the groups or clusters could be for instance households,
firms or geographical entities. Multilevel or hierarchical models accommodate more
than one level of clustering, an example being panel data with time-points (level 1)
nested in individuals (level 2) who are nested in firms (level 3). Nested random
intercepts at the firm and individual levels can then be used to model unobserved
heterogeneity between firms and between individuals within firms. The firm-level
random intercept induces dependence among individuals in the same firm and the
individual-level random intercept induces additional dependence among observa-
tions on the same individual. Random coefficients can be included to model
unobserved heterogeneity in the effects of variables between firms and/or
individuals. Recent publications on random effects and multilevel models in
economics and econometrics include Antweiler (2001), Baltagi et al. (2001), Beron
et al. (1999), Blundell and Windmeijer (1997), Cardoso (2000), Carey (2000), Davis
(2002) and Rice and Jones (1997). We also refer to Baltagi (2001) and Hsiao (2003)
for discussions of multilevel models.
In limited and discrete dependent variable models with normally distributed

random effects, the marginal likelihood generally does not have a closed form. A
standard approach to parameter estimation is therefore to evaluate the marginal
likelihood numerically using Gauss–Hermite quadrature. For two-level random
component (also called random intercept) binary probit models, this approach is
often attributed to Butler and Moffitt (1982) although it was introduced earlier for
closely related models by Bock and Lieberman (1970).
Gaussian quadrature tends to work well with moderate cluster sizes as

typically found in panel data. However with large cluster sizes, which are common
in grouped cross-sectional data, the estimates become biased. This problem
was pointed out recently by Borjas and Sueyoshi (1994) and Lee (2000) for
probit models, by Albert and Follmann (2000) for Poisson models and by
Lesaffre and Spiessens (2001) for logit models. Lee (2000) attributes the
poor performance of quadrature to numerical underflow and develops an algorithm
to overcome this problem. For probit models his algorithm works well in simulations
with clusters as large as 100 when the intraclass correlation is 0.3 but produces
biased estimates when the correlation is increased to 0.6. A likely reason for
this is that for large clusters and high intraclass correlations, the integrands of
the cluster contributions to the likelihood have very sharp peaks that may be located
between adjacent quadrature points. Albert and Follmann (2000) and Lesaffre
and Spiessens (2001) illustrate this problem for Poisson and logit models,
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respectively. Naylor and Smith (1982) suggest a solution to a similar problem
encountered in Bayesian statistics where numerical integration is often used to
compute posterior densities. Essentially, the solution consists of scaling and
translating the quadrature locations to place them under the peak of the integrand.
A slightly different version of this adaptive quadrature approach has been suggested
by Liu and Pierce (1994).
In this paper we initially describe and implement Naylor and Smith’s version of

adaptive quadrature for random component probit models. In a simulation study we
show that, in contrast to the method suggested by Lee (2000), adaptive quadrature
provides unbiased estimates for random component probit models with clusters as
large as 500 and intraclass correlations as high as 0.9. Even for smaller cluster sizes
and intraclass correlations, where ordinary quadrature is adequate, adaptive
quadrature is superior since it requires fewer quadrature points. We extend the
estimation method to models including (1) nested random effects and (2) random
coefficients in addition to random intercepts. Although adaptive quadrature has
previously been implemented for generalized linear mixed models with a single level
of clustering (Pinheiro and Bates, 1995) and for multidimensional probit item factor
analysis (Bock and Schilling, 1997), this is to our knowledge the first generalization
for multilevel models. We carry out simulations to assess the performance of
adaptive quadrature in the multilevel setting.
For models including random coefficients, the likelihood involves multidimen-

sional integrals which are usually evaluated using cartesian product quadrature (e.g.
Bock and Aitkin, 1981; Lillard, 1993). We suggest using spherical quadrature rules
specifically designed for integrating over multivariate normal densities (Stroud, 1971)
since these rules require fewer quadrature points to achieve a given accuracy.
Simulations are carried out to assess the performance of adaptive quadrature using
spherical rules.
2. Estimation using adaptive and spherical quadrature

In Section 2.1 we describe adaptive quadrature for random component binary
probit models. In Section 2.2 we extend adaptive quadrature to multilevel random
coefficient models. Here cartesian product quadrature is used to evaluate multi-
variate integrals. Section 2.3 describes spherical quadrature rules as a more efficient
alternative to cartesian quadrature. Section 4 shows how the methods are applied to
models with other types of discrete and limited dependent variables.

2.1. Adaptive quadrature for random component probit models

The random component binary probit model can be written as

y�
ij ¼ x0

ijbþ uj þ �ij ,

yij ¼ Iðy�
ij40Þ,
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where i ¼ 1; . . . ; nj indexes the individual observations, j ¼ 1; . . . ;N indexes clusters
of observations, xij is a vector of explanatory variables, b is a vector of
corresponding regression coefficients, uj is the random intercept for cluster j and
�ij is an error term. In a panel data setting, i is a time-point, j an individual and uj

represents time constant unobserved heterogeneity in the behavior of the individual
which renders his or her nj observations correlated. The random terms uj and �ij are
mutually independent, uj � Nð0;s2Þ and �ij � Nð0; 1Þ and independent of the
explanatory variables xij : The residual intraclass correlation for the underlying
responses is

r � Corðy�
ij ; y

�
i0jjxij ;xi0jÞ ¼

s2

1þ s2
.

The likelihood contribution of the jth cluster is a multivariate integral over the
correlated total error terms uj þ �ij ; i ¼ 1; . . . ; nj : Using an idea at least known since
Dunnett and Sobel (1955), Bock and Lieberman (1970) and Butler and Moffitt
(1982) simplify this integral to a univariate integral by exploiting the fact that the
error terms are conditionally independent given the random effect. For a given
cluster j, the likelihood contribution therefore is

f
ð2Þ
j ðyÞ ¼

Z
gðuj; 0;s2Þ

Ynj

i¼1

f
ð1Þ
ij ðyjujÞduj, (1)

where y is the vector of all parameters, gð
; m;s2Þ is the normal density with mean m
and variance s2 and f

ð1Þ
ij ðyjujÞ is the conditional likelihood contribution of unit ij

given the random effect,

f
ð1Þ
ij ðyjujÞ ¼ yijFðZijÞ þ ð1� yijÞFð�ZijÞ, (2)

where F is the standard normal cumulative distribution function and Zij is the linear
predictor

Zij ¼ x0
ijbþ uj.

