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MULTILEVEL AND LATENT VARIABLE MODELING
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Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide
range of latent variable models. Applications considered include survival or duration models, models for
rankings, small area estimation with census information, models for ordinal responses, item response
models with guessing, randomized response models, unfolding models, latent class models with random
effects, multilevel latent class models, models with log-normal latent variables, and zero-inflated Poisson
models with random effects. Some of the ideas are illustrated by estimating an unfolding model for
attitudes to female work participation.
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Introduction

Latent variable models are becoming increasingly general. An important advance is the
accommodation of a wide range of response processes using a generalized linear model for-
mulation (e.g., Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004b). Other recent
developments include combining continuous and discrete latent variables (e.g., Muthén, 2002;
Vermunt, 2003), allowing for interactions and nonlinear effects of latent variables (e.g., Klein
& Moosbrugger, 2000; Lee & Song, 2004) and including latent variables varying at different
levels (e.g., Goldstein & McDonald, 1988; Muthén, 1989; Fox & Glas, 2001; Vermunt, 2003;
Rabe-Hesketh, Skrondal, & Pickles, 2004a).

Instead of treating different model types as separate it is conceptually appealing to consider a
unifying model framework. This encourages specification of models tailormade to research prob-
lems by making it easy to combine features of different model types. Furthermore, a framework
facilitates a unified approach to estimation that can be implemented in a single software program.

When responses are noncontinuous, all main approaches to latent variable modeling such as
item response modeling, structural equation modeling (including factor analysis), and multilevel
modeling use either a generalized linear (‘response function’) formulation or a latent response
formulation for the relationship between latent variables and responses. Models defined via a
latent response formulation, as well as linear models, can equivalently be expressed using the
generalized linear model formulation (e.g., Takane & de Leeuw, 1987; Bartholomew & Knott,
1999; Skrondal & Rabe-Hesketh, 2004b).

In this paper we show that frameworks based on a generalized linear model formulation can
be extended considerably by using composite links (e.g., Thompson & Baker, 1981; Cox, 1984;

We wish to thank The Research Council of Norway for a grant supporting our collaboration.
Requests for reprints should be sent to Sophia Rabe-Hesketh, 3659 Tolman Hall, Graduate School of Education,

University of California, Berkeley, CA 94720-1670, USA. E-mail: sophiarh@berkeley.edu

123
c© 2007 The Psychometric Society



124 PSYCHOMETRIKA

Rindskopf, 1992). Here, the conditional expectations of the responses are linked not just to a single
inverse link function of a linear predictor but instead to a linear combination of several. The papers
cited above provide impressive catalogs of model types that can be generated using composite links
without latent variables. Here we extend their work by proposing new uses of composite links;
some are novel even without latent variables whereas others can only be used with latent variables.
The idea of combining composite links and latent variables has been outlined in a keynote lecture
(Skrondal & Rabe-Hesketh, 2004a) but to our knowledge not fully explored before.

We also discuss the use of what we call exploded likelihoods, where the likelihood is
expressed as a product of contributions of standard form so that estimation can be accomplished
by expanding the data and generating artificial responses. This trick is well known in some areas
such as discrete time survival modeling (e.g., Allison, 1982). Here we also describe some less
familiar applications and show the utility of the approach when combined with composite links.
In particular, we demonstrate that a zero-inflated Poisson model can be written as a generalized
linear model with composite link and exploded likelihood. It then becomes straightforward to
include latent variables, thus producing novel models for counts.

A large number of interesting models can be specified using composite links and/or ex-
ploded likelihoods. It is important to note that we do not claim that these models cannot be
specified and estimated without these devices. Indeed, a separate program or module (and paper)
could be written for each model considered. However, an important merit of the approach sug-
gested here is that all models are expressed within a single modeling framework. Unifying
different models in this way invariably leads to model extensions because features of different
model types can be combined. For instance, by embedding unfolding models within a framework
that also includes MIMIC models, it becomes obvious that latent variables can be regressed on
covariates in unfolding models. In addition to this conceptual advantage of a single framework,
the practical advantage of having a single software package for a general framework should not be
underestimated. This allows researchers to tailormake models addressing their research question
and to accommodate unusual features of the data, such as inadvertently merged categories, with-
out having to develop new software. Indeed, it will be possible to specify and estimate models
that the developers of the software never anticipated.

The plan of the paper is as follows. We first outline generalized linear models and a framework
for latent variable modeling to introduce notation and model features to be combined with
composite links and exploded likelihoods. Second, we describe composite links and explore
different kinds of models which they can produce. Third, we discuss exploded likelihoods and
describe various uses of this approach. Fourth, we consider the combined use of composite links
and exploded likelihoods to specify zero-inflated Poisson models with latent variables. We also
provide a brief illustration of some of these ideas to specify unfolding models for attitudes to
work participation among American women. Finally, we close the paper with a brief conclusion.

Generalized Linear Models

In generalized linear models (e.g., McCullagh & Nelder, 1989) the conditional expectation
µi ≡ E(yi |xi) of the response yi for unit i given the covariates xi is linked to a linear predictor
νi = x′

iβ through a link function g(·),
g(µi) = νi,

or, equivalently,

µi = g−1(νi),

where g−1(·) is the inverse link function.
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Conditional distributions for the responses yi , given their linear predictors, are specified as

f (yi |νi) = exp

{
yiθi − b(θi)

φi

+ c(yi, φi)

}
.

