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We propose a unifying framework for multilevel modeling of polytomous data and rankings, ac-
commodating dependence induced by factor and/or random coefficient structures at different levels. The
framework subsumes a wide range of models proposed in disparate methodological literatures. Partial
and tied rankings, alternative specific explanatory variables and alternative sets varying across units are
handled. The problem of identification is addressed. We develop an estimation and prediction method-
ology for the model framework which is implemented in the generally available gllamm software. The
methodology is applied to party choice and rankings from the 1987–1992 panel of the British Election
Study. Three levels are considered: elections, voters and constituencies.
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Introduction

Two kinds of nominal outcome variable are considered in this article; unordered polytomous
variables and permutations. The outcome for a unit in the unordered polytomous case is one
among several objects, whereas the outcome in the permutation case is a particular ordering of
objects. The objects are nominal in the sense that they do not possess an inherent ordering shared
by all units as is assumed for ordinal variables. The development in this paper is coaxed in the
terminology of decision theory. Hence, objects are henceforth denoted alternatives, unordered
polytomous variables denoted first choices and permutations denoted rankings. For instance, in
election studies a central outcome variable is the first choice of a voter (say Conservatives) among
a set of alternatives (say Labour, Conservatives and Liberals). Sometimes additional information
is obtained in the form of rankings of the alternatives (say Liberals preferred to Labour preferred
to Conservatives).

The standard statistical model for first choices and rankings is logistic regression. It has
been pointed out in the econometric and psychometric literature that these models involve a ques-
tionable independence assumption known as “Independence from Irrelevant Alternatives” (IIA).
Discussions of the ramifications of IIA have been confined to one-level designs. However, first
choice and ranking data are often of a multilevel nature where units are nested within clusters.
In the context of the election example, multilevel data could for instance arise from two-level
designs where voters are nested within constituencies or election occasions nested within vot-
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ers. The liability of the IIA assumption is compounded for multilevel designs because additional
dependence, between units within clusters, is typically induced by unobserved heterogeneity be-
tween clusters.

Even when potential dependence is acknowledged, the dependence structures considered
for polytomous data and rankings are often too restrictive. As far as we are aware a truly multi-
level model with unobserved heterogeneity at more than one level has not yet been considered in
the literature. For instance, Goldstein (1995) specifies a model for panel election data including
unobserved heterogeneity between constituencies but not between voters in a constituency. Fur-
thermore, first choice models considered in the multilevel literature have neither accommodated
alternative specific explanatory variables, alternative sets varying across units nor factor struc-
tures (compare Goldstein, 1995; Raudenbush & Bryk, 2002). Contributions on rankings appear
to be missing in the multilevel literature.

The main contribution of this paper is to provide a unifying framework for multilevel mod-
eling of first choices and rankings, accommodating dependence at unit and cluster levels induced
by different kinds of factor and random coefficient structures. We also consider partial and tied
rankings, alternative specific explanatory variables as well as alternative sets varying across units.
The framework subsumes a wide range of models proposed in the psychometric, econometric,
(bio)statistical and marketing literatures. We discuss the problem of identification and develop an
estimation and prediction methodology which is implemented in the generally available gllamm
software. The methodology is finally applied to British election panel data. A three-level design
is considered where elections are nested within voters and voters nested within constituencies.

Logistic Regression for First Choice and Ranking

In the following, we will use lower case letters for scalars, bold lower case letters for col-
umn vectors and bold upper case letters for matrices. Let Ai = {a1

i , . . . , a Ai
i } be the set of Ai

alternatives available for unit i and va
i a linear predictor for unit i and alternative a.

First Choice

Letting ci be the first choice, a logistic model for first choices (e.g., Bock, 1969; Gurland,
Lee & Dolan, 1960; Theil, 1969) is usually specified as

Pr(ci | Ai ) = exp(vci
i )∑Ai

s=1 exp(vs
i )
. (1)

An alternative specification of the logistic regression model, based on random utility models
(e.g., Block & Marchak, 1960; Luce & Suppes, 1965; Marchak, 1960), is often used in econo-
metrics (e.g., Maddala, 1983). Here, the model is usually derived by introducing utilities ua

i for
each unit i and alternative a. The utilities are modeled as

ua
i = va

i + εa
i ,

where va
i is a fixed linear predictor and εa

i is a random term, assumed to be independently dis-
tributed across both units and alternatives with density

g(εa
i ) = exp{−εa

i − exp(−εa
i )}. (2)

This distribution has many names (e.g., Johnson, Kotz, & Balakrishnan, 1995), but will in the
sequel be denoted as Gumbel.

The probability of a first choice can be construed as utility maximization and expressed
in terms of Ai − 1 binary utility comparisons where the utility of the chosen alternative uci

i is
larger than the utilities of all other alternatives. Under the Gumbel specification for the random
utility this leads to the logistic regression model (1). The result that differences between Gumbel
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distributed variables (with constant variances) have logistic distributions is attributed to Holman
and Marley (see Luce & Suppes, 1965). The stronger result that only the Gumbel specification
leads to the closed form logistic model is due to McFadden (1973) and Yellott (1977).

Ranking

Let r�i be the alternative given rank � and Ri ≡ (r1
i , r

2
i , . . . , r

Ai
i ) the ranking of unit i . The

logistic model for rankings (e.g., Luce, 1959; Plackett, 1975) is then specified as

Pr(Ri | Ai ) =
Ai −1∏
�=1

exp(v
r�i
i )∑Ai

s=� exp(v
r s

i
i )
. (3)

The model is often denoted the “exploded logit” (Chapman & Staelin, 1982) since the ranking
probability is written as a product of first choice probabilities for successively remaining alter-
natives.

The probability of a ranking can be construed as utility ordering and expressed in terms of
Ai −1 binary utility comparisons, where the utility of the alternative ranked first is larger than the
utility of that ranked second, which is larger than that ranked third and so on. Under the Gumbel
specification of random utility this leads to the closed form “exploded logit” specification (3).
That such an explosion results was proven by Luce and Suppes (1965) and Beggs, Cardell and
Hausman (1981). The explosion is not simply an application of conditional probabilities but fol-
lows from the so called Luce-decomposability of Gumbel models (e.g., Critchlow, Fligner, &
Verducci, 1991). Importantly, an analogous explosion is not obtained under normally distributed
utilities. The Gumbel model is not reversible in the sense that successive choices starting with
the worst alternative would lead to a different ranking probability. It is also worth noting that
the ranking probability given above has the same form as the partial likelihood contribution for
a stratum in Cox regression with “surviving” alternatives corresponding to risk sets and choices
corresponding to failures. Allison and Christakis (1994) spell out dualities between logistic mod-
els for rankings and Cox regression.

Partial rankings result when unit i only ranks a subset of the full set of alternatives; for
example, when experimental designs are used in presenting specific subsets of alternatives to
different units (e.g., Böckenholt, 1992; Durbin, 1951). Such designs are easily handled by the
present methodology since the alternative sets Ai are permitted to vary over units i . Another
kind of partial ranking is a top-ranking where not all alternatives are ranked but only the subset
of the Pi < Ai most preferred alternatives. The probability of a top-ranking is simply the product
of the first Pi terms in equation (3). Note that the first choice probability is obtained as the special
case of the ranking probability when Pi = 1 for all i .

