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We describe multilevel modeling of cognitive function in subjects with schizophrenia, their
healthy first degree relatives and controls.  The purpose of the study was to compare mean
cognitive performance between the three groups after adjusting for various covariates, as
well as to investigate differences in the variances.  Multilevel models were required because
subjects were nested within families and some of the measures were repeated several times
on the same subject.  The following four methodological issues that arose during the
analysis of the data are discussed.  First, when the random effects distribution was not
normal, non-parametric maximum likelihood (NPML) was employed, leading to a different
conclusion than the conventional multilevel model regarding one of the main study
hypotheses.  Second, the between-subject (within-family) variance was allowed to differ
between the three groups.  This corresponded to the variance at level 1 or level 2 depending
on whether repeated measures were analyzed.  Third, a positively skewed response was
analyzed using a number of different generalized linear mixed models.  Finally, penalized
quasilikelihood (PQL) estimates for a binomial response were compared with estimates
obtained using Gaussian quadrature.  A small simulation study was carried out to assess the
accuracy of the latter.

Introduction

We briefly describe the background and design of the study.  Subsequent
sections discuss four methodological issues encountered in the analysis of
the data.

Despite strong evidence for the involvement of genes in susceptibility to
schizophrenia,  the nature of these genes and the traits they transmit are as yet
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unknown (Faraone, Seidman, Kremem, Pepple, Lyons & Tsuang, 1995;
Kendler, McGuire, Gruenberg, O’Hara, Spellman & Walsh, 1993).  Unraveling
this complex and elusive inheritance mechanism may necessitate  the
employment of indirect measures that will eventually help to determine the
schizophrenia genotype by firstly defining more precisely its phenotype
(McGuffin, Asherton, Owen & Farmer, 1994; Faraone et al., 1995, 1996).   The
approach assumes that if genetic susceptibility is reflected in phenotypic
variability, then exploration of the disorder’s phenotypic boundaries  might lead
to better characterization of its genetic constitution.  Several lines of enquiry have
suggested that genetic predisposition to schizophrenia can also be expressed as
liability to non-specific, non-psychotic dysfunctions including cognitive
impairment (Saykin et al., 1991, 1994; Kremen, Seidman, Pepple, Lyons, Tsuang
& Faraone, 1994).   This position has been further reinforced  by the emergence
of evidence suggesting an increased prevalence of  deficits of a similar nature
to those observed in schizophrenic patients in their otherwise healthy biological
relatives (Toulopoulou, Morris, Rabe-Hesketh, King & Murray, 1999; Kremen
et al., 1994).

The present study set out to explore whether specific impaired
cognitive functions are risk indicators for schizophrenia.  We hypothesized
that (a) cognitive impairment is present in schizophrenia (b) cognitive
impairment is present in some of the first-degree relatives of schizophrenic
patients (c) since not all relatives are expected to be carriers of the
schizophrenia genotype, a greater dispersion of scores (i.e., greater
variance) should be seen in the relative sample when compared to controls.

Seventy schizophrenic patients and 115 of their healthy first-degree
relatives from 59 families and 66 normal unrelated controls underwent a
series of neuropsychological examinations assessing intelligence, verbal and
visual episodic memory, spatial working memory, shifting mental sets and
planning ability.   There were therefore a total of 251 subjects from 125
families, although not all measures were available on all subjects.  Cases with
missing values on variables included in a model were omitted from the
analysis.  When data are not missing at random, this can lead to biases in the
parameter estimates and a better method would have been to use, for
example, multiple imputation.

Subject recruitment has been described in some detail elsewhere (see
e.g., Griffiths et al., 1998).  Briefly, families with one or more schizophrenic
members (according to DSM-III-R criteria) were acquired as part of the
Maudsley Family Study by referrals through a network of psychiatric clinics
and voluntary care organizations across the United Kingdom.  The first 59
families who were referred to us and who agreed to undergo a series of
neuropsychological assessments are included in the present sample.  Control
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subjects with no personal or family history, up to second degree, of psychotic
illness were acquired from a pool of controls obtained for previous studies
conducted in the Institute of Psychiatry, from members of staff at the
Bethlem and Maudsley Trust and via advertisements in the local press.  The
control group may not be entirely representative so that differences in the
means and variances between the control and patient groups cannot
necessarily be attributed to the schizophrenia phenotype.  The results of all
analyses must therefore be interpreted cautiously.