Here, θi is the canonical or natural parameter (a function of µi), φi is the scale or dispersion
parameter, and b(·) and c(·) are functions depending on the member of the exponential family.

A Framework for Latent Variable Modeling Based on Generalized Linear Models

We briefly describe a particular framework called ‘generalized linear latent and mixed
models’ or GLLAMMs (Rabe-Hesketh et al., 2004a; Skrondal & Rabe-Hesketh, 2004b). Other
frameworks can of course also be combined with composite links and exploded likelihoods.

Response Model

In a multilevel setting, with for instance students i (level-1) nested in classes j (level-2)
nested in schools k (level-3), the response model is a generalized linear model with linear predictor
specified as

νi = x′
iβ +

L∑
l=2

Ml∑
m=1

η(l)
m z(l)′

mi λ
(l)
m . (1)

Here, η(l)
m represents the mth latent variable at hierarchical level l, z(l)

mi is a vector of covari-
ates, and λ(l)

m a corresponding vector of parameters. For notational simplicity we have omit-
ted unit indices j, k, . . . for levels 2 to L. Note that multivariate responses, such as sets
of items in a factor model, are treated as if the items (variables) were level-1 units and
the original units were level-2 clusters (see also Rijmen, Tuerlinckx, De Boeck, & Kuppens,
2003; De Boeck & Wilson, 2004). The purpose of z(l)′

mi λ
(l)
m is to allow for item-specific factor

loadings.
Items measuring a latent variable are sometimes of mixed types, for instance, continuous and

dichotomous. To accommodate such models, the link functions gi(µi) and conditional response
distributions fi(yi |νi) can differ for different units or variables.

Structural Equations

For continuous latent variables we specify multilevel structural equations of the form

ηj = Bηj + �wj + ζj , (2)

where ηj is the vector of all M = ∑L
l=2 Ml latent variables at different hierarchical levels for

cluster j , B a strictly upper-triangular matrix of regression parameters, wj a vector of covariates,
� a matrix of regression parameters, and ζj a vector of disturbances. The disturbances are
multivariate normal with zero means and are uncorrelated across levels. Each element of ζj

varies at the same level as the corresponding element of ηj . Importantly, this specification allows
cross-level effects from higher- to lower-level latent variables.

Latent variables can be discrete either for latent class modeling or for nonparametric max-
imum likelihood estimation (NPMLE) where the latent variable distribution is left unspecified
(e.g., Laird, 1978; Heckman & Singer, 1984). For latent class models a multinomial logit model
can be used to allow class probabilities to depend on covariates.
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Composite Links

Thompson and Baker (1981) suggested linking the expectation µi with a composite function
of several linear predictors instead of a function of a single linear predictor as in generalized linear
models. They considered three kinds of composite links:

1. Simple composite links. The expectation µi is given by a weighted sum of inverse links with
known weights wqi ,

µi =
∑

q

wqi g
−1
q (νqi), (3)

where νqi is the qth linear predictor for unit i and g−1
q (·) is an inverse link function. Note

that wqi corresponds to the element in the ith row and qth column of the C matrix used by
Thompson and Baker (1981).

2. Bilinear composite links. These links extend the simple composite links in two ways. First,
the known constants wqi are replaced by linear combinations α′wqi of known constants with
unknown parameters α, giving

µi =
∑

q

α′wqi g
−1
q (νqi). (4)

Second, the expectation may be some (not necessarily linear) function h{·} of the above sum,

µi = h

{∑
q

α′wqi g−1
q (νqi)

}
.

3. General composite links. These links arise if general functionsfqi[g−1
q (νqi)] replace wqig

−1
q (νqi)

in (3).

The focus of this paper is on simple composite links although we will also mention applica-
tions of bilinear composite links. We use quadrature methods to evaluate the marginal likelihood
of multilevel and latent variable models with simple composite links and Newton–Raphson with
numerical derivatives to maximize the likelihood (Rabe-Hesketh, Skrondal, & Pickles, 2005). For
algorithms using analytical derivatives, the modifications necessary for including simple compos-
ite links are relatively minor. It may also be possible to modify algorithms based on linearization
such as penalized quasilikelihood (e.g., Breslow & Clayton, 1993) along the lines outlined for
the iterative weighted least squares algorithm in Thompson and Baker (1981).

We will now explore some applications of composite links, emphasizing their combination
with multilevel and latent variable models.

Missing Categorical Data

In categorical data, groups of units with missing values on some of the variables produce
what are sometimes called supplemental margins. Such marginal information can be combined
with the complete data using log-linear models with composite links (e.g., Rindskopf, 1992). The
expected count for a cell in a marginal table is equated with the sum of the expected counts of all
cells in the complete table that have contributed to it, giving a composite link.

Typical applications are studies where an expensive or invasive ‘gold standard’ measurement
of a response or covariate is collected only on a subset of units (validation sample or phase II
sample) (see Espeland & Hui, 1987; Clayton, Spiegelhalter, Dunn, & Pickles, 1998). In the
extreme case, the gold standard is missing for everyone, leading to latent class models which can
also be formulated through composite links (see the subsection on ‘Latent Class Models with
Conditional Dependence’).
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In small area estimation, supplemental margins, in the form of one-way tables from census
data can add valuable information for estimating associations. Here random effects can be used
to model heterogeneity between areas (e.g., Tranmer et al., 2005).