Tied alternatives are given the same rank. Although the probability of tied rankings is the-
oretically zero since the utilities are continuous, ties are often observed in practice. Exploiting
the duality between logistic models for rankings and Cox regression, we can utilize methods for
handling ties previously suggested in the survival literature. We hence assume that the units have
preference orderings for the tied alternatives, but the ordering is hidden from us. A unit i pro-
duces P∗

i < Ai ranks when there are ties. We let t�i denote the number of alternatives tied at rank

� for the unit, give the tied alternatives arbitrary labels m = 1, . . . , t�i and define v
r�[m]

i
i to be the

linear predictors of the tied alternatives. The exact expression for the ranking probability is very
complex when there are ties (e.g., Kalbfleisch & Prentice, 1980). Following Breslow (1974) we
suggest using the following approximation:

Pr(Ri | Ai ) =
P∗

i −1∏
�=1

t�i∏
m=1

exp(v
r�[m]

i
i )∑P∗

i
�′=�

∑t�
′

i
m′=1 exp(v

r�
′[m′]

i
i )

.
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This approximation amounts to assuming that all tied alternatives are still available when any of
the tied alternatives are chosen. Breslow’s method appears to work well as long as the number
of ties is moderate (Farewell & Prentice, 1980). Note that no approximation is required if there
is only one set of tied alternatives and these alternatives have the lowest rank P∗

i , since this
represents a top-ranking.

Heterogeneity and “Independence from Irrelevant Alternatives”

It follows from logistic first choice models that the odds for two alternatives a and b for unit
i are

Pr(ci = a | Ai )

Pr(ci = b | Ai )
= exp(va

i − vb
i ),

which only depend on the linear predictors for the two alternatives. Hence, the odds do not
depend on which other alternatives there are in the alternative set Ai . In the ranking case it
furthermore follows that the odds do not depend on which other alternatives have already been
chosen, the number of alternatives already chosen or the order in which those alternatives were
chosen. Luce (1959) denoted this property “Independence from Irrelevant Alternatives” (IIA).

The problem associated with the IIA property is best illustrated by adapting the red bus–
blue bus example of McFadden (1973). Let there be three political parties, Labour I, Labour II
and Conservatives. The first two parties are indistinguishable and have the same linear predictor
va

i whereas the Conservative party has linear predictor vb
i . The probability of voting for either

Labour I or Labour II is

2 exp(va
i )

2 exp(va
i )+ exp(vb

i )
= 1

1 + exp(vb
i − va

i − ln(2))
.

Consider now the scenario that Labour I and Labour II merge to form a single Labour party.
According to the logistic model the probability of voting Labour now decreases to

exp(va
i )

exp(va
i )+ exp(vb

i )
= 1

1 + exp(vb
i − va

i )
.

This effect is clearly counterintuitive and the model is often regarded as unduly restrictive (e.g.,
Takane, 1987, and the references therein).

The ramifications of IIA are most pronounced for an indifferent voter with vb
i − va

i = 0.
In this case the merger reduces the probability of voting Labour from 0.67 to 0.50, consistent
with an equiprobable choice among initially three and then two available parties. However, in
reality almost all voters will have a party preference reducing the impact of IIA. For example,
the probability decreases less substantially due to the merger, from 0.94 to 0.88, for a Labour
supporter with vb

i − va
i = −2.

More importantly, there will be heterogeneity in party preference among voters. This hetero-
geneity, observed and unobserved, ensures that the model does not imply a substantial reduction
in the share of the Labour vote due to the merger. To illustrate the effect of observed hetero-
geneity, consider a fixed effect of gender giving vb

i − va
i = 2 for men and vb

i − va
i = −2 for

women. For a population consisting of 50% men, the merger reduces the marginal probability for
Labour from 0.57 to 0.50 (compared with 0.67 to 0.50 in a homogeneous, indifferent population)
and, marginally to the observed covariates, IIA is therefore violated. In practice, observed co-
variates cannot explain all variability in individual party preferences. The remaining unobserved
heterogeneity can be modeled by including a shared random effect for the two Labour parties
in the linear predictor. For example, consider the situation where the random effect is normally
distributed with variance 16 (yielding a correlation between the Labour utilities of 0.91) and the
marginal (with respect to the random effect) probabilities of voting Labour remain the same as
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before for men and women. In this case the merger only reduces the probability of voting Labour
from 0.53 to 0.50. Increasing the magnitude of the fixed effects or the random effects variances
decreases the difference even further.

A consequence of failing to include random effects would be that the unrealistic IIA prop-
erty still holds conditional on the observed covariates, for example, among men and among
women if gender is the only observed covariate. Even with voter specific random effects, IIA
does, of course, still hold for a given voter. This conditional IIA property could be relaxed by
including voting-occasion specific random effects if the resulting model is identified.

A model failing to include random effects is obviously misspecified if there are substantial
correlations between the utilities within a cluster conditional on the observed covariates. It is well
known that model-based standard errors for the parameter estimates will in this case be incor-
rect. Another consequence of failing to include random effects is that the fixed effects estimates
will be attenuated towards zero. This dilution reflects a difference in interpretation; models with-
out random effects provide marginal or population-averaged effect estimates whereas random
effects models provide conditional or subject-specific effect estimates (e.g., Neuhaus, 1992). We
argue that inference regarding etiology should be confined to conditional effects since these are
“controlled” for unobserved as well as observed covariates. In fact, a major virtue of multilevel
designs (for instance panel designs) is that unobserved heterogeneity can be modeled, improving
the prospects of valid causal inferences (e.g., Hsiao, 1985).

A Model Framework for Multilevel Logistic Regression

For simplicity, we confine the explicit development of our multilevel framework to two-
level designs. However, it is straightforward to extend our methodology to an arbitrary number
of levels. This is illustrated in our application section where a three-level model is used for British
election data.

Let there be J clusters with index j = 1, . . . , J at Level 2. At Level 1 there are N j units

nested within each cluster j indexed i = 1, . . . , N j . Ai j = {
a1

i j , . . . , a
Ai j
i j

}
is the set of Ai j

alternatives for unit i in cluster j , and the total number of alternatives is denoted A. For the
election example, we let i index voters, j constituencies and let Ai j be the set of political parties
eligible for voter i in constituency j .