The integral, which cannot be solved analytically, can instead be evaluated
numerically using Gauss–Hermite quadrature (see e.g., Stroud and Secrest, 1966).
Instead of integrating over uj ; we will integrate over vj ¼ uj=s with standard normal
density fðvjÞ: The approximation then is

f
ð2Þ
j ðyÞ ¼

Z
fðvjÞ

Ynj

i¼1

f
ð1Þ
ij ðyjvjÞdvj �

XR

r¼1

pr

Ynj

i¼1

f
ð1Þ
ij ðyjarÞ, (3)

where
ffiffiffi
p

p
pr and ar=

ffiffiffi
2

p
are the weights and locations of R point Gaussian quadrature

for integrals of the form
R
expð�x2Þf ðxÞdx: The method is exact if f ðxÞ is a

polynomial of degree up to 2R � 1:
In the context of Bayesian inference, Naylor and Smith (1982) suggest an

improved integration method that is adaptive in the sense that it takes into account
the properties of the integrand fðvjÞ

Qnj

i¼1 f
ð1Þ
ij ðyjvjÞ: Note that the integrand is the

product of the ‘prior’ density of vj and the joint probability of the responses given vj
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which, after normalization with respect to vj ; is just the ‘posterior’ density of vj given
the observed responses. According to the Bayesian central limit theorem (e.g., Carlin
and Louis, 2000, p. 122–124), posterior densities are approximately normal for large
sample sizes, corresponding to large cluster sizes nj in this application. If mj and t2j
are the mean and variance of the posterior density, we would therefore expect the
ratio fðvjÞ

Qnj

i¼1 f
ð1Þ
ij ðyjvjÞ=gðvj; mj ; t

2
j Þ to be well approximated by a low-degree

polynomial. Writing the integral as

f
ð2Þ
j ðyÞ ¼

Z
gðvj; mj ; t

2
j Þ

fðvjÞ
Qnj

i¼1 f
ð1Þ
ij ðyjvjÞ

gðvj ;mj ; t2j Þ

 !
dvj ,

changing the variable of integration from vj to zj ¼ ðvj � mjÞ=tj and applying the
standard quadrature rule yields

f
ð2Þ
j ðyÞ �

XR

r¼1

pjr

Ynj

i¼1

f
ð1Þ
ij ðyjajrÞ, (4)

where

ajr ¼ mj þ tjar, (5)

pjr ¼
ffiffiffiffiffiffi
2p

p
tj expða

2
r=2Þfðmj þ tjarÞpr. (6)

Pinheiro and Bates (1995) point out that this approach is essentially a
deterministic version of importance sampling with gðvj ;mj ; t

2
j Þ as importance density.

The advantage of adaptive quadrature can be seen in Fig. 1 which illustrates for
R ¼ 5 how adaptive quadrature translates and scales the locations so that they lie
directly under the integrand.
The posterior means and standard deviations required for adaptive quadrature are

themselves obtained using adaptive quadrature so that the integration is iterative.
Using starting values m0j ¼ 0 and t0j ¼ 1 to define a0jr and p0jr; the posterior means and
Ordinary quadrature Adaptive quadrature
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Fig. 1. Prior (dotted curve) and posterior (solid curve) densities and quadrature weights (bars) for

ordinary and adaptive quadrature. The integrand is proportional to the posterior density.
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standard deviations are updated in the kth iteration using

f
ð2Þk
j ðyÞ ¼

XR

r¼1

pk�1
jr

Ynj

i¼1

f
ð1Þ
ij ðyjak�1

jr Þ,

mk
j ¼

PR
r¼1 ða

k�1
jr Þpk�1

jr

Qnj

i¼1 f
ð1Þ
ij ðyjak�1

jr Þ

f
ð2Þk
j ðyÞ

,

tk
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r¼1 ða

k�1
jr Þ

2pk�1
jr

Qnj

i¼1 f
ð1Þ
ij ðyjak�1

jr Þ

f
ð2Þk
j ðyÞ

� ðmk
j Þ
2

vuut , ð7Þ

followed by evaluation of ak
jr and pk

jr using (5) and (6). This sequence is repeated until
convergence. A similar iterative algorithm is described in another context by Naylor
and Smith (1988). The algorithm can converge very slowly or fail to converge if
insufficient quadrature points are used to evaluate the posterior moments accurately,
giving a useful warning that the approximation is poor.
Liu and Pierce (1994) describe an integration method based on a first order

Laplace approximation (Tierney and Kadane, 1986) where mj is the mode of the
integrand and tj is the standard deviation of the normal density approximating the
integrand at the mode. Pinheiro and Bates (1995) use this method in the context of
two-level random coefficient models. An advantage of their approach is that mj and
tj do not themselves rely on the quadrature approximation so that an iterative
process of the kind described above is not required. However, the method is also
computationally demanding since numerical optimization and differentiation are
required to determine mj and tj for each cluster. In addition, the posterior mean and
standard deviation may better reflect the shape of the integrand when its tails are
heavier than that of a normal density. Most importantly for our purposes, the first
order Laplace approximation cannot be readily extended to multilevel problems as
we will see in the next section. Both methods are of course equivalent if the posterior
distribution is normal.
So far we have only addressed the problem of evaluating the marginal likelihood

for given parameter values y: The next problem is to maximize this marginal
likelihood with respect to y: Bock and Aitkin (1981) and others use Gaussian
quadrature within an EM algorithm. We use a Newton–Raphson algorithm where
the Hessian is obtained by numerical differentiation. Interestingly, numerical
derivatives may be more accurate than numerically integrated analytical derivatives
since the integrals for the derivatives are often very poorly approximated by
quadrature or adaptive quadrature (Lesaffre and Spiessens, 2001). Numerical
differentiation requires repeated evaluation of the marginal likelihood in the
neighborhood of the ‘current’ parameter values. We do not update the quadrature
locations and weights for each of these evaluations but keep them fixed for a full
iteration of the Newton–Raphson procedure. The algorithm alternates between a
step of Newton–Raphson to update the parameter values and the set of iterations in
(7) to update the quadrature locations and weights. The reasons for not updating the
quadrature locations and weights during numerical differentiation are that it would
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be computationally demanding and that large changes in these quantities could make
the likelihood surface appear discontinuous.
2.2. Adaptive quadrature for multilevel random coefficient models