Another application is for fused cells. This will be discussed in the illustrative example
where a bug in the computer-assisted telephone interviewing software caused two of the response
categories to be merged for some attitude items.

Three-Parameter Item Response Models

The conventional two-parameter logistic item response model can be specified as

Pr(yij = 1|νij ) = exp(νij )

1 + exp(νij )
, νij = βi + λiηj ,

where ηj represents the ability of respondent j , −βi/λi is the difficulty and λi the discrimination
parameter of item i. Note that the probability of a correct response approaches zero as ability
tends to minus infinity.

When multiple choice questions are used in ability testing it is possible for respondents to
guess the right answer. Thus, even very unable examinees will have a nonzero probability of
getting a correct answer to an item which is at odds with the above model. The two-parameter
model is therefore sometimes replaced by the three-parameter logistic item response model (e.g.,
Birnbaum, 1968),

Pr(yij = 1|νij ) = ci + (1 − ci)
exp(νij )

1 + exp(νij )
,

where ci , often called a ‘guessing parameter’, is interpreted as the probability of a correct answer
on item i for an examinee with ability equal to minus infinity.

If we treat the guessing parameters ci as known, the response model can be expressed using
a simple composite link

Pr(yij = 1|νij ) = w1ig
−1
1 (ν1ij ) + w2ig

−1
2 (ν2ij ),

where g1(·) is the identity link and g2(·) is the logit link, w1i = ci , w2i = 1 − ci , ν1ij = 1, and
ν2ij = νij (see also Skrondal & Rabe-Hesketh, 2004b, section 9.4). Instead of treating ci as known,
we can estimate the guessing parameters by using the bilinear link (4) with α′ = (1, c1, . . . , cI ),
w′

1i = (0, d′
i), and w′

2i = (1,−d′
i), where di is a vector of dimension I (where I is the number of

items) with one in the ith position and zeros elsewhere. Special caution should be exercised in
ensuring that this model is identified.

It is worth noting that the above kind of model (without latent variables) is said to have
‘natural responsiveness’ or ‘nonzero background’ in quantal response bioassay (e.g., Finney,
1971).

Randomized Response Models

It is hard to obtain trustworthy information from respondents regarding sensitive issues such
as whether they have ever used illegal drugs. Improved prevalence estimates of sensitive issues
can potentially be obtained by guaranteeing the privacy of the respondents. One way of doing
this is by means of the Warner design (Warner, 1965) where the respondent answers a question
selected at random from two possibilities, one question positively worded (‘Have you ever used
illegal drugs?’) and the other negatively worded (‘Have you never used illegal drugs?’). The
privacy is secured by letting the realization of the random allocation be known to the respondent
but unknown to the interviewer. The probability of giving a positive response is then given by

Pr(y = 1) = pπ + (1 − p)(1 − π ),
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where π is the unknown probability of a ‘yes’ status for the sensitive issue (e.g., having used
illegal drugs) and p the known probability of selecting the positively worded question.

The Warner model can be combined with a model for πi with linear predictor νi and link
function g(·), for instance a logit link,

Pr(yi = 1|νi) = p
exp(νi)

1 + exp(νi)
+ (1 − p)

(
1 − exp(νi)

1 + exp(νi)

)
,

or a probit link.

Since the probability of presenting the sensitive question p is a known constant, the response
model can be expressed using a simple composite link

Pr(yi = 1|νi) = w1ig
−1
1 (ν1i) + w2ig

−1
2 (ν2i),

where g1(·) and g2(·) are logit (or probit) links, w1i = p, w2i = 1 − p, and ν1i = νi = −ν2i . In a
similar manner, the unrelated-question and forced-alternative designs for sensitive questions can
also be modeled using composite links.

When each respondent j is responding to a set of items i, it has been suggested to combine
randomized response models with item response models by using linear predictors of the form
νij = βi + λiηj (e.g., Fox, 2005; Böckenholt & van der Heijden, 2007) or with latent class
models (e.g., Böckenholt & van der Heijden, 2007). Fox (2005) also suggests using multilevel
item response models. Such extensions are straightforward using a generalized latent variable
framework with composite links.

Cumulative Models for Ordinal Responses

Cumulative models for ordinal responses, with S ordered response categories s = 0, . . . ,

S − 1, can be written as

Pr(yi ≥ s|νi) = g−1(νi − κs), (5)

where νi is a linear predictor, the κs are threshold parameters (κ0 = −∞, κS = ∞), and the
inverse link function is a cumulative distribution function such as the standard normal, logistic,
or extreme value distribution.

The response probabilities can be written as composite links with w1i = 1 and w2i = −1,

Pr(yi = s|νi) = g−1(νi − κs) − g−1(νi − κs+1).