Utility Components

We will now specify parametric models for the unobserved random utilities. Initially, the
utilities are decomposed as

ua
i j = f a

i j + δa
i j + εa

i j .

f a
i j is a deterministic fixed effects term, representing observed heterogeneity of alternatives, units

and clusters. δa
i j are latent variables, representing unobserved heterogeneity that is dependent

over alternatives, further decomposed as

δa
i j = δ

a(1)
i j + δ

a(2)
i j ,

where δa(1)
i j and δa(2)

i j are latent variables inducing dependence at the unit and cluster levels,
respectively. εa

i j is an alternative specific error term representing unobserved heterogeneity that
is independent across alternatives, units and clusters. Finally, we define the linear predictor as

va
i j = f a

i j + δa
i j .
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Fixed Effects

We let the fixed effects f a
i j be structured as

f a
i j = ma + xa

i j
′ b + x′

i j g
a . (4)

Here, ma is a constant, xa
i j a vector which varies over alternatives and may also vary over units

and/or clusters whereas the vector xi j varies over units and/or clusters but not alternatives. The
corresponding fixed coefficient vectors are b and ga , respectively. Note that the effect b is as-
sumed to be the same on all utilities, so that this part of the model simply represents a linear
relationship between the utilities and alternative (and possibly unit and/or cluster)-specific co-
variates. For some alternative and unit and/or cluster specific variables the effect may differ be-
tween alternatives. Such effects can be accommodated by including interactions between these
variables and dummy variables for the alternatives in xa

i j . In the election example, the covariate
xi j could be the age of voter i in constituency j with different effects ga on the utilities for dif-
ferent parties. The party-specific covariate xa

i j could be a measure of the distance on the left-right
political dimension between the ath party and the i th voter in constituency j .

Unit Level Latent Variables

The component δa(1)
i j , inducing dependence among utilities within units, is structured as

δ
a(1)
i j = za(1)

i j
′�(1)i j + �a(1)′�(1)i j . (5)

Here �(1)i j is a random vector with corresponding explanatory variables za(1)
i j . If za(1)

i j is a subset

of xa
i j , �(1)i j are random coefficients allowing the effects of alternative specific covariates to vary

between units i . In the election example, letting za(1)
i j = xa(1)

i j represent the distance on the left-

right political dimension, the random slope β(1)i j allows the distance effect to vary between voters.
Finally, �(1)i j are factors at the unit level, representing unobserved variables having effects �a(1)

on ua
i j . Alternatively, �a(1) can be interpreted as unobserved attributes of alternative a and �(1)i j

as random effects on the utilities.
The expectations of the latent variables can be structured as

E[�(1)i j | wi j ] = G(1)
� wi j ,

E[�(1)i j | wi j ] = G(1)
� wi j , (6)

where G are regression parameter matrices and wi j exogenous covariates. Imposing a regression

structure for the random coefficients �(1)i j is a convenient device for introducing interactions be-
tween alternative-specific and unit-specific variables in the expectation structure without making
the fixed part of the model f a

i appear too complex. For example, if the effect of the distance on
the left-right political dimension depends on age, age can be used as a covariate in (6) instead of
including an interaction term in (4). In contrast, the regression structure for �(1)i j allows the ef-
fect of unit-specific covariates wi j to be modeled more parsimoniously than via f a

i j . For a single
factor, for example, one regression coefficient is estimated for each covariate, whereas inclusion
of the covariates in f a

i j would require estimation of A − 1 regression coefficients per covariate.

Cluster Level Latent Variables

Let δa(2)
i j , inducing dependence among utilities within clusters, be structured as

δ
a(2)
i j = za(2)

i j
′�(2)j + �a(2)′�(2)j + z(2)i j

′�a(2)
j , (7)
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where �(2)j and �a(2)
j are vectors of random coefficients with corresponding variable vectors

za(2)
i j and z(2)i j . �(2)j allows the effects of alternative specific covariates to vary between clusters

j , whereas �a(2)
j represents the variability in the effect of unit specific covariates z(2)i j between

clusters. Note that there is in this case a random coefficient for each alternative. In the context
of the election example β(2)j could represent heterogeneity in the distance effect between con-

stituencies. �a(2)
j represent random intercepts when z(2)i j = 1 and could more generally represent

random coefficients (varying over constituencies) of a covariate that varies within constituencies
(e.g., age). �(2)j are factors representing unobserved variables at the cluster level having effects

�a(2) on ua
i j .

The expectations of the latent variables can be structured as

E[�(2)j | w j ] = G(2)
� w j , (8)

E[�(2)j | w j ] = G(2)
� w j , (9)

E[�a(2)
j | w j ] = Ga(2)

� w j , (10)

where G are regression parameter matrices and w j exogenous covariates varying at the cluster
level. Note that cluster and alternative specific covariates wa

j could also be included in (10). For

example, the mean of the cluster-level random effect γ a(2)
j of the voter’s age z(2)i j could depend

on the age of the candidate of party a in constituency j , wa
j . For notational simplicity we assume

that such effects are specified in the fixed part (4).
The random terms at Level 1 in (5) and Level 2 in (7) are analogous except that there is no

term corresponding to z(2)i j
′�a(2)

j at Level 1. If such a term were included at the unit level, the

�a(1)
i j could not be interpreted as random effects of covariates since the covariates, being constant

across alternatives, do not vary within units. Including a term z(1)i j
′�a(1)

i j in the model would result
in a heteroscedastic unit and alternative specific error term. However, if one of the elements of
z(1)i j is a constant so that the corresponding element of �a(1)

i j is a random intercept at level 1,
model identification will be fragile (see Identification section).

The Framework in Vector Form

The utilities ua
i j are stacked in the Ai j × 1 column vector ui j . Analogously, we assemble

fi j , δ
a(1)
i j , δa(2)

i j and εa
i j in fi j , � (1)i j , � (2)i j and �i j , respectively. We can then write the model as

ui j = fi j + � (1)i j + � (2)i j + �i j .

The fixed effects vector fi j can be expressed as

fi j = m + X(1)i j b + (IAi j ⊗ x′
i j )g,

where the matrix X(1)i j contains the vectors xa
i j

′ as rows. The constants ma are placed in the
column vector m and the parameter vectors ga are stacked in the column supervector g.

The unit level latent variables � (1)i j can be written as

� (1)i j = Z(1)i j �(1)i j + �(1)
[i j]�

(1)
i j .

Here, za(1)
i j

′ are the rows of the matrix Z(1)i j and �a(1)′ are the rows of �(1)
[i j] where the index [i j]

signifies that the pertinent elements of the loading matrix may vary with i j since the alternative
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set is indexed i j . However, the elements (parameters) for a given alternative remain constant
across the i j . The cluster level latent variables � (2)i j can be written as

� (2)i j = Z(2)i j �(2)j + �(2)
[i j]�

(2)
j + (

IAi j ⊗ z(2)i j
′)�(2)j .

Z(2)i j contains za(2)
i j

′ as rows, �(2)
[i j] contains �a(2)′ as rows and the stochastic vectors �a(2)

j are

stacked in the column supervector �(2)j . The regression structure for �a(2)
j , given in (10), must

then be extended to:

E[�(2)j | w j ] = G(2)
� w j ,

where the regression matrices Ga(2)
� are stacked in the supermatrix G(2)

� .

Distributional Specifications

The alternative specific errors εa
i j are specified as Gumbel without scale parameters as in (2).

It can be shown that the error has expectation , where  denotes Euler’s constant, and variance
π2/6. We specify the errors to be independently distributed across a, i and j .