A general three-level random coefficient model can be written as

Zijk ¼ x0
ijkbþ x

ð2Þ0
ijk u

ð2Þ
jk þ x

ð3Þ0
ijk u

ð3Þ
k , (8)

where i, j and k index the units at levels 1, 2 and 3, respectively (e.g. time-points in
individuals in firms), x0

ijkb is the fixed effects part, x
ð2Þ
ijk is a vector of explanatory

variables with random effects u
ð2Þ
jk at level 2 and x

ð3Þ
ijk is a vector of explanatory

variables with random effects u
ð3Þ
k at level 3. The random effects at a given level have

a multivariate normal distribution and the random effects at different levels are
mutually independent and independent of the residual error term �ijk and
explanatory variables. The general L level version of this model can be written as

Z ¼ x0bþ
XL

l¼2

xðlÞ0uðlÞ,

where subscripts are omitted to simplify notation. The marginal log-likelihood is

LðyÞ ¼
X

ln f ðLÞ
ðyÞ,

where f ðLÞ
ðyÞ is the likelihood contribution of a unit at the highest level L. Let

U ðlÞ ¼ ðuðlÞ0; . . . ; uðLÞ0Þ
0 for lpL: Exploiting conditional independence among level-

ðl � 1Þ units given the random effects U ðlÞ at levels l and above, the likelihood
contribution of a given level-l unit can be obtained recursively as

f ðlÞ
ðyjU ðlþ1ÞÞ ¼

R
gðuðlÞ; 0;SðlÞÞ

Q
f ðl�1Þ

ðyjU ðlÞÞduðlÞ; l ¼ 2; . . . ;L � 1

f ðLÞ
ðyÞ ¼

R
gðuðLÞ; 0;SðLÞÞ

Q
f ðL�1Þ

ðyjuðLÞÞduðLÞ;

(9)

where f ð1Þ
ðyjU ð2ÞÞ is the conditional level-1 likelihood contribution given in (2) for

binary probit models (see Section 4 for other response models), gðuðlÞ; 0;SðlÞÞ is the
multivariate normal density of uðlÞ with covariance matrix SðlÞ and the product is
over all level-ðl � 1Þ units within the level-l unit as shown explicitly for a two-level
model in (1).
Instead of integrating over the correlated random effects uðlÞ; we will integrate over

independent standard normal variables vðlÞ with

uðlÞ ¼ QðlÞvðlÞ, (10)

where QðlÞ is the Cholesky decomposition of SðlÞ: Letting V ðlÞ ¼ ðvðlÞ0; . . . ; vðLÞ0Þ0; the
integral over the MðlÞ random effects at level l can then be approximated by cartesian
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product quadrature,

f ðlÞ
ðyjV ðlþ1ÞÞ ¼

Z
fðvM Þ . . .

Z
fðv1Þ

Y
f ðl�1Þ

ðyjv1; . . . ; vM ;V ðlþ1ÞÞdv1 
 
 
dvM

�
X
rM

prM

 
 

X

r1

pr1

Y
f ðl�1Þ

ðyjar1; . . . ; arM ;V ðlþ1ÞÞ, ð11Þ

where we have omitted the ðlÞ superscript for M and the variables being integrated
over and will continue to do so in the remainder of this section.
We can improve the approximation by using adaptive quadrature. Although the

multivariate integrals in (11) are evaluated as nested sets of univariate integrals, first
over v1; then over v2; up to vM ; we cannot simply apply the adaptive quadrature rule
in (5) and (6) to each univariate integral. This is because when integrating over a
given vm; the integrand is proportional to the posterior density of vm conditional on
all random effects not yet integrated over, i.e. vmþ1 to vM and all higher level random
effects. Since the random effects will generally have non-zero posterior correlations,
we would therefore require the conditional posterior moments of vm given all random
effects not yet integrated over. We can simplify the problem considerably by
transforming to a new set of random effects with zero posterior correlations so that
the marginal moments can be used. Naylor and Smith (1988) discuss this problem in
a Bayesian context and suggest the orthogonalizing transformation

w1 ¼ v1,

ws ¼ vs þ
Xs�1
t¼1

gstwt; s ¼ 2; . . . ;S ð12Þ

with

gst ¼ �covðvs;wtÞ=varðwtÞ,

where we have omitted the ðlÞ superscript and let vs denote the sth of all random
effects (in some order) with s ¼ 1; . . . ;S and S ¼

P
lM

ðlÞ: The transformation has
unit Jacobian.
The sequence of transformations therefore starts with random effects zs with zero

posterior means and covariances and unit posterior variances which are evaluated at
the Gauss–Hermite quadrature locations ar; r ¼ 1; . . . ;R: These random effects are
rescaled to ws ¼ ms þ tszs; giving the adaptive quadrature locations for univariate
integration, asr in (5), and transformed to vs via (12). The adaptive quadrature
locations for multivariate integration are therefore given by

Asr ¼ asr �
Xs�1
t¼1

gst atr

with corresponding weights

Psr ¼
ffiffiffiffiffiffi
2p

p
ts expða

2
r=2ÞfðAsrÞpr.

The weights Psr for the sth random effect depend on Asr and hence on the locations
atr of all preceding random effects tos: In order to keep the weights of higher level
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effects constant when integrating over the lower level effects, the vs should
be ordered from the highest to lowest level, the ordering within a level being
arbitrary. For two random effects, the transformation from ðz1; z2Þ to ðv1; v2Þ
and hence from ðar1

; ar2
Þ to ðA1r1

;A2r2
Þ is illustrated in the first row of Fig. 2.