Thissen and Steinberg (1986) call the models ‘difference models’ due to the above form. An
advantage of the composite link formulation as opposed to custom-made software for ordinal
responses is that left- and right-censoring, or even interval censoring of an ordinal response are
easily accommodated by using appropriate values of wqi . Another advantage is that it is easy
to allow the thresholds to depend on covariates, κsi = z′

iδ, as suggested by Terza (1985) or to
include category-specific covariates in the linear predictor. The latter is useful if a cumulative
model is used for discrete time survival data where the categories s correspond to time intervals
and where time-varying covariates, such as time itself, are included in the model. An example of
such a model is given in Rabe-Hesketh, Yang, and Pickles (2001) and Skrondal and Rabe-Hesketh
(2004b, p. 381).

Letting the linear predictor be νij = βi + λiηj as in the two-parameter item response model
and the thresholds be item-specific κis , we obtain Samejima’s (1969) graded response model for
ordinal items. Multilevel versions of cumulative models have been discussed by, for instance,
Jansen (1992) and Fielding (2003) and latent class versions by Vermunt (2001).
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FIGURE 1.
Conditional response expectation for ordinal ‘monotonic’ item (left panel) and ordinal ‘unfolding’ or ‘ideal point’ item
(right panel).

Unfolding or Ideal Point Models

In all item response models considered so far, the probability of a positive response or the
conditional response expectation for an item is a monotonic function of the latent trait ηj . This
assumption may be violated for attitude items where respondents are asked to rate their agreement
as ‘disagree’ or ‘agree’, or more generally, in terms of ordered categories s = 0, . . . , S − 1.

The classical example of Thurstone (1928) concerns attitudes to capital punishment mea-
sured as agree/disagree responses to statements such as ‘capital punishment seems wrong but is
sometimes necessary’. As sentiments favoring capital punishment increase from negative infin-
ity, it seems reasonable that the probability of endorsing the statement initially increases from
0, reaches a maximum, and then declines as the latent trait increases toward infinity. In other
words, hardline conservatives will disagree because capital punishment is not regarded as wrong
whereas hardline liberals will disagree with the statement because capital punishment is deemed
never to be justified. Respondents somewhere between these extremes, at the ‘ideal point’, will
have the greatest probability of agreeing with the statement.

An unfolding or ideal point process is illustrated for an ordinal five-category item in the
right panel of Figure 1, where the conditional response expectation

E(yij |ηj ) =
S−1∑
s=0

s Pr(yij = s|ηj)

is shown as a function of a latent variable such as sentiment in favor of capital punishment. Note
that this expected response function has a peak at the ‘ideal point’ in contrast to the monotonic
function shown in the left panel of Figure 1 for Samejima’s graded response model.

It has been argued (e.g., Andrich & Luo, 1993; Verhelst & Verstralen, 1993; Andrich, 1996;
Roberts & Laughlin, 1996) that a respondent may give a particular rating s of an attitude item
for two reasons. Considering ‘disagree’, he can ‘disagree from below’ because his latent trait is
below the position of the item or ‘disagree from above’ because it exceeds the position. These
two possibilities can be expressed in terms of 2S ‘subjective ratings’ zij such that zij = s if
the respondent ‘disagrees from below’ and zij = 2S − s − 1 if he ‘disagrees from above’. The
relationship between objective (or observed) and subjective ratings is illustrated in Figure 2. For
instance, both the subjective rating ‘strongly disagree from below’ (0) and ‘strongly disagree
from above’ (9) will produce an objective or observed rating ‘strongly disagree’. Andrich (e.g.,
Andrich, 1996) considers a slight variation of this setup where there is only one subjective
‘strongly agree’ rating, whereas the other subjective ratings could either be ‘from below’ or ‘from
above’.
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FIGURE 2.
Objective and subjective ratings.

Since the zij are not observed, the probability of the observed rating yij , given the latent
trait ηj , can be written as the sum of the probabilities of the two disjunct ‘subjective ratings’
corresponding to the observed rating. We propose using a cumulative model (5) for the subjective
ratings zij which gives

Pr(yij = s|ηj ) = Pr(zij = s|ηj ) + Pr(zij = 2S − s − 1|ηj )

= [g−1(νij − κs) − g−1(νij − κs+1)] + [g−1(νij − κ2S−s−1) − g−1(νij − κ2S−s)],

where νij = βi + λiηj as in a two-parameter item response model. Note that we are using a
composite link with four components to model the objective responses. For identification, the
thresholds must be constrained as, for instance, κs = −κ2S−s(s = 1, . . . , S − 1), κS = 0, and
κ2S = ∞.

Unfolding models have been advocated not only for attitude items such as those considered
here but also for preference items (e.g., Coombs, 1964; DeSarbo & Hoffman, 1986; Hoijtink,
1990; Andrich, 1995), pairwise comparisons (e.g., Andrich, 1989), and stages of development
(e.g., Noël, 1999). Nonparametric unfolding response models are discussed by Johnson (2006).

Importantly, embedding the unfolding models in a general latent variable modeling frame-
work produces a wide range of novel models. We can specify models with multidimensional
continuous latent traits, possibly with unspecified distributions using nonparametric maximum
likelihood estimation. Alternatively, latent variables can be taken as discrete using latent class
specifications. Furthermore, we can regress latent variables on covariates as will be shown in the
illustrative example and on the same or higher-level latent variables. This appears not to have
been done before.