The unit level latent variables L(1)i j = (�(1)i j
′,�(1)i j

′)′ have a multivariate normal distribution

with expectations L
(1)
i j = ((G(1)

� wi j )
′, (G(1)

� wi j )
′)′ and covariance matrix �(1) partitioned as

�(1) =
(

�(1)
�

0 �(1)
�

)
.

The level two latent variables L(2)j = (�(2)j
′,�(2)j

′,�(2)j
′)′ are multivariate normal with expecta-

tions L
(2)
j = ((G(2)

� w j )
′, (G(2)

� w j )
′, (G(2)

� w j )
′)′ and covariance matrix partitioned as

�(2) =

�(2)

�

0 �(2)
�

0 0 �(2)
�


 .

We denote the submatrices of �(2)
� in the following way: the covariance matrix for random

coefficients �a(2) pertaining to a given alternative is denoted �(2)
�a whereas the covariance matrix

for random coefficients �a(2) and �b(2) pertaining to different alternatives is denoted �(2)
�a ,�b . The

unit level and cluster level latent variables L(1)i j and L(2)j are assumed mutually independent, and
independent of the alternative specific error vector �i j . This model framework can be denoted

Gumbel-Normal since the random part of the utilities, � (1)i j + � (2)i j + �i j , comprises a mixture of
a Gumbel and normal components.

Identification

For each unit i j we define a (Ai j − 1) × Ai j comparison matrix HF
i j , containing −1, 0

and 1 in appropriate positions, ensuring that a given choice can be compactly expressed in terms
of positive utility differences HF

i j ui j > 0. For instance, if alternative 1 is chosen among three
alternatives, the comparison matrix becomes

HF
i j =

(
1 −1 0
1 0 −1

)
.
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Analogously, we define the (Ai j − 1)× Ai j comparison matrix HR
i j for a ranking. For instance,

if three alternatives are ranked in the order 1, 2, 3, the comparison matrix becomes

HR
i j =

(
1 −1 0
0 1 −1

)
.

First choice and ranking probabilities may then be expressed as

Pr
(
ci j | Ai j

) = Pr(HF
i j ui j > 0), (11)

and

Pr(Ri j | Ai j ) = Pr(HR
i j ui j > 0), (12)

respectively.
These probabilities depend only on the utility differences and we can therefore investigate

identification by considering the moments of the utility differences. The Logistic-Normal distri-
bution for the utility differences cannot be completely characterized by the first and second order
moments. However, due to the similarity between the logistic and the normal distributions, the
third and higher order moments do not contain much information (e.g., Rabe-Hesketh & Skron-
dal, 2001). We therefore find it useful to consider sufficient conditions for local identification in
terms of the first and second order moments of the utility differences.

Note that we cannot identify the moments of the utilities themselves. An important im-
plication is that two models, one positing independence among utilities and another specifying
equicorrelated utilities cannot be distinguished from first and second order information since they
generate identical first and second order moments of the utility differences. Other examples are
provided by Bunch (1991).

Letting Hi j be the comparison matrix for the first choice or ranking of unit i j , the expecta-
tion structure of the utility differences, given all the exogenous variables Ei j , is

E[Hi j ui j | Ei j ] = Hi j m + Hi j Xi j b + (Hi j ⊗ x′
i j )g + Hi j Z

(1)
i j G(1)

� wi j + Hi j �
(1)
[i j]G

(1)
� wi j

+ Hi j Z
(2)
i j G(2)

� w j + Hi j �
(2)
[i j]G

(2)
� w j + (Hi j ⊗ z(2)i j

′)G(2)
� w j ,

since Hi j (1Ai j ) = 0. The conditional covariance structure of the differences is

Cov[Hi j ui j | Ei j ] = Hi j Z
(1)
i j �(1)

� Z(1)i j
′H′

i j + Hi j �
(1)
[i j]�

(1)
� �(1)

[i j]
′H′

i j + Hi j Z
(2)
i j �(2)

� Z(2)i j
′H′

i j

+ Hi j �
(2)
[i j]�

(2)
� �(2)

[i j]
′H′

i j + (Hi j ⊗ z(2)i j
′)�(2)

� (z(2)i j ⊗ H′
i j )

+ Hi j

(
π2

6
I

)
H′

i j . (13)

It follows from (11) and (12) that the first choice and ranking probabilities are invariant to
changes in the scale of the utility differences. One implication is that freeing the scale of the
utility differences by adding additional unit and alternative specific random effects γ a(1)

i j would
lead to fragile identification (relying on scarce higher order information) unless extra restrictions
are imposed. Note, however, that the scales of the fixed and random terms in the linear predictor
are identified since the last term in (13) is constant. This is also evident by noting that the first
choice and ranking probabilities in (1) and (3) are not invariant with respect to a rescaling of the
linear predictor. Hence, the expectations, variances and covariances of differences in the linear
predictor are identified. It is therefore useful to identify the parameters by designating a base
alternative, here without loss of generality chosen as the first.
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Consider first identification of the parameters in the fixed effects part. No restrictions need
be imposed to identify b. Imposing the restrictions m1 = 0 and g1 = 0 it follows that m and
g become identified. We cannot simultaneously identify ma and a coefficient b of an xa

i j that
does not vary over i j . Even when the constant ma is omitted, the number of purely alternative
specific covariates xa that can be included is limited by the size of the alternative set A. We then
consider the regression parameters in the expectation structures for the latent variables. First of
all, observe that we cannot simultaneously include m in the fixed part of the model and also
include intercepts in the regressions by using covariates wi j or w j with one element equal to 1

for all i and j . Assuming that this problem is resolved, we see that G(1)
� and G(2)

� are directly

identified. Regarding G(1)
� and G(2)

� , we note that these parameters are identified if �(1)
[i j] and �(2)

[i j]
are identified, respectively. We identify G(2)

� by imposing G(2)
�1 = 0.

Turning to the covariance structure, we first consider the random coefficients. We see that
�(1)

� and �(2)
� are identified without imposing further restrictions. In contrast, we identify �(2)

�

by imposing the restrictions �(2)
�1 = 0. Note that this implies that �(2)

�1,�a = 0 (∀a �= 1).
We then consider identification of the unit level factor model. Usually, fixing the variances

in �(1)
� or one factor loading in each column of �(1)

[i j] leads to identification of �(1)
� and �(1)

[i j]
in factor models. However, the situation is considerably more complicated for first choices and
rankings. For rankings, at least one extra parameter must be fixed in each column of �(1)

[i j] to

ensure identification since differences Hi j �
(1)
[i j] are involved. Otherwise an arbitrary constant

vector may be added to (or subtracted from) the columns of �(1)
[i j] without changing the covari-

ance structure. Analogous concerns arise in the identification of �(2)
� and �(2)

[i j] at the cluster
level.

Unit level factor models are identified for rankings subject to the above restrictions whether
there are exogenous variables in the model or not. This is in sharp contrast to the case of first
choices where unit level factor models are not identified unless exogenous variables are included
(compare Heckman & Sedlacek, 1985). Unfortunately, models only including unit specific co-
variates are prone to empirical underidentification even in this case, but these problems ap-
pear to be reduced when unit and alternative specific covariates xa

i j are included (e.g., Keane,
1992). Hence, the use of unit level factor models for first choice designs should proceed with
caution.