It is clear that, for given posterior means and standard deviations,
adaptive quadrature will be particularly superior to ordinary quadrature when the
variables vs have marked posterior correlations. Note that we would expect
substantial negative posterior correlations between random intercepts at different
levels since the effect (on the posterior distribution) of increasing the higher level
random intercept can to some degree be counteracted by decreasing the lower level
one and vice versa.
The gst required for the transformations in (12) as well as the posterior moments m

and t of w can be obtained from the posterior means, variances and covariances of v.
For given adaptive quadrature locations and weights, the algorithm computes the
marginal likelihood and posterior moments of v recursively from level 2 to L. The
terms evaluated at a given level l are displayed in Table 1.
After evaluating all terms up to level L, the posterior variances and covariances

are found using

covðvðkÞm vðlÞn Þ ¼ E½vðkÞm vðlÞn � � E½vðkÞm �E½vðlÞn �.
Ordinary quadrature

Cartesian
(64 points)

Spherical
(44 points)

Adaptive quadrature

z 2
z 2
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Fig. 2. Locations for ordinary and adaptive integration in two dimensions using cartesian and spherical

quadrature rules with d ¼ 7; where m1 ¼ 1; m2 ¼ 2; t1 ¼ t2 ¼ 1 and the posterior correlation is 0:5:
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Table 1

Quantities evaluated at level l to obtain the likelihood by adaptive quadrature

Likelihood:

f ðlÞ
ðyjV ðlþ1ÞÞ ¼

X
rM

PMrM
. . .
X

r1
P1r1

Y
f ðl�1Þ

ðyjA1r1
; . . . ;AMrM

;V ðlþ1ÞÞ.

First order moments:

E½vðlÞm jV ðlÞ� ¼ AðlÞ
m ,

m ¼ 1; . . . ;M ðlÞ,

E½vðkÞm jV ðlþ1Þ� ¼

P
rM

PMrM

 
 

P

r1
P1r1

E½vðkÞm jV ðlÞ�
Q

f ðl�1Þ
ðyjA1r1

; . . . ;AMrM
;V ðlþ1ÞÞ

f ðlÞ
ðyjV ðlþ1ÞÞ

,

k ¼ 1; . . . ; l; m ¼ 1; . . . ;M ðkÞ.

Second order moments:

E½vðlÞm vðlþiÞ
n jV ðlÞ� ¼ AðlÞ

m AðlþiÞ
n ,

m ¼ 1; . . . ;M ðlÞ; i ¼ 0; . . . ;L � l; n ¼
m; . . . ;M ðlÞ i ¼ 0

1; . . . ;M ðlþiÞ i40

(

E½vðkÞm vðkþiÞ
n jV ðlþ1Þ� ¼

P
rM

PMrM

 
 

P

r1
P1r1

E½vðkÞm vðkþiÞ
n jV ðlÞ�

Q
f ðl�1Þ

ðyjA1r1
; . . . ;AMrM

;V ðlþ1ÞÞ

f ðlÞ
ðyjV ðlþ1ÞÞ

,

k ¼ 1; . . . ; l; m ¼ 1; . . . ;M ðkÞ; i ¼ 0; . . . ;L � k; n ¼
m; . . . ;M ðkÞ i ¼ 0

1; . . . ;M ðkþiÞ i40:

(

S. Rabe-Hesketh et al. / Journal of Econometrics 128 (2005) 301–323310
These moments can be used to update the quadrature locations and weights and we
can iterate as in the univariate case until convergence. This set of iterations is then
alternated with single steps of a Newton–Raphson procedure as described in the
univariate case.
Note that adaptive quadrature as described here, based on the posterior moments,

can be applied as easily to multilevel models as to two-level models. This is in
contrast to the first order Laplace approximation suggested by Liu and Pierce (1994).
Applying their method to two-level models is straightforward—the mode with
respect to all the random effects is found and the covariance matrix of the
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approximating multivariate normal density is found from the inverse Hessian matrix
of the log of the integrand. However, in multilevel models, finding the mode with
respect to vðlÞ would require integrating out all lower level random effects
vð2Þ; . . . ; vðl�1Þ for each value of vðlÞ during numerical optimization and differentiation
with respect to vðlÞ:
2.3. Multivariate integration using spherical quadrature rules

Cartesian product quadrature in (11) is a straightforward application of
Gauss–Hermite quadrature to multidimensional integration. However, as pointed
out in Naylor and Smith (1988), integrals of the formZ


 
 


Z
expð�x2

1 � 
 
 
 � x2
MÞf ðx1; . . . ;xMÞdx1 . . . dxM

can often be integrated more efficiently using spherical quadrature rules. These rules
are located on concentric hyperspheres as illustrated for two dimensions in the
bottom left panel of Fig. 2.
A rule of degree d is exact if f ðx1; . . . ;xM Þ is a linear combination of monomials of

the form x
k1
1 . . . x

kM
M with k1 þ 
 
 
 þ kMpd: Cartesian product quadrature with R

points per dimension is exact for monomials with degree d ¼ 2R � 1: In addition,
cartesian product quadrature is exact for monomials with k1 þ 
 
 
 þ kM4d as long
as k1pd; . . . ; kMpd:
A compilation of quadrature rules for multidimensional integrals is given in

Stroud (1971) and has been updated by Cools and Rabinowitz (1993) and Cools
(1999). The most efficient quadrature rules for a certain dimension M and degree d

are those that require the fewest number of points; rules with positive weights are
generally more accurate than rules with some negative weights. For integrals of the
form above, the most efficient published degree 7 rules with positive weights that we
are aware of use 2M þ 2M2 þ 1 points for M ¼ 3; 4; 6 and 2Mþ1 þ 4M2 for MX3
and are given in Stroud (1971). For example, in six dimensions, the rule requires
137 points compared with 4096 (¼ 4M ) for cartesian product quadrature.
Unfortunately, we are aware of published higher degree rules with positive weights
only for M ¼ 2; 3:
We can use these spherical rules to evaluate the M ðlÞ dimensional integrals at each

level l ¼ 2; . . . ;L using ordinary or adaptive quadrature. However, we cannot use a
single S ¼

P
l MðlÞ spherical rule for integrating over the random effects at all levels.