Linear Regression with Random Effects for Families

Analysis of variance (ANOVA) or linear regression could be carried out
in order to address the hypothesis that cognitive abnormalities are present in
schizophrenic subjects and to a lesser degree in their healthy relatives.
However, subjects within the same family are expected to perform more
similarly than subjects from different families in the various cognitive tasks
owing to shared genes and shared environments.  The observations may not
therefore be assumed to be independent as required for inference in
ANOVA or simple regression.  One way of correcting for the clustering of
observations is to use the sandwich variance estimator (also known as the
robust variance estimator) for clustered data (Diggle, Liang, & Zegar, 1996,
p.68-69).  However, we prefer to model the interdependence between
members of the same family directly, because the interdependence is of
interest in its own right.  We can model the interdependence by introducing
a random effect for families into the linear regression model.  For example,
the IQ score (WAIS-R) may be modeled a
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group and relative group respectively.  The indices i and j denote families and
subjects respectively, u

oi
 is the random effect for family i and r
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is the

residual for subject j in family i.  The random effect for family may be
interpreted as the effect of any family-specific predictors that have not been
controlled for (or even measured).  These predictors may include shared
genetic or environmental factors.  Similarly, the residual term for subjects
within families may be interpreted as the effect of characteristics specific to
the individual, plus measurement error.  This model is a hierarchical or
multilevel model because subjects, the “level 1 units”  are nested within
families, the “level 2 units”.  The random terms u

oi
 and r

ij
 are assumed to be
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independently distributed with zero means and constant variances, �2(u
0
)

and �2(r),  respectively.  (Later we will allow the level 1 variance to differ
between groups.) Further, the random terms are assumed to be uncorrelated
with each other and with the covariates.  These assumptions imply a
compound symmetric structure of the residual covariance matrix within
families, with all family members having the same variance �2(u

0
) + �

 
2(r),

and all pairs of members of the same family having the same correlation
� = �2(u

0
) / [�2(u

0
) + �2(r)], called the intraclass correlation (ICC),

conditional on the covariates.  The intraclass correlation may be interpreted
as the proportion of the residual variance that is due to genetic and
environmental factors that are shared among family members.  However,
separation of variance components into genetic, shared environment and
unique environment is possible only if family members with different degrees
of relatedness are available, for example monozygotic and dizygotic twins
(see e.g., Sham, 1998), and will not be pursued further in this article.

The random effects u
0i
 and r

ij
 are usually assumed to have a normal

distribution.  In this case, estimation of the model by maximum likelihood is
straightforward because the likelihood, given by

(2) l = ∏z∏ P Y u P u duij
ji

i ij i i( , ) ( )| 0 0 0x

has a closed form.  The model may be fitted using most standard statistical
packages, for example Stata, S-Plus or SAS, as well as the multilevel modeling
package MlwiN (Goldstein et al. 1998).  The latter was used to obtain the
parameter estimates (based on 118 families and 236 subjects) shown in
Table 1.  We present the standard deviations of random terms because they
have the same scale as the other parameters and are therefore easier to
interpret than variances.  The delta-method was used to estimate the standard
error of the between-family standard deviation from the standard error of the
variance given in MLwiN.  The mean IQ score for men aged 42.3 in the control
group is estimated as 112.3.  The mean IQ score in the patient group is over
15.3 units lower than that of the control group (p < 0.001)  and the relatives
differ from the controls by only about 2.1 units (n.s.), after controlling for sex
and age.  The intraclass correlation is estimated as 0.50, that is, half the
variance in IQ scores remaining after controlling for group, age and sex, is
shared between members of the same family.

The parameter estimates for the linear random intercept model in Equation
1 are a weighted average of the within-family estimates and between-family
estimates (see Hsiao, 1986, p. 36).  For example, we can obtain both within and
between-family estimates of the difference in mean IQ between the patient
and relative groups.  The within-family estimate, also known as a fixed effects
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or conditional estimate, is a weighted mean of the within-family mean
differences between patients and their relatives.  The between-family
estimate is the slope of the regression of the families’ mean IQ scores on the
proportion of family members (contributing to the families’ mean scores) who
are patients, that is, the expected difference in mean IQ score between a family
represented wholly by its affected family members and a family represented
wholly by its unaffected family members.  Both within and between family
estimates were obtained for the model in Equation 1, without the random effect
for family and with the dummy variable for relatives replaced by a dummy
variable for controls.  The within-family estimate (standard error) of the
difference in mean between patients and relatives was 12.84 (2.63).  The
between-family estimate was 17.82 (7.76) and the random effects estimate
was 13.20 (2.36).  The between family estimate is the least precise because
individual differences between families have not been controlled for and
therefore contribute to the residual error variance of the regression.   The
between-family estimate is also more vulnerable to bias.  In contrast, the
within-family estimate eliminates differences between families completely.
The random effects estimate lies between the between and within-family
estimates and has the smallest standard error because both sources of
information have been combined.  However, this is achieved only by assuming
that the families are a random sample from a population of families and that
the random effect for families has a normal distribution

Table 1
Parameter Estimates for the Model in Equation 1 with Normal and Non-
Parametric Random Effects Distributions

Normal Random Effect NPML

Parameter Estimate se p Estimate se p

Intercept 112.29 2.39 114.23 2.28
Age 0.14 0.069 0.04 0.16 0.067 0.02
Female -1.21 1.87 0.52 -1.64 1.71 0.34
Patient -15.32 3.10 <0.001 -18.89 2.87 <0.001
Relative -2.12 3.13 0.50 -6.21 3.00 0.04
�(u

0
) 11.98 1.29 12.62 -

�(r) 11.90 0.74 11.36 0.65
ICC 0.50 0.07 0.55
Log-likelihood -978.927 -971.685
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We can assess this distributional assumption by estimating or predicting
the values of u

0i
 by their conditional expectations given the observed data.