Estimation and Prediction

Marginal Likelihood

It follows from (11) that one way of obtaining a first choice probability is through Ai j − 1
dimensional integration of a Logistic-Normal distribution. However, the dimension of integra-
tion becomes excessively high when the number of alternatives is moderately large. Instead we
propose to take advantage of the fact that the Gumbel-Normal utility model reduces to the in-
dependent Gumbel utility model with constant utility variances when we condition on the latent
variables (in addition to the exogenous). The conditional probabilities Pr(ci j | Ai j ,Li j ,Ei j ) and
Pr(Ri j | Ai j ,Li j ,Ei j ), conditional on all latent variables Li j and all exogenous variables Ei j ,
then equal the simple closed form expressions in (1) and (3), respectively, keeping in mind that
the linear predictor va

i j = f a
i j + δa

i j now includes latent variables.
To obtain the likelihood contribution for cluster j , we need to integrate out the mutually

independent multivariate normal latent variables L(1)i j and L(2)j , with corresponding densities

ϕ(L(1)i j ) and ϕ(L(2)j ), giving
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Pr
(
R1 j ∩ R2 j ∩ · · · ∩ RN j j | Ei j

)

=
∫ N j∏

i=1

{∫
Pr(Ri j | Ai j ,Li j ,Ei j )ϕ(L

(1)
i j ) dL(1)i j

}
ϕ(L(2)j ) dL(2)j .

Hence, under this formulation the dimension of integration equals the number of latent variables
which is often of a considerably smaller magnitude than Ai j − 1. Note that the conditional
probabilities do not have closed forms if normally distributed utilities, giving a probit model,
are specified instead of the Gumbel. Ai j − 1 dimensional integration would be required to obtain
the marginal likelihood in this case.

The marginal log-likelihood for rankings becomes

L =
J∑

j=1

ln Pr
(
R1 j ∩ R2 j ∩ · · · ∩ RN j j | Ei j

)
,

whereas the marginal likelihood for first-choices is readily obtained as the special case where
Pi j = 1 for all i j .

We suggest using parametric empirical Bayes methods (e.g., Morris, 1983) for predicting
values of the latent variables for the individual units. Hence, the predictor is the expectation
of the posterior distribution of the latent variables (given the units’s ranking or first choice and
exogenous variables), with parameter estimates plugged in.

Implementation: gllamm

All models in the general model framework can be estimated using the program gllamm
(Rabe-Hesketh, Pickles & Skrondal, 2001). This program, written in Stata, implements maxi-
mum likelihood estimation and empirical Bayes prediction for many kinds of generalized linear
mixed models with latent variables. Numerical integration by adaptive Gauss-Hermite quadrature
(Rabe-Hesketh, Skrondal & Pickles, 2002, 2003) is used to obtain the marginal log-likelihood
which is maximized by Newton-Raphson using numerical first and second derivatives. To the
user, the only substantial difference between specifying models for rankings compared with other
types of responses is that the data are first expanded as for exploded logits (Rabe-Hesketh, Pick-
les & Skrondal, 2001, chap. 9). This allows the fixed and random structure of the utilities for
different alternatives to be specified. Different alternative sets per unit, partial rankings and ties
(Breslow method) are all dealt with by simply expanding the data appropriately.

Special Cases of the Model Framework

We now consider special cases of our model framework which have been suggested in the
psychometric, econometric, (bio)statistical and marketing literatures. Most developments have
been restricted to first choices, and this is the case for the models presented below unless other-
wise indicated. However, extension of the models and methods to rankings is straightforward as
has been demonstrated for the general model framework. We will also consider probit versions
of the models where the alternative specific errors �i j are specified as normal instead of Gumbel.
These models are not special cases of our framework but closely related.

Fixed Effects Only

Conventional logistic regression models only have a fixed part given by (4) in its most
general form. Here it is implicitly specified that the utilities of the alternatives for a unit i j ,
ua

i j , are stochastically independent, given the exogenous variables. Problems associated with
these models were discussed in the section Heterogeneity and Independence from Irrelevant
Alternatives.
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First choice versions of the fixed effects model in (4) have been considered by for instance
Train (1986), whereas ranking versions have been used by Chapman and Staelin (1982) and
Allison and Christakis (1994). The conditional logit model, standard in econometrics, arises
as the special case where x′

i g
a = 0 in (4). This model is very useful for prediction of choice

probabilities when hypothetical values for xa
i are stipulated for new alternatives (e.g., products).

However, such predictions presuppose that the constants ma are zero, that is, that the included
attributes fully explain the choices. The model is used for both first choices (e.g., McFadden,
1973) and rankings (e.g., Hausman & Ruud, 1987). The polytomous logistic regression model, a
standard model for first choices in for instance biostatistics (e.g., Hosmer & Lemeshow, 1989),
results as the special case where xa

i ′b = 0 in (4).

Unobserved Heterogeneity between Units within Clusters

The fixed effects part for these models can have any of the structures outlined above. The
dependence is confined to be within units by setting δa

i j = δ
a(1)
i j in (5), a reasonable specification

if there is no dependence induced by clusters.

1. Random coefficient models:

δ
a(1)
i j = za(1)

i j
′�(1)i j .

A probit version of this kind of model was considered by Hausman and Wise (1978).
2. Common factor models:

δ
a(1)
i j = �a(1)′�(1)i j .

The alternative specific errors εa
i j can in this case be interpreted as unique factors, hence a

common factor model arises. Bloxom (1972) and Arbuckle and Nugent (1973) are seminal
contributions, introducing common factor models in the pair-comparisons literature. Probit
versions for rankings, with the restriction �(1)

� = I, have been discussed in a series of pa-
pers (Böckenholt, 1993; Brady, 1989; Chan & Bentler, 1998). Brady and Böckenholt note
that these models are closely related to so-called ideal point models. A regression structure
for �(1) can be included as in (6). A probit special case suggested for pair-comparisons, the
so-called wandering vector model (Carroll, 1980; De Soete & Carroll, 1983) specifies that
the expectation only arises via the factors. This kind of structure is obtained by imposing the
restrictions m = 0 and wi = 1 in the regression structure. In the first choice case, regres-
sion structures for �(1)i j and �(1)i j have recently been suggested by Harris and Keane (1999).
In contrast, the ranking models considered in the literature do in general not accommodate
observed heterogeneity in terms of regression structures.

3. Random coefficient and common factor models:

δ
a(1)
i j = za(1)

i j
′�(1)i j + �a(1)′�(1)i j .

McFadden and Train (2000), among others, have developed a class of models denoted mixed
logit models. The above model is the common special case where the mixing distribution is
multivariate normal. The model is also essentially that suggested by Böckenholt (2001a) for
rankings, except that Böckenholt also includes a finite mixture for the constants ma .

Unobserved Heterogeneity between Clusters

In this case there is unobserved heterogeneity at the cluster level but not at the unit level so
that δa

i j = δ
a(2)
i j in (7).
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1. Random coefficient models. Random coefficients of unit-specific covariates arise when

δ
a(2)
i j = z(2)i j

′�a(2)
j .