This is because, as shown in (9), integration with respect to uðlÞ to compute
f ðlÞ

ðyjU ðlþ1ÞÞ requires f ðl�1Þ
ðyjU ðlÞÞ to be evaluated by complete integration with

respect to uðl�1Þ for each value of uðlÞ: Cartesian quadrature provides such nested
integration as seen in (11) and by considering the case S¼2 illustrated in the first row
of Fig. 2 where the sum along a given column of quadrature points corresponds to
complete integration with respect to v2 for a given value of v1: In contrast, as
remarked by Naylor and Smith (1988), spherical quadrature does not permit such
‘marginalization’.
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3. Simulation study

3.1. Simple random component probit model

We first investigate the bias in parameter estimates using both ordinary and
adaptive quadrature for the random component or random intercept binary probit
model. The following model was simulated:

y�
ij ¼ b0 þ b1x1ij þ b2x2j þ uj þ �ij ; varð�ijÞ ¼ 1,

where x1ij varies between level-1 units ij and takes on the values 0 and 1 with
probabilities equal to 0.5, whereas x2j varies between clusters j also taking on values
0 and 1 with probabilities 0.5 independently of x1ij :
The fixed parameters were set to b0 ¼ 0; b1 ¼ 1; b2 ¼ 1; s was varied so that

r ¼ 0:30; 0.45, 0.60, 0.75, 0.90 and combined with cluster sizes nj ¼ 10; 100; 500: We
used 1000 clusters to obtain precise estimates of the biases with 50 replications. For
each simulated dataset, the parameters were estimated by ordinary quadrature with
10, 20 and 40 points and by adaptive quadrature with 5, 10 and 20 points. If the
relative change in mean log-likelihood with increasing numbers of quadrature points
was no more than 5� 10�5; the smaller number of quadrature points was considered
adequate; otherwise the maximum number of quadrature points was used even if it
appeared inadequate. Table 2 shows the number of quadrature points and the means
and standard deviations of bs: The corresponding results for the regression
coefficients are given in Table 3. Fig. 3 shows boxplots of the relative bias of bs
defined as ðbs� sÞ=s:
Table 2

Estimates of s using R-point ordinary and adaptive quadrature

Ordinary quadrature Adaptive quadrature

nj r s Mean bs (sd) R Mean bs (sd) R

10 0.30 0.655 0.658 (0.025) 10 0.659 (0.025) 5

10 0.45 0.905 0.903 (0.037) 20 0.904 (0.038) 10

10 0.60 1.225 1.224 (0.041) 20 1.225 (0.042) 10

10 0.75 1.732 1.739 (0.067) 40 1.740 (0.067) 20

10 0.90 3.000 2.812 (0.106)* 40 2.986 (0.133) 20

100 0.30 0.655 0.649 (0.017)* 40 0.653 (0.018) 5

100 0.45 0.905 0.878 (0.028)* 40 0.910 (0.024) 5

100 0.60 1.225 1.073 (0.030)* 40 1.229 (0.030) 5

100 0.75 1.732 1.332 (0.044)* 40 1.713 (0.067) 20

100 0.90 3.000 1.768 (0.062)* 40 2.935 (0.090)* 20

500 0.30 0.655 0.543 (0.023)* 40 0.654 (0.019) 5

500 0.45 0.905 0.661 (0.023)* 40 0.910 (0.021) 5

500 0.60 1.225 0.782 (0.030)* 40 1.240 (0.034)* 5

500 0.75 1.732 0.951 (0.043)* 40 1.732 (0.050) 20

500 0.90 3.000 1.224 (0.056)* 40 2.991 (0.081) 20

*True value outside approximate 95% confidence interval.
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Table 3

Estimates of b0; b1 and b2 (true values 0,1,1) using ordinary and adaptive quadrature with the same

number of quadrature points R as in Table 2

Ordinary quadrature Adaptive quadrature

bb0 bb1 bb2 bb0 bb1 bb2
nj r Mean (sd) Mean (sd) Mean (sd) Mean (sd) Mean (sd) Mean (sd)

10 0.30 �0.01 (0.04) 0.99 (0.03) 1.02 (0.06) �0.01 (0.04) 0.99 (0.03) 1.02 (0.06)

10 0.45 0.01 (0.05) 1.00 (0.04) 1.00 (0.07) 0.01 (0.05) 1.00 (0.04) 1.01 (0.07)

10 0.60 �0.01 (0.07) 1.00 (0.04) 1.01 (0.09) �0.01 (0.07) 1.00 (0.04) 1.01 (0.09)

10 0.75 0.00 (0.08) 0.99 (0.04) 0.99 (0.11) 0.00 (0.08) 0.99 (0.04) 0.99 (0.11)

10 0.90 �0.05 (0.23) 1.00 (0.05) 1.02 (0.30) �0.02 (0.15) 1.01 (0.05) 0.96 (0.22)

100 0.30 �0.01 (0.03) 1.00 (0.01) 1.01 (0.04) 0.00 (0.03) 1.00 (0.01) 1.01 (0.04)

100 0.45 0.00 (0.08) 1.00 (0.01) 1.00 (0.11) 0.00 (0.04) 1.00 (0.01) 1.02 (0.06)

100 0.60 0.03 (0.15) 1.00 (0.01) 0.95 (0.21) 0.01 (0.06) 1.00 (0.01) 1.02 (0.06)

100 0.75 �0.05 (0.25) 0.99 (0.01) 1.02 (0.33) �0.01 (0.07) 1.00 (0.01) 1.04 (0.08)

100 0.90 �0.11 (0.36) 0.98 (0.02) 0.90 (0.47) �0.06 (0.14) 1.00 (0.02) 0.97 (0.20)

500 0.30 0.00 (0.08) 1.00 (0.01) 0.99 (0.08) 0.00 (0.03) 1.00 (0.01) 1.01 (0.04)

500 0.45 0.00 (0.13) 1.00 (0.00) 0.98 (0.16) �0.01 (0.04) 1.00 (0.00) 1.01 (0.06)

500 0.60 �0.01 (0.18) 1.00 (0.01) 0.88 (0.26) 0.01 (0.05) 1.00 (0.01) 1.02 (0.07)

500 0.75 �0.03 (0.39) 0.99 (0.01) 0.75 (0.41) 0.01 (0.08) 1.00 (0.01) 0.99 (0.13)

500 0.90 �0.08 (0.62) 0.99 (0.01) 0.56 (0.89) �0.06 (0.15) 1.00 (0.01) 0.96 (0.23)

Ordinary quadrature Adaptive quadrature
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Fig. 3. Relative bias of bs for ordinary and adaptive quadrature.
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Adaptive quadrature requires a considerably smaller number of quadrature points
than ordinary quadrature to achieve a stable log-likelihood. Using ordinary
quadrature, the standard deviation estimates become increasingly biased as the
cluster size and intraclass correlation increase, 40 points being clearly inadequate for
correlations above 0.45 when nj ¼ 100 and above 0.3 when nj ¼ 500: Adaptive
quadrature performs very well for all combinations of nj and r with no more than 20
quadrature points and fewer for lower intraclass correlations. As expected, adaptive
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quadrature appears to work better for larger cluster sizes where the posterior
distribution is closer to normal. Somewhat surprisingly, the estimates of the intercept
b0 and of the regression coefficient b1 of the within-cluster covariate are fairly
unbiased even where the estimates of the standard deviation s are biased using
ordinary quadrature. However, using ordinary quadrature, the estimates of the
regression coefficient b2 of the between-cluster covariate have severe downward bias
for large clusters and high intraclass correlation. Moreover, in many cases the
standard deviations of the estimates of b0 and b2 are substantially larger than for
adaptive quadrature, meaning that the estimates for a particular dataset can be very
poor.