Latent Class Models with Conditional Dependence

Latent class models can be specified by modeling the ‘complete’ data (including latent class
membership) using log-linear models (e.g., Haberman, 1979). In the standard shorthand notation
for hierarchical log-linear models, a latent class model with three observed responses Y1 to Y3

can be written as {CY1, CY2, CY3}, where C denotes latent class membership. Since latent class
membership is unknown, we must sum over the latent classes to obtain expected counts for the
observable response patterns. For simplicity and without loss of generality, we consider a two-
class model with three dichotomous observed responses yi (i = 1, 2, 3) which are conditionally
independent given class membership. Using dummy coding, the log-linear model can be written as

log µy1y2y3c = νy1y2y3c = β0 + α0c +
3∑

i=1

βiyi +
3∑

i=1

αicyi, (6)

where c = 0, 1 is the latent class indicator, µy1y2y3c is the expected count for response pattern
y1, y2, y3 and latent class c, and βp and αp (p = 0, 1, 2, 3) are parameters for the main effects
of class and item and their interactions. The expected values µy1y2y3 of the observed counts are
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modeled as the sum of the class-specific expected counts

µy1y2y3 = exp(νy1y2y30) + exp(νy1y2y31),

giving a composite link with two log links. As pointed out by Rindskopf (1992) and others, this
formulation makes it easy to relax conditional independence by including interactions among
pairs of items. For instance, dependence between items i and i ′ can be specified by including an
interaction term γii ′yiyi ′ in (6).

An alternative approach to relaxing conditional independence is to include a continuous
subject-specific random intercept ηj within a latent class model (e.g., Qu, Tan, & Kutner, 1996).
To accomplish this we expand the data to obtain counts (0 or 1) for each response and latent class
pattern for each subject j . The linear predictor for the corresponding expected count can then be
written as

νy1y2y3cj = β0 + α0c +
3∑

i=1

βiyi +
3∑

i=1

αiyic + ηj

(
3∑

i=1

yi(1 − c)λi0 +
3∑

i=1

yicλi1

)
, (7)

where ηj can be interpreted as subject j ’s propensity to have a ‘1’ (e.g., score positively on a
diagnostic test), with item-specific effects λi0 for class 0 (e.g., healthy subjects) and λi1 for class
1 (e.g., ill subjects). Since the total count for each person j is fixed at 1, we must estimate the
multinomial logit version of this model

Pr(y1, y2, y3, c) = exp(νy1y2y3cj )∑
y1y2y3c

exp(νy1y2y3cj )
.

Again, we do not know c, so the likelihood contribution for subject j becomes

Pr(y1, y2, y3) = exp(νy1y2y30j ) + exp(νy1y2y31j )∑
y1y2y3c

exp(νy1y2y3cj )
.

This is a composite link model if each multinomial logit term is viewed as an inverse link. An
alternative to the multinomial logit approach is to use a log-linear model with a subject-specific
constant δj in the linear predictor in (7) (e.g., Palmgren, 1981; Chen & Kuo, 2001). The advantage
of the latter approach is that software for ordinary generalized linear mixed models can be used if
extended to allow composite links. A disadvantage is that a large number of nuisance parameters
must be estimated.

Multilevel Latent Class Models

Latent class membership may depend on observed covariates (e.g., Dayton & MacReady,
1988). For the case of a single observed covariate x the corresponding log-linear model be-
comes {XC,CY1, CY2, CY3}. If all response variables are dichotomous, the model can be written
as

νy1y2y3cx = β0 + α0c + δ0x + δ1xc +
3∑

i=1

βiyi +
3∑

i=1

αicyi,

and can be estimated as described in the previous section.
When the subjects j are nested in clusters k, we may want to allow class membership to

depend on a cluster-level random intercept ζ (3)
k instead (Vermunt, 2003, 2007). An example would

be disease mapping or small area estimation of the prevalence of clinical depression in different
geographical areas k when true depression of subjects j (nested in areas k) has been diagnosed
using several imperfect methods.



132 PSYCHOMETRIKA

The linear predictor must include a fixed intercept for each cluster since the number of
subjects per cluster is treated as fixed (Palmgren, 1981) and can be written as

νy1y2y3ck = β0 + α0c + δk + ζ
(3)
k c +

3∑
i=1

βiyi +
3∑

i=1

αicyi,

where, typically, ζ
(3)
k ∼ N(0, ψ (3)) or, alternatively, ζ

(3)
k is specified as discrete.

This setup requires that there is a response for each cell in the five-way contingency table
which can result in a large data set with many zero counts if the clusters are small. Furthermore,
many nuisance parameters δk must be estimated if there are many clusters. Nevertheless, both
these computational disadvantages are likely to be less severe than for the models with subject-
specific random effects discussed in the previous section.

Models with Log-Normal Latent Variables

In a linear mixed model we may want to specify skewed random effect distributions, for
instance, for sensitivity analysis. A convenient choice of distribution is the log-normal, a simple
example being

µij = x′
ij β + exp(η1j ) + exp(η2j )zij ,

where η1j and η2j have a bivariate normal distribution. This model can be specified using a
composite link with w1i = 1, w2i = 1, and w3ij = zij , with corresponding identity link and two
log links. It can easily be extended to L levels.

If we use a bilinear composite link, we can include log-normal latent variables in factor
models as well,

µij = d′
iβ + exp(η1j ) d′

iλ = βi + exp(η1j )λi.