�(2)
� is structured in different ways in the literature. Using the restrictions suggested in our

section on identification, the elements �(2)
�a

s ,�
b
s′

of the matrix are identified, where a, b =
2, · · · , A and s, s′ = 1, · · · , q (q is the number of elements in �a(2)

j ). Hedeker (1999) specifies

�
(2)
�a

s ,�
b
s′

= 0 (∀a, b : a �= b), whereas Yang (2001) specifies �(2)
�a

s ,�
b
s′

= 0 (∀a, b, s, s′: a �=
b and s �= s′). Daniels & Gatsonis (1997) freely estimate all identified parameters. Hedeker,
Yang and Daniels & Gatsonis all assume heterogeneity only between clusters. In the Daniels
& Gatsonis paper, the fixed effect part is of the polytomous logistic regression type, not
including alternative specific information, and the expectation structure (10) is imposed on
�(2)j . Using our suggested restrictions on �(2)

� and imposing z(2)i j = 1 (∀i, j) we obtain a
‘correlated alternative specific random intercept model’ of the kind specified by Goldstein
(1995).

Random coefficients of alternative specific or alternative and unit specific covariates results
when

δ
a(2)
i j = za(2)

i j
′�(2)j .

This kind of model was considered by Revelt & Train (1998) for repeated first choices of
subjects (the clusters). In a conjoint choice analysis, Haaijer, Wedel, Vriens, and Wansbeek
(1998) structure �(2)

� using a single principal component.
2. Factor models. A common factor model arises if

δ
a(2)
i j = �a(2)′�(2)j + �a(2)

j .

Here, we have specified z(2)i j = 1 (∀i, j) and �(2)
�a ,�b = 0 (∀a, b : a �= b). Importantly,

�a(2)
j can in this case be interpreted as unique factors at the cluster level. The cluster level co-

variance structure becomes �(2)
[i j]�

(2)
� �(2)

[i j]′ + �(2)
� , where �(2)

� is diagonal. Elrod and Keane

(1995) considered a probit version for first choices, imposing �(2)
� = I and �(2)

� = κI, where

κ is a scalar parameter. A regression structure (9) may also be included for �(2)j if desired.
An unrestricted covariance matrix for the utilities can be obtained by using A − 1 factors
with unrestricted �(2)

� but imposing the restriction �(2)
[i j] = IAi j . A factor model without

unique factors results if �a(2)
j = 0 ∀a, j . Here, the cluster level covariance structure becomes

�(2)
[i j]�

(2)
� �(2)

[i j]′. If we furthermore impose the restriction �(2)
� = I, the covariances have a

principal component structure �(2)
[i j]�

(2)
[i j]′. This kind of lower rank approximation was used

by Elrod (1988) in the first choice context.
3. Random coefficient and factor models. The random coefficient and factor model

δ
a(2)
i j = za(2)

i j
′�(2)j + �a(2)′�(2)j + z(2)i j

′�a(2)
j , (14)

has apparently not been discussed in the literature.

Unobserved Heterogeneity between Clusters and between Units within Clusters

Allenby and Lenk (1994) is the only contribution we are aware of modeling dependence
at both unit and cluster levels although their model does not include explicit terms representing
unit level heterogeneity. They considered a model where the fixed effects part is of the general
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kind (4). The specification of latent variables at the cluster level entails a special case of (14)
only including random coefficients for alternative-specific covariates

δ
a(2)
i j = za(2)

i j
′�(2)j .

Furthermore, we note that no expectation structure (8) is included for �(2)j . In addition to the
Gumbel error εa

i j , Allenby and Lenk introduce the error term εa∗
i j in order to induce a serial cor-

relation structure between occasions i in households j . A vector autoregressive lag-one structure

�∗
i j = 	�∗

i−1, j + 
i j

is specified where 	 is diagonal, �∗
0 j ∼ MVN(0,C) and 
i j ∼ MVN(0,�). Although not

pointed out by Allenby and Lenk, εa∗
i j induces dependence among alternatives at level 1 since C

and � are nondiagonal.

Application: The British Election Panel 1987–1992

Data from the 1987–1992 panel of the British Election Study (Heath, Curtice, Jowell, Evans,
Fields, & Witherspoon, 1991; Health, Jowell, & Curtice, 1994; Health, Jowell, Curtice, Brand,
& Mitchell, 1993)1 are used to illustrate multilevel modeling of polytomous data and rankings.
1608 respondents participated in the panel. We excluded voting occasions with missing covari-
ates and where the voters did not vote for candidates from the major parties. The resulting data
comprised 2458 voting occasions, 1344 voters and 249 constituencies. The alternatives Conser-
vative, Labour, and Liberal (Alliance) are labeled as a = 1, 2, 3, respectively. The voters were not
explicitly asked to rank order the alternatives, but the first choice clearly corresponds to rank 1.
The voters also rated the parties on a five point scale from “strongly against” to “strongly in
favour”. We used these ratings to assign ranks to the remaining alternatives, ordering the parties
in terms of their rating. Tied second and third choices were observed for 394 voting occasions
yielding top-rankings.

We expect that there may be unobserved heterogeneity between elections i , between voters
j and between constituencies k. Hence, we consider a three-level model with elections (Level 1)
nested within voters (Level 2) and voters nested within constituencies (Level 3). The fixed part of
all models considered includes the following election and/or voter specific covariates xi jk : [1987]
and [1992] are dummy variables representing the elections, [Male] is a dummy for the voter being
male, [Age] represents the age of the voters in 10 year units, [Manual] is a dummy for father of
voter a manual worker and [Inflation] is a rating of perceived inflation since the last election on a
five point scale. The fixed part also includes an election, voter and alternative specific covariate
xa

i jk ; [LRdist]. This covariate represents the distance between a voter’s position on the left-right
political dimension and the mean position of the party voted for. The mean positions of the
parties over voters were used to avoid rationalization problems (e.g., Brody & Page, 1972). The
placements were constructed from four scales where respondents located themselves and each
of the parties on a 11 point scale anchored by two contrasting statements (priority should be
unemployment versus inflation, increase government services versus cut taxation, nationalisation
versus privatisation, more effort to redistribute wealth versus less effort).

We consider three types of models for the random part

(a) A random coefficient model for political distance [LRdist], inducing dependence and allow-
ing the effect of za

i jk to vary over elections: za
i jkβ

(1)
i jk , over voters: za

i jkβ
(2)
jk and over con-

stituencies: za
i jkβ

(3)
k . Note that z(a)i jk = x (a)i jk in this application.

1Data were supplied by the UK Data Archive. Neither the original data collectors nor the archive are responsible
for the present analyses.
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(b) A one-factor model, inducing dependence within elections: λa(1)η
(1)
i jk , within voters: λa(2)η

(2)
jk

and within constituencies: λa(3)η
(3)
k . A common factor model is only specified at the election

level. Factor models without specific factors are used at the voter and constituency levels.
(c) A correlated alternative specific random intercept model, inducing dependence within voters:

γ
a(2)
jk and within constituencies: γ

a(3)
k . We do not consider correlated alternative specific

random intercept models at the election level since they would be extremely fragile in terms
of identification.