3.2. Three-level probit model

We now consider three-level binary probit models of the form

y�
ijk ¼ b0 þ u

ð2Þ
jk þ u

ð3Þ
k þ �ijk; varð�ijkÞ ¼ 1,

where the level-2 random intercept u
ð2Þ
jk has variance s22 and the level-3 random

intercept u
ð3Þ
k has variance s23: In particular, we will assess the performance of

adaptive quadrature for different cluster sizes and intraclass correlations. There are
two cluster sizes for the three-level model, the number of level-1 units in each level-2
unit, n2; and the number of level-2 units in each level-3 unit, n3: The posterior density
of u

ð2Þ
jk ; conditional on u

ð3Þ
k becomes increasingly normal as n2 increases. Therefore

fewer quadrature points should be required at level 2 for larger n2: The posterior
density of u

ð3Þ
k is the product of the prior density and a product of n3 level-2

likelihood contributions. This density will become increasingly normal as n3
increases but also as n2 increases, since the level-2 likelihood contributions
themselves then become closer to normal. Therefore, generally, fewer quadrature
points may be required at level 3 than at level 2. In addition to estimating the
parameters with 5 and 10 point quadrature per dimension, we will therefore also try
using a larger number of quadrature points at level 2 (10 points) than level 3 (5
points).
There are several ways of defining intraclass correlations. The marginal

correlation between units in the same level-2 and level-3 units is

r23 � corðy�
ijk; y

�
i0jkÞ ¼

s22 þ s23
s22 þ s23 þ 1

,

whereas the conditional correlation, conditioning on the level-3 random effect, is

r2j3 � corðy�
ijk; y

�
i0jkju

ð3Þ
k Þ ¼

s22
s22 þ 1

.

The correlation between units in the same level-3 unit but different level-2 units is

r3 � corðy�
ijk; y

�
i0j0kÞ ¼

s23
s22 þ s23 þ 1

.
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The mean parameter estimates over 50 simulations for different combinations of n2;
n3; r2j3 and r3 are given in Table 4.
Consistent with the results of the previous section, 5-point adaptive quadrature at

level 2 is inadequate when the level-2 cluster size, n2; is 10 and the intraclass
correlation r2j3 is 0:6: These biases are greater when r3 is large, but, surprisingly,
lower when n3 is small. When both intraclass correlations are high, s3 is poorly
estimated with 5-point quadrature even when n2 is large. A striking result is that in
all simulations where 10-point quadrature per dimension performed better than 5-
point quadrature, the combination of 10 points at level 2 and 5 points at level 3
worked nearly as well.
3.3. Random coefficient probit models

We simulated data for 1000 clusters j each with 10 level-1 units ij from the two-
level binary probit model

y�
ij ¼ b0 þ b1xij þ u0j þ u1jxij þ �ij ; varð�ijÞ ¼ 1,

where xij varies between level-1 units and equals 0 or 1 with equal probabilities,
b0 ¼ �0:5; b1 ¼ 1 and the random intercept u0j and slope u1j have unit standard
deviations s0 ¼ s1 ¼ 1 and covariance s01 ¼ 0:5: Conditional on xij ; the correlation
between y�

ij and y�
i0j
is then 0.5 if xij ¼ xi0j ¼ 0; 0.53 if xijaxi0j and 0.75 if xij ¼ xi0j ¼1:

We estimated the parameters using adaptive quadrature with both cartesian and
spherical rules of degrees 7, 11 and 15, requiring 16, 36 and 64 points for cartesian
quadrature and 12, 28 and 44 for spherical quadrature. The results are shown in
Table 5.
The spherical rules give nearly identical results as the same degree cartesian rules

and the eleven degree rule appears to be adequate. We repeated the simulations with
s0 ¼ s1 ¼ 1:5 and s01¼1:25 so that the intraclass correlations ranged between 0.67
and 0.87. As expected due to the higher intraclass correlations, the eleven degree rule
no longer appears adequate and a fifteen degree rule is required. The spherical rules
of a given degree now appear a little inferior to the cartesian rules of the same degree.
To illustrate the usefulness of spherical rules for estimating models with many

random coefficients, we simulated a dataset with six correlated random effects from
the model

y�
ij ¼ x0

ijbþ x0
ijuj þ �ij ; varð�ijÞ ¼ 1,

where x1ij ¼ 1 and x2ij to x6ij are mutually independent, equal to 0 and 1 with
probabilities 0.5. We simulated 100 clusters of size 100 and estimated the parameters
using adaptive quadrature with a 137-point degree 7 spherical rule (rule 7-1 in
Stroud, 1971). The true and estimated parameters are given in Table 6. Out of the 27
parameters, 20 were within a standard error of the true value and only 3 were more
than two standard errors away from the true value.