This uses the feature that the weights in the composite link can be linear combinations α′wqi

with α′ = (1,λ′), w′
1i = (1, 0, . . . , 0) and w′

2i = (1, di). This is combined with an identity link
g−1

1 (ν1i) = diβ and a log link g−1
2 (ν2ij ) = exp(η1j).

We can use the additional feature of bilinear composite links that the expectation can
be equated to a function h{·} of the right-hand sides in the equations above. This produces
generalized linear mixed models and item response models, respectively. Two-parameter item
response models with a log-normal latent variable can therefore be specified as generalized linear
mixed models with bilinear composite links.

Some Other Applications of Composite Links

Candy (1997) introduced so-called additive generalized linear mixed models,

µij = g−1(x′
ijβ) + z′

ijηj ,

where the conditional expectation is linear in the random effects. The first link is one of the
standard links for generalized linear models, whereas the second (for the random part) is the
identity link. The random part is thus ‘external’ to the link function as discussed by Allison
(1987).

Heisterkamp, van Houwelingen, and Downs (1999) used composite links for back-calculation,
where the aim is to estimate the incidence of infections over time from a time series of counts
of new diagnosed cases, taking into account the time delay between infection and diagnosis. A
log-linear model with linear predictor νq is specified for the number of new infections in period
q and the corresponding inverse link functions are combined as in (3) where the weight wqi rep-
resents the probability (assumed known) that an infection that occurred in period q is diagnosed
in a later period i.
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Similarly, Eilers and Borgdorff (2004) described a transfer model for digit preference where a
log-linear model is specified for the true frequency distribution (if there were no digit-preference).
The weight wqi is then the probability that a true response q is misclassified as i. If the misclas-
sification probabilities are not known a bilinear composite link (4) can be used.

Consider a probit or logit model for a true binary response ti that is imperfectly observed as yi

with known probabilities of misclassification (or sensitivity and specificity) that are independent
of the covariates. A model for the binary observed response can be written using a simple
composite link of the form

Pr(yi = 1|νi) = Pr(yi = 1|ti = 1) Pr(ti = 1|νi) + Pr(yi = 1|ti = 0) Pr(ti = 0|νi)

= w1g
−1(νi) + w2g

−1(−νi).

Although this model has been estimated by Magder and Hughes (1997) and many others (see
Neuhaus, 1999), it has apparently not been pointed out that it is a model with a composite link.
The model can easily be extended to include random effects or latent variables.

Exploded Likelihoods

A single response yi is sometimes ‘exploded’ into a set of artificial responses ari , r =
1, . . . , Ri , with corresponding explosion of the explanatory variables. The point of doing this is
to write the conditional response probability (density) for yi as a product,

Pr(yi |ν1i , . . . , νRi) =
Ri∏

r=1

fri(ari |νri).

Here, fri(·) are distributions from the exponential family (possibly different distributions for
different ri), with conditional means given by

µri = g−1
ri (νri),

where g−1
ri (·) are link functions (possibly different for different ri) and νri is a linear predictor

based on the exploded explanatory variables.

Some Previous Applications of Exploded Likelihoods

Consider an unordered polytomous response with S categories, s = 1, . . . , S. Such data arise
for instance if subjects select their most preferred among S alternatives. It is quite well known
that the multinomial logit model for such discrete choice data can be estimated by expanding
each original observation to S artificial observations corresponding to the available alternatives.
We will refer to the groups of observations representing each original observation as alternative
sets. A choice indicator is created that is equal to one for the alternative that was chosen and
zero otherwise. Treating this choice indicator as the artificial response, the model can then be
estimated using conditional logistic regression, conditioning on the sums of responses for the
alternative sets, or using Poisson regression with a constant for each alternative set (e.g., Chen
& Kuo, 2001). Stratified Cox regression can also be used, treating the choice dummy variable as
the failure indicator and the alternative sets as strata (e.g., Allison & Christakis, 1994; Chen &
Kuo, 2001).

The term ‘exploded logit’ (Chapman & Staelin, 1982) is often used to describe the Luce–
Plackett model for rankings (Luce, 1959; Plackett, 1975). Let r�

i be the alternative given rank
� among s = 1, . . . , S alternatives for subject i and let Ri ≡ (r1

i , r2
i , . . . , rS

i ) be the complete
ranking of alternatives. The likelihood contribution of a ranking becomes the product of successive
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multinomial logit choice probabilities among remaining alternatives

Pr
(
Ri |ν1

i , . . . , ν
S
i

) =
S−1∏
�=1

exp
(
ν

r�
i

i

)
∑S

m=� exp
(
ν

rm
i

i

) .

Thus, S − 1 artificial polytomous responses are generated for each ranking. Each of these polyto-
mous responses could be expanded further as explained for first choice data above. Skrondal and
Rabe-Hesketh (2003) and Böckenholt (2001) provide overviews of multilevel and latent variable
models for discrete choices and rankings.

It has been shown that the partial likelihood of the Cox proportional hazards model for
survival data is proportional to the Poisson likelihood of an appropriately expanded data set (e.g.,
Holford, 1976; Whitehead, 1980). Clayton (1988), Goldstein (2003), and Skrondal and Rabe-
Hesketh (2004b) used this exploded likelihood idea to estimate models with random effects,
known as frailties in this context.