At a given level, for example, the voter level, the model in (b) with random terms λa(2)η
(2)
jk ,

a = 2, 3 is nested in the random coefficient model (c) with random terms γ
a(2)
jk , a = 2, 3 since

the variances of the random terms are unconstrained in both cases whereas the correlation is fixed
at one in the factor model and unconstrained in the random coefficient model.

When dependence is modeled at several levels, we use the same kind of model (e.g., (a),
(b) or (c)) at the different levels in order to limit the set of models considered. Note that this is
a practical consideration; combinations of models can be used at the same level and different
models specified at different levels. Furthermore, no parameter restrictions are imposed across
levels. The multilevel models are referred to by numbers indicating the levels followed by letters
in parantheses for the model type, for instance M12(b) for a one-factor model specified at the
election and voter levels. To preserve space we confine the discussion to analyses based on rank-
ings. Each model was fitted several times, comparing adaptive quadrature with different numbers
of quadrature points per latent dimension to ensure reliable results. The sequence of estimated
models, their number of parameters (# Par) and their maximized log likelihoods (L) are reported
in Table 1.

TABLE 1.
Estimated models

Random Part

Fixed Part Election Voter Constituency # Par L

M0 x′
i jkga + xa

i jkb 13 −2963.68

M1(a) x′
i jkga + xa

i jkb za
i jkβ

(1)
i jk 14 −2945.82

M1(b) x′
i jkga + xa

i jkb λa(1)η
(1)
i jk 15 −2842.59

M2(a) x′
i jkga + xa

i jkb za
i jkβ

(2)
jk 14 −2893.14

M2(b) x′
i jkga + xa

i jkb λa(2)η
(2)
jk 15 −2693.72

M2(c) x′
i jkga + xa

i jkb γ
a(2)
jk 16 −2646.48

M3(a) x′
i jkga + xa

i jkb za
i jkβ

(3)
k 14 −2948.44

M3(b) x′
i jkga + xa

i jkb λa(3)η
(3)
k 15 −2846.16

M3(c) x′
i jkga + xa

i jkb γ
a(3)
k 16 −2841.60

M12(a) x′
i jkga + xa

i jkb za
i jkβ

(1)
i jk za

i jkβ
(2)
jk 15 −2893.14

M12(b) x′
i jkga + xa

i jkb λa(1)η
(1)
i jk λa(2)η

(2)
jk 17 −2692.66

M23(a) x′
i jkga + xa

i jkb za
i jkβ

(2)
jk za

i jkβ
(3)
k 15 −2893.14

M23(b) x′
i jkga + xa

i jkb λa(2)η
(2)
jk λa(3)η

(3)
k 17 −2630.08

M23(c) x′
i jkga + xa

i jkb γ
a(2)
jk γ

a(3)
k 19 −2600.90

x(a)
i jk = z(a)

i jk is the distance on the left-right political dimension.
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We first introduce latent variables only at the election level in M1(a) and M1(b) and see
from the table that the fit is considerably improved compared to the conventional model M0,
indicating that there is cross-sectional dependence among the utilities at a given election (given
the covariates in the fixed part). Second, latent variables are introduced only at the voter level
in models M2(a), M2(b) and M2(c). The fit is much improved compared to the conventional
model, indicating that there is unobserved heterogeneity at the voter level inducing longitudinal
dependence within voters. We note in passing that models akin to M2(a) have attracted consider-
able interest in political science (e.g., Rivers, 1988). Third, we introduce latent variables only at
the constituency level in M3(a), M3(b) and M3(c), and see that the fit is once more improved.
Importantly, latent variables at a given level will not only induce dependence at that level but also
at all lower levels. Hence, it is possible that latent variables at the election level are superfluous
once latent variables are included at the voter level. To resolve this issue we include latent vari-
ables at both election and voter levels in M12(a) and M12(b). The improvement in fit achieved
by including the additional election level latent variables is negligible suggesting that the cross-
sectional dependence within elections is largely due to subject level heterogeneity. We therefore
do not need to include latent variables at the election level in the subsequent analyses as long as
latent variables for the voter level are included. It would be surprising if the latent variables at
the voter level were not needed when latent variables are specified at the constituency level since
this would imply conditional independence between a voter’s utilities at the two elections given
the constituency level effects and covariates. As expected, therefore, the M23 models fit consid-
erably better than the M3 models. Furthermore, apart from (a), the M23 models are superior to
their M2 counterparts suggesting that there is heterogeneity between constituencies after taking
into account subject-level heterogeneity. The M2(a) model will not be considered further since
its fit is considerably worse than that of the M23(b) and M23(c) models. Regarding the choice
between the M23(b) and M23(c) models, which are nested, the correlated random intercepts
model appears to be the preferred model.

The estimates for the conventional logistic model M0, only including the fixed part, are re-
ported in Table 2. Estimates for our retained model M23(c) based on 7-point adaptive quadrature
are reported in Table 3 for rankings and first choices in the left and right panels, respectively. We
see that the estimated effects of the election and/or voter specific covariates are in accordance
with previous research on British elections. Being male and older increases the probability of
voting Conservative, whereas a perceived high inflation since the last election harms the incum-
bent party (the Conservatives). The impact of social class is indicated by the higher probability
of voting Labour among voters with a father who is/was a manual worker. Regarding our elec-
tion, voter and alternative specific covariate [RLdist], the estimate also makes sense: the larger

TABLE 2.
Estimates for the conventional logistic model (M0)

Ranking First Choice

Lab vs. Cons Lib vs. Cons Lab vs. Cons Lib vs. Cons
Est. (SE) Est. (SE) Est. (SE) Est. (SE)

FIXED PART:
ga

1 [1987] 0.38 (0.20) 0.12 (0.17) 0.51 (0.23) 0.13 (0.22)
ga

2 [1992] 0.51 (0.20) 0.13 (0.18) 0.63 (0.24) −0.13 (0.23)
ga

3 [Male] −0.79 (0.11) −0.53 (0.09) −0.77 (0.13) −0.67 (0.12)
ga

4 [Age] −0.37 (0.04) −0.18 (0.03) −0.34 (0.04) −0.20 (0.04)
ga

5 [Manual] 0.65 (0.11) −0.05 (0.10) 0.69 (0.13) −0.10 (0.12)
ga

6 [Inflation] 0.87 (0.09) 0.18 (0.03) 0.76 (0.10) 0.57 (0.09)
b [LRdist] −0.62 (0.02) −0.54 (0.02)

L −2963.68 −1957.91
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TABLE 3.
Estimates for correlated alternative specific random intercepts model at voter and constituency levels (M23(c))

Ranking First Choice

Lab vs. Cons Lib vs. Cons Lab vs. Cons Lib vs. Cons
Est. (SE) Est. (SE) Est. (SE) Est. (SE)