A
R
TIC

LE
IN

PR
ES

S

Table 4

Mean parameter estimates (standard deviations) using adaptive quadrature for some three-level models

n2;n3 r2j3 r3 r23 Param. True value Mean estimate 5, 5 points Mean estimate 10, 10 points Mean estimate 10, 5 points

10,100 0.6 0.3 0.72 s2 1.225 1.217 (0.014) 1.222 (0.015) 1.222 (0.014)

s3 1.035 2.542 (1.125) 1.076 (0.117) 1.065 (0.092)

b0 0.000 �0.026 (0.876) �0.017 (0.110) �0.020 (0.104)

Log-lik. – �46399.57 �46345.76 �46345.25

100,10 0.6 0.3 0.72 s2 1.225 1.246 (0.025) 1.237 (0.040) 1.232 (0.031)

s3 1.035 1.231 (0.111) 1.102 (0.092) 1.032 (0.068)

b0 0.000 �0.041 (0.158) �0.016 (0.133) 0.004 (0.111)

Log-lik. – �39690.86 �39686.62 �39685.72

10,100 0.6 0.6 0.84 s2 1.225 * 1.226 (0.021) 1.221 (0.019)

s3 1.936 * 2.021 (0.166) 2.033 (0.187)

b0 0.000 *
�0.072(0.221) �0.066 (0.187)

Log-lik. – *
�35623.16 �35623.19

100,10 0.6 0.6 0.84 s2 1.225 1.249 (0.050) 1.235 (0.037) 1.235 (0.037)

s3 1.936 2.919 (0.422) 1.965 (0.138) 1.979 (0.140)

b0 0.000 0.021 (0.407) �0.005 (0.245) �0.011 (0.244)

Log-lik. – �30317.49 �30302.50 �30302.57

10,10 0.6 0.6 0.84 s2 1.225 1.222 (0.050) 1.231 (0.051) 1.231 (0.051)

s3 1.936 2.110 (0.238) 1.967 (0.192) 1.969 (0.201)

b0 0.000 0.002 (0.293) �0.003 (0.187) �0.004 (0.190)

Log-lik. – �3665.78 �3664.53 �3664.61

*Converged only for 40 datasets and gave very many large estimates of s3:
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Table 5

Mean estimates (standard deviations) using cartesian and spherical adaptive quadrature of different degrees for random coefficient probit models

Degree 7 Degree 11 Degree 15

True param. Cartesian Spherical Cartesian Spherical Cartesian Spherical

b0 (�0.5) �0.500 (0.041) �0.499 (0.041) �0.500 (0.041) �0.503 (0.042) �0.501 (0.042) �0.501 (0.041)

b1 (1.0) 1.006 (0.048) 1.001 (0.049) 1.003 (0.048) 1.000 (0.048) 1.001 (0.048) 1.002 (0.048)

s0 (1.0) 1.007 (0.045) 1.011 (0.045) 0.993 (0.044) 0.993 (0.044) 0.994 (0.044) 0.994 (0.044)

s1 (1.0) 1.001 (0.070) 1.008 (0.070) 0.999 (0.068) 0.995 (0.066) 1.001 (0.068) 0.997 (0.068)

s01 (0.5) 0.539 (0.078) 0.552 (0.076) 0.508 (0.071) 0.501 (0.071) 0.507 (0.071) 0.507 (0.071)

Log-lik. �5197.2 (64.75) �5196.7 (64.82) �5198.0 (64.64) �5198.3 (64.62) �5198.0 (64.64) �5198.0 (64.63)

b0 (�0.5) �0.479 (0.055) �0.465 (0.054) �0.477 (0.065) �0.492 (0.057) �0.497 (0.059) �0.486 (0.059)

b1 (1.0) 1.019 (0.071) 1.040 (0.072) 1.007 (0.070) 1.002 (0.070) 0.997 (0.071) 1.003 (0.072)

s0 (1.5) 1.534 (0.064) 1.554 (0.066) 1.479 (0.074) 1.486 (0.062) 1.489(0.062) 1.493 (0.063)

s1 (1.5) 1.512 (0.099) 1.538 (0.101) 1.476 (0.089) 1.436 (0.078) 1.498 (0.091) 1.463 (0.085)

s01 (1.25) 1.184 (0.203) 1.323 (0.205) 1.090 (0.175) 1.036 (0.184) 1.098 (0.176) 1.097 (0.184)

Log-lik. �4496.5 (73.84) �4494.8 (74.17) �4501.1 (73.70) �4502.2 (73.45) �4500.4 (73.38) �4501.3 (73.32)

S
.

R
a

b
e-H

esk
eth

et
a

l.
/

J
o

u
rn

a
l

o
f

E
co

n
o

m
etrics

1
2

8
(

2
0

0
5

)
3

0
1

–
3

2
3

3
1
7



A
R
TIC

LE
IN

PR
ES

S

Table 6

True parameters in bold and estimates (standard errors) using adaptive spherical quadrature for probit model with six random effects (log-likelihood

=�5103:82)

b ¼

:0 :03 ð:05Þ

:5 :50 ð:06Þ

�1:0 �1:00 ð:06Þ

1:0 :97 ð:07Þ

�:5 �:43 ð:07Þ

:0 �:07 ð:06Þ

26666666664

37777777775

S ¼

:25 :14 ð:04Þ

:12 :13 ð:04Þ :25 :20 ð:05Þ

�:12 �:07 ð:03Þ �:16 �:15 ð:04Þ :25 :23 ð:06Þ

:09 :12 ð:03Þ :12 :15 ð:04Þ �:12 �:15 ð:04Þ :25 :30 ð:06Þ

�:09 �:10 ð:04Þ �:12 �:18 ð:04Þ :12 :17 ð:08Þ �:09 �:22 ð:05Þ :25 :37 ð:09Þ

:12 :14 ð:03Þ :16 :19 ð:05Þ �:16 �:20 ð:05Þ :12 :12 ð:04Þ �:12 �:23 ð:05Þ :25 :28 ð:06Þ

26666666664

37777777775
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4. Other types of dependent variables

The same adaptive quadrature method can be used for counts, durations,
continuous, censored and ordinal dependent variables, discrete choices and rankings.
The likelihoods have the same form except for the level-1 contribution f ð1Þ

ðyjU ð2ÞÞ;
given for binary dependent variables in (2).
For counts, the likelihood contribution of a Poisson model is

f ð1Þ
ðyjU ð2ÞÞ ¼

½expðZÞ�s

s!
if y ¼ s; s ¼ 0; 1; . . . . (13)