Similar data expansion can be used to estimate discrete time survival models by binary
regression (e.g., Allison, 1982). Using a complementary log-log link, this corresponds to assuming
a Cox proportional hazards model for the unobserved continuous survival times whereas a logit
link produces a continuation ratio model (Cox, 1972). Läärä and Matthews (1985) show that
the continuation ratio model is equivalent to a cumulative model with a complementary log-
log link. As Engel (1993) points out, this model can therefore be estimated via an exploded
likelihood as shown above or via a composite link as shown previously. Frailty versions of
discrete time hazard models have been discussed by, for instance, Rabe-Hesketh et al. (2001)
for continuous frailties and by Vermunt (1997) and Muthén and Masyn (2005) for discrete
frailties.

Consider a linear regression model with normal errors where the response is subject to
censoring. For the noncensored responses the likelihood contribution is φ((yi − νi)/σ )/σ , cor-
responding to an identity link and a normal distribution with standard deviation σ . For responses
that are right-censored at ti , the likelihood contribution is �((νi − ti)/σ ), corresponding to a
scaled probit link (with −ti as an offset), and a Bernoulli distribution. This tobit model can be
produced by creating an artificial response equal to 1 for each right-censored response (and equal
to 0 for responses that are left-censored at ti). If yi represents log survival time, we obtain the
log-normal survival model (e.g., Cox, 1984) which has been extended to multilevel or frailty
models by, for instance, Goldstein (2003).

Combining Composite Links and Exploded Likelihoods:
Zero-Inflated Poisson (ZIP) Models with Latent Variables

The ZIP model (e.g., Lambert, 1992) is a finite mixture model for counts where the population
is assumed to consist of two components; a component c = 0 where the count can only be zero
and a component c = 1 where the count has a Poisson distribution.

A logistic regression model is specified for the probability π0i of belonging to the zero-count
component c = 0,

π0i = exp(ν0i)

1 + exp(ν0i)
, (8)

and a Poisson distribution is assumed for the count observed in the other component c = 1,

Pr(yi = k|ν1i) = exp(−µ1i)µ
k
1i/k!, µ1i = exp(ν1i). (9)
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The probability of a count that is nonzero is

Pr(yi = k > 0|ν0i , ν1i) = Pr(yi = k > 0, c = 1|ν0i , ν1i) = (1 − π0i) exp(−µi)µ
k
i /k!

=
(

1

1 + exp(ν0i)

) [
exp(−µi)µ

k
i /k!

]

and the probability of a zero count is

Pr(yi = 0|ν0i , ν1i) = Pr(yi = 0, c = 0|ν0i , ν1i) + Pr(yi = 0, c = 1|ν0i , ν1i)

= π0i + (1 − π0i) exp(−µi)

=
(

1

1 + exp(ν0i)

)
[exp(ν0i) + exp(− exp(ν1i))].

For a nonzero count, the probability is the product of the probability of an artificial response
a1i = 0 in a logistic regression model with linear predictor ν0i and the Poisson probability of a
count response a2i = k with a log link and linear predictor ν1i . Therefore, for nonzero counts, we
obtain the correct likelihood by creating two responses, 0 and k, and specifying a mixed response
(logistic/Bernoulli and log/Poisson) model.

For a zero count, we again create a a1i = 0 response, modeled as a logistic regression, for
the first term. For the second term, we specify a composite link,

[exp(ν0i) + exp(− exp(ν1i))] = g−1
1 (ν0i) + g−1

2 (ν1i),

where g1(·) is the log link and g2(·) the log-log link. If we create a a2i = 1 response and specify
a Bernoulli distribution with this composite link, we obtain the required term.

Within this setup it is straightforward to include random effects or latent variables. A potential
application would be modeling the number of alcoholic drinks consumed by respondents nested
in regions. Region-specific random effects can be used in both (8) and (9) to model variations
in the prevalence of nondrinking and in the amount consumed among drinkers, with possible
correlations between these random effects. Hall (2000) considers the restrictive special case with
a random intercept only for c = 1 in (9), without using the idea of combining composite links
and exploded likelihoods. We can also specify other ZIP models with latent variables, such as
random coefficient models, covariate measurement error models, etc.

Illustrative Example: Unfolding Attitudes to Female Work Participation

In 1988 and 2002 the respondents of the US General Social Survey (Davis, Smith, &
Marsden, 2003) were presented with the following attitude statements regarding female work
participation:

[famhapp] A woman and her family will all be happier if she goes to work
[twoincs] Both the husband and wife should contribute to the family income
[warmrel] A working mother can establish just as warm and secure a relationship with her

children as a woman who does not work
[jobindep] Having a job is the best way for a woman to be an independent person

[housewrk] Being a housewife is just as fulfilling as working for pay
[homekid] A job is alright, but what most women really want is a home and children
[famsuff] All in all, family life suffers when the woman has a full-time job
[kidsuff] A pre-school child is likely to suffer if his or her mother works

[hubbywrk] A husband’s job is to earn money; a wife’s job is to look after the home
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The respondents rated each statement as either ‘disagree completely’ (0), ‘disagree’ (1),
‘agree somewhat’ (2), ‘agree’ (3), or ‘agree completely’ (4).