FIXED PART:
ga

1 [1987] 0.77 (0.56) 0.75 (0.37) 0.95 (0.52) 0.13 (0.52)
ga

2 [1992] 1.28 (0.59) 0.78 (0.39) 1.32 (0.54) −0.30 (0.55)
ga

3 [Male] −0.99 (0.31) −0.71 (0.20) −1.15 (0.28) −0.96 (0.27)
ga

4 [Age] −0.74 (0.11) −0.37 (0.07) −0.61 (0.10) −0.36 (0.09)
ga

5 [Manual] 1.57 (0.34) 0.10 (0.22) 1.31 (0.30) 0.04 (0.29)
ga

6 [Inflation] 1.31 (0.18) 0.74 (0.13) 1.17 (0.19) 0.97 (0.18)
b [LRdist] −0.79 (0.04) −0.87 (0.05)

RANDOM PART:
Voter Level

ψ
(2)
γ a 16.13 (2.05) 6.03 (0.90) 7.43 (1.62) 9.11 (1.61)

ψ
(2)
γ 2,γ 3 8.53 (1.15) 5.90 (1.30)

Constituency Level

ψ
(3)
γ a 4.91 (1.12) 0.60 (0.29) 3.12 (0.86) 1.74 (0.60)

ψ
(3)
γ 2,γ 3 1.21 (0.48) 1.11 (0.60)

L −2600.90 −1748.95

the political distance between voter and party the less likely it is that the voter will vote for the
party. The random effects variances at the voter level are larger than at the consituency level
consistent with a greater residual variability between voters within constituencies than between
constituencues as would be expected. The variance of the random effect for Labour, representing
residual variability in the utility differences between Labour and Conservatives, is particularly
large implying that there are many voters with strong residual (unexplained) support for either
the Labour or Conservative parties. There is a positive correlation between the random effects
for the Labour and Liberal parties suggesting that those who prefer Labour to the Conservatives,
after conditioning on the covariates, also tend to prefer the Liberal party to the Conservatives.
This is consistent with the Liberal party being placed between the Labour and Conservative par-
ties and suggests that the [LRdist] covariate has not fully captured this ordering. A useful way of
further interpreting the estimates for the random part of multilevel regression models for poly-
tomous data and rankings is to derive the model implied residual (conditional on the covariates)
correlation matrices for the utility differences. For the retained model M23(c) the matrices are
displayed in Table 4.

Here the signs of the utility differences are such that we expect positive correlations if
the Liberal party is positioned between the Conservative and Labour parties conditional on the
covariates. For example, those who prefer Labour to Conservative (positive ulab − ucon) are
likely to also prefer Liberal to Conservative (positive ulib − ucon). As expected, the implied
cross-sectional correlations at a given election (A) are larger than those implied from the fixed
effects model (0.5 in column 1 and −0.5 in column 2). The longitudinal correlations across
elections within voters (B) are all positive (the fixed effects model implies zero correlations), the
difference in utilities between the Labour and Conservative parties being the most highly cor-
related across elections. As would be expected, the correlations between different voters in the
same constituency (C) are much lower than between elections for the same voter. The correlation
involving the Liberal-Conservative differences tend to be lower than the others, suggesting that
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these parties were less distinguishable from each other after adjusting for the covariates than the
other pairs of parties.

Discussion

In addition to effects of observed covariates, there appears to be unobserved heterogeneity
at both voter and constituency levels, but not at the election level, in our application. Therefore
“Independence from Irrelevant Alternatives” (IIA) is not tenable here, neither conditionally on
the fixed effects nor conditionally on the constituency level random effects. There is no evidence
for residual correlations among the utilities for a given voter. However, for a given voter IIA
only holds conditional on the left-right political distance and inflation rating, and not marginal to
these election varying covariates. Furthermore, the impact of IIA will be small since the voters
tend to have strong party preferences due to both the fixed and random parts of the model. The
misspecification of the conventional model is reflected in the considerably higher absolute values
of the fixed effect estimates in the model capturing unobserved heterogeneity M23(c) as com-
pared to the conventional model M0. A major virtue of multilevel designs is that unobserved
heterogeneity can be modeled, improving the prospects of valid causal inferences.

We have employed the gllamm software of Rabe-Hesketh, Pickles and Skrondal (2001)
in the analyses reported in this article. An important merit of this software is the generality of
the corresponding Generalized Linear Latent and Mixed (GLLAMM) model framework (e.g.,
Rabe-Hesketh, Skrondal and Pickles, in press; Skrondal & Rabe-Hesketh, 2004), including the
models considered here as special cases. This approach works well in a wide range of situations
(Rabe-Hesketh, Skrondal & Pickles, 2002, 2003), but speed may become a problem when there
are many latent variables. Other approaches to estimation include Markov Chain Monte Carlo
methods (e.g., Yao & Böckenholt, 1999) and Maximum Simulated Likelihood (e.g., Hajivassil-
iou & Ruud, 1994; Revelt & Train, 1998). A restricted class of models may also be fitted by
linearizing the multinomial logistic link function (e.g., Goldstein, 1995), although this approach
can be problematic as regards bias of estimated random part parameters (Yang, 1997).

The presented framework for multilevel logistic regression is general and has been shown
to subsume numerous models suggested in previous research as special cases. It is nevertheless
straightforward to further generalize the framework by for instance including higher order factors
to structure the covariance matrices of the latent variables, covariates measured with error, several
sets of first choices (e.g., Bock, 1972) or rankings, and pairwise comparisons (e.g., Böckenholt,
2001b). In fact, these extensions are all accommodated by the GLLAMM model framework and
can be fitted in the gllamm software. We have not included finite mixtures for rankings like those
proposed by Croon (1989) and Böckenholt (2001a) in this article. However, the Croon models
are easily fitted in gllamm (Rabe-Hesketh et al., 2001, chap. 9). By using the maximum possible
number of mixture components we can obtain the nonparametric maximum likelihood estimator
(e.g., Rabe-Hesketh, Pickles, & Skrondal, in press).

Finally, some comments on the relative merits of first choice and ranking designs are in
order. A drawback of rankings as compared to first choices in the context of stated preferences
is that the decision task is often deemed more complex. For first choices only the most preferred
alternative must be picked whereas rankings require the ordering of the alternatives. However,
considerable simplification of the ranking task may result from using partial ranking designs.
First choice data can sometimes be more reliable than rankings. This is because first choice data
are more commonly based on revealed preferences (observed choices) whereas rankings tend to
be based on stated preferences. On the other hand, it is well known that rankings lead to more
efficient estimators than first choices (e.g., Chapman & Staelin, 1982; Hausman & Ruud, 1987),
which is reasonable since rankings contain more information. The estimated standard errors in
our application are smaller for the rankings than the first choices, but the increase in efficiency
is not impressive. This could be because there are only three alternatives and because there were
a considerable number of top-rankings. Rankings are also beneficial from the point of view of



Integre Tech. Pub. Co., Inc. Psychometrika June 30, 2003 8:34 a.m. skrondal Page 286

286 PSYCHOMETRIKA

identification. Some first choice models are not identified whereas the corresponding ranking
models are identified. Even when the first choice models are formally identified they are known
to be more fragile than their ranking counterparts.
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