Random effects models for counts are discussed in Cameron and Trivedi (1998). If a
piecewise exponential proportional hazards model is assumed for durations with
hazards remaining constant for intervals of time, Holford (1980) and Clayton (1988)
show that each observed duration contributes a product of terms of the form of (13)
to the likelihood, namely one term for each interval it exceeds. For continuous
dependent variables, we can specify for instance a normal, gamma or inverse
Gaussian density depending on the shape of the distribution.
For limited dependent variables, we assume that the underlying continuous

variable can be modeled as

y� ¼ Zþ �,

where � is normally distributed with standard deviation n: For continuous responses
subject to left-censoring at bl (Tobin, 1958), right-censoring at br; or both (Rosett
and Nelson, 1975), or for grouped (or interval censored) dependent variables with
boundaries bl and br (Stewart, 1983), the likelihood contribution is

f ð1Þ
ðyjU ð2ÞÞ ¼

fðy=nÞ=n if uncensored

Fð½Z� br�=nÞ if right-censored

Fð½bl � Z�=nÞ if left-censored

Fð½br � Z�=nÞ � Fð½bl � Z�=nÞ if grouped;

8>>>><>>>>: (14)

where bl and br are usually constant but can vary across units. For ordinal responses
with categories s, s ¼ 1; . . . ;S; the likelihood is as for grouped dependent variables
with unknown thresholds ks�1 and ks in place of fixed censoring limits bl and br when
y ¼ s; where �1 ¼ k0ok1o 
 
 
okS ¼ 1 (Aitchison and Silvey, 1957). A number
of other random effects models suitable for ordered responses and discrete time
durations are described in Rabe-Hesketh et al. (2001c).
For discrete choices, we can model the utility for alternative s, s ¼ 1; 2; ::;S as

y�
s ¼ Zs þ �s,

so that

y ¼ s if y�
s4y�

‘ ; 8‘; ‘as.
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If �s is Gumbel (extreme value of Type I), with density function expð��s � expð��sÞÞ;
the likelihood contribution is a multinomial logit

f ð1Þ
ðyjU ð2ÞÞ ¼

expðZsÞPS
‘ expðZ‘Þ

if y ¼ s. (15)

An ‘exploded logit’ is obtained for rankings (e.g. Beggs et al., 1981; Hausman and
Ruud, 1987). See Skrondal and Rabe-Hesketh (2003) for a treatment of multilevel
random effects models for discrete choices and rankings. Skrondal and Rabe-
Hesketh (2004) discuss models with many different types of dependent variables
including mixed types.
5. Discussion

As far as we are aware, this is the first generalization of adaptive quadrature for
multilevel modeling. Our simulations show that the method performs well in a wide
variety of situations including large cluster sizes and high intraclass correlations
where ordinary quadrature often fails. Adaptive quadrature requires lower degree
integration rules than ordinary quadrature, particularly for the higher level random
effects. Further gains in efficiency can be achieved by using spherical quadrature
rules. Unfortunately, however, there are to our knowledge no published higher
degree spherical rules for integrals in four or more dimensions to be used for
problems where degree 7 rules are insufficient. Another advantage of adaptive
quadrature is that it gives empirical Bayes predictions of cluster or individual-specific
random effects and their standard errors as a by-product. These are often of both
substantive interest and of importance for checking model specification.
Adaptive quadrature is slower than alternative estimation methods such as

penalized quasilikelihood (PQL) (Breslow and Clayton, 1993), for example as
implemented in the iterative generalized least squares algorithm (Goldstein, 1991).
Unfortunately, the parameter estimates from PQL tend to be biased for binary
dependent variables with small cluster sizes and high intraclass correlations (e.g.
Rodriguez and Goldman, 1995, 2001). Moreover, PQL does not involve a likelihood
which prohibits the use of likelihood based inference such as likelihood ratio tests
and likelihood based confidence intervals. Improved results can be achieved using a
sixth order Laplace approximation for the marginal likelihood, LaPlace6, (Rauden-
bush et al., 2000) which worked as well as 7-point adaptive quadrature in simulations
of a two-level binary dependent variable model. However, an advantage of adaptive
quadrature is that the precision can be increased by simply using more quadrature
points whereas increasing the degree of the Taylor expansion for the Laplace method
would require more work (Raudenbush et al., 2000).
Computer intensive alternatives to adaptive quadrature include simulation based

approaches such as Markov Chain Monte Carlo (MCMC) (e.g. Gelman et al., 2003)
and maximum simulated likelihood (MSL) (Hajivassiliou and Ruud, 1994). The
hierarchical structure of multilevel models lends itself naturally to MCMC using for
instance Gibbs sampling. If vague priors are specified, the method essentially yields
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maximum likelihood estimates. Unfortunately, a problem with this approach is how
to ensure that a truly stationary distribution has been obtained. Another important
shortcoming is that there is no diagnostic for assessing empirical identification (e.g.,
Keane, 1992). Regarding simulated maximum likelihood, a merit is that conditional
independence specifications implicit in standard multilevel models may be relaxed.
This can be useful in panel data models where ARMA(p,q) processes and their
special cases are sometimes specified for the level-1 errors �ij : Furthermore, unlike
methods based on quadrature, simulation methods allow statistical analysis of the
approximation error.
We have confined the simulations to multilevel random effects probit models for

binary dependent variables, although the estimation method can be used for many
other types of dependent variable as outlined in Section 4. In comparison to binary
responses, these other response types tend to yield more concentrated posterior
densities where ordinary quadrature can be expected to perform poorly (see e.g.
Albert and Follmann, 2000). An example with count data is given in Rabe-Hesketh
et al. (2002) where adaptive quadrature recovers previous estimates and standard
errors whereas ordinary quadrature fails.
The adaptive quadrature method can also be used for the more general class of

multilevel factor and structural equation models (Rabe-Hesketh et al., 2004) since
they have the same conditional independence structure as random coefficient models:
variables (at level 1) are conditionally independent given the factors which in turn are
conditionally independent given higher level factors, etc. The marginal likelihood has
the same form as that of random coefficient models, the only difference being the
form of the linear predictor Z: Factor models are useful for generating flexible
covariance structures using only a small number of latent variables, see for example
Rabe-Hesketh and Skrondal (2001). They are also useful for inducing dependence
between multiple processes as required for selection and endogenous treatment
models and their multilevel extensions (e.g. Skrondal and Rabe-Hesketh, 2004,
Chapter 14).
Maximum likelihood estimation and empirical Bayes prediction for all of these

models using adaptive quadrature is implemented in gllamm (Rabe-Hesketh et al.,
2000, 2001a,b, 2002) which runs in Stata (StataCorp, 2003). The program can also
handle discrete random effects including nonparametric maximum likelihood
(Heckman and Singer, 1984; Rabe-Hesketh et al., 2003) and is available from
http://www.gllamm.org.
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