We use an unfolding model of the type proposed earlier in the paper to investigate sentiments
in favor of female work participation ηj among female respondents. We specify g(·) as scaled
probit links with item-specific scale parameters σi (estimated on the log-scale),

g−1(νij − κs) = �

(
βi + λiηj − κs

σi

)
.

A special complication arises in the analysis of these data. The ‘disagree completely’ and
‘disagree’ responses were inadvertently collapsed into a single ‘disagree’ response in 2002 due
to a bug in the computer-assisted telephone interviewing (CATI) software. Thus, in 2002
the composite link for ‘disagree’ is the sum of the composite links for ‘disagree’ and ‘dis-
agree completely’. Note that this use of composite links is useful whether or not latent variables
are involved in the model. Another challenge of these data is that three of the items ([famhapp],
[twoincs], and [hubbywrk]) were not included in the 2002 questionnaire. We treat these items as
missing at random which is reasonable since they are missing by design.

To investigate if sentiments in favor of female work participation ηj have changed from 1988
to 2002, we specify the structural model

ηj = γ1wj + ζj , ζj ∼ N(0, ψ),

where wj is a dummy variable for year being [2002]. Estimation of the mean change in sentiment
γ1 is possible here because the item-specific parameters of items included both in 1988 and 2002
are set equal across time.

TABLE 1.
Maximum likelihood estimates for scaled probit unfolding model.

Item parameters

βi λi ln σi

Item i Est SE Est SE Est SE

[famhapp] −2.32 0.08 0.30 0.04 −0.24 0.05
[twoincs] −1.60 0.07 0.29 0.05 −0.06 0.05
[warmrel] −0.99 0.07 1 0
[jobindep] −0.27 0.14 1.15 0.15 0.64 0.05
[housewrk] 1.29 0.08 0.54 0.08 0.22 0.06
[homekid] 2.11 0.07 0.76 0.06 −0.06 0.04
[famsuff] 2.19 0.08 1.43 0.09 −0.29 0.05
[kidsuff] 2.24 0.08 1.49 0.09 −0.46 0.06
[hubbywrk] 2.42 0.09 1.14 0.09 −0.11 0.05

Threshold parameters (κ2S−s = −κs)

Est SE
κ1 (‘disagree completely’/‘disagree’) 3.43 0.11
κ2 (‘disagree’/‘agree somewhat’) 2.36 0.08
κ3 (‘agree somewhat’/‘agree’) 1.67 0.06
κ4 (‘agree/‘agree completely’) 0.72 0.03
κ5 0

Latent trait regression parameters

Est SE
[2002] γ1 −0.04 0.04
Residual variance ψ 0.62 0.08
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FIGURE 3.
Mean expected and observed responses as a function of linear predictor ν̃ij .

Maximum likelihood estimates from gllamm (Rabe-Hesketh, Skrondal, & Pickles, 2004b;
Rabe-Hesketh & Skrondal, 2005) based on data from 1462 female respondents are given in
Table 1. Here the items have been ordered from the most positive to the most negative according
to their estimated β̂i . Since the magnitude of γ̂1 is negligible, mean sentiment in favor of female
work participation does not appear to have changed.

Following Roberts and Laughlin (1996) we assess model fit graphically. First, we estimate
the linear predictor ν̃ij of respondent j and item i by plugging in the parameter estimates and
the empirical Bayes prediction η̃j of the latent trait into the linear predictor. Substituting this
into the unfolding model, we obtain the expected response category for each person–item pair.
Grouping the ν̃ij into approximately homogeneous groups of size 30 for each item and plotting
the corresponding average observed and expected frequencies versus the average ν̃ij for each
item gives Figure 3. Our unfolding model appears to fit quite well.

Although the expected response takes the form of a single-peaked function consistent with
an unfolding process when all items are considered together, none of the individual items ex-
hibit single-peaked behavior with the possible exception of [jobindep]. Using conventional item
response models that assume monotonicity might therefore be appropriate if either: (1) revers-
ing the coding of the appropriate items can be based on a priori information; or (2) the model
accommodates negative factor loadings.

Conclusion

Composite links and exploded likelihoods are remarkably powerful tools for specifying novel
latent variable models while remaining in a unified modeling framework. Indeed, we do not in
any way purport to exhaust potential applications in this paper. For instance, composite links and
exploded likelihoods could fruitfully be combined with covariate measurement error models, mul-
tilevel structural equation models, and models including both random effects and common factors.
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It should be emphasized that a general latent variable framework is not required to exploit
the ideas discussed here. Each of the uses of composite links can be combined with ordinary
generalized linear mixed models to produce novel models, albeit less general than the ones
considered here. For instance, in the extensions to item response models the discrimination
parameters can be set to one. The devices described to specify randomized response, latent class,
tobit, and zero-inflated Poisson models can also be used with ordinary generalized linear models.

Implementation of composite links and exploded likelihoods is quite straightforward in
software for multilevel and latent variable modeling based on generalized linear models. For
instance, maximum likelihood estimation, as well as pseudo maximum likelihood estimation
with probability weights (Rabe-Hesketh & Skrondal, 2006), is available in the gllamm software
(Rabe-Hesketh et al., 2004b; Rabe-Hesketh & Skrondal, 2005). All link functions in gllamm can
be used as building blocks in simple composite links.
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