The assumption that r
ij
 in Equation 1 has a normal distribution with mean 0

and variance �2(r) specifies the conditional density of the responses given the
(vector of) explanatory variables x

ij
 and the random effect u

oi
 as
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where � is the vector of regression coefficients.  The posterior density of the
random effects given the observed responses and explanatory variables,
P[u

0i
 | {Y

ij
}

,
 x

ij
], may be obtained by applying Bayes Theorem and the

random effects are estimated by their conditional expectations

(4) E u Y u P u Y dui ij ij i i ij ij i[ ] [ ]0 0 0 0| , | ,n s n sx x= z
known as empirical Bayes estimates (see for example Morris, 1983).  A
histogram of the empirical Bayes estimates of the random effects also
interpretable as level 2 residuals for model 1 is given in Figure 1 (bottom left
panel) and a normal Q-Q plot is shown in Figure 2.  The distribution appears
to be slightly non-normal.

Non-Parametric Maximum Likelihood

We will now investigate how much the parameter estimates change
when we do not assume a normal random effects distribution and estimate
the model by non-parametric maximum likelihood (NPML) (see e.g., Simar,
1976; Laird, 1978; Lindsay, Clogg & Grego, 1991 or Aitkin,1999).  The
NPML estimate of the random effects distribution is a discrete distribution
on a finite number of mass-points with locations z

k
 and weights �

k 
so that the

likelihood in Equation 2 becomes

(5) l = =∏∑∏ �k ij
j

i k ij
ki

P Y u z( , )| 0 x

This model is also known as a semi-parametric mixture model.  Some small
simulation studies indicate that NPML estimates are approximately unbiased
when the true random effects distribution is normal (Davies, 1987; Follman
& Lambert, 1989; Rabe-Hesketh & Pickles, 2001).

A program called gllamm (Rabe-Hesketh & Pickles, 1999; Rabe-Hesketh
et al., 2000, 2001), written in Stata, was used to maximize the likelihood for a
given number of mass-points. (gllamm can be downloaded from http://
www.iop.kcl.ac.uk/iop/departments/biocomp/programs/gllamm.html.) The
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Figure 1
Random Effects Distributions and Histograms of Empirical Bayes Estimates of the
Random Effects for the Model in Equation 1 with Normal and Non-Parametric Random
Effects Distributions

Figure 2
Q-Q Plot of the Empirical Bayes Estimates of Random Effects Assuming a Normal
Random Effects Distribution
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program uses a modified version of the Newton-Raphson algorithm implemented
in Stata’s ml functions to maximize the log-likelihood and provides standard
errors based on the numerically estimated Hessian matrix.  In order to obtain the
NPML solution, we need to identify the maximum number of mass-points beyond
which the likelihood does not increase any further.  This was done using the
Gateaux derivative method (Heckman & Singer,1984; Follmann &
Lambert,1989 and Davies & Pickles, 1987).  Starting with two masses, a new
mass with very low probability was moved across a range of locations (-50 to 50
in 1000 equal steps) keeping all other parameter estimates and mass-points fixed.
If the likelihood increased at any location, a further mass-point was introduced.
The method was repeated until no further increase in likelihood could be
achieved.  Two mass-points gave a log-likelihood of -974.90, three mass-points
gave a log-likelihood of -971.68 and no further mass-points were required.  The
mass-points, centered around the mean, were located at (-12.0, 0.38, 18.7) with
probabilities (0.44, 0.29, 0.27) giving a standard deviation of 12.62.  The semi-
parametric mixture model has three extra  parameters compared with the
parametric model because two location and two probability parameters are
required to specify the random effects distribution (the third being determined by
setting the sum of the probabilities to one and the mean location to zero) instead
of one standard deviation parameter required for the parametric model.  The
associated increase in twice the log-likelihood of 14.4 suggests a better fit of the
NPML solution although the likelihood ratio test is not valid here because the
models are not nested.  The parameter estimates for this model are shown in
Table 1 (second column).  The NPML solution attributes a greater portion of the
variance to the random intercept term, a result that is consistent with the findings
of Rabe-Hesketh and Pickles (2001).  The estimated adjusted mean difference
between relatives and controls has increased substantially and is now significant
at the 5% level.  Assuming a normal random effects distribution has therefore
changed our conclusion regarding hypothesis b.

By substituting specific locations and weights, Equation 5 can also be
used to approximate the integral in Equation 2 numerically when a normal
random effects distribution is assumed.  These locations and weights, given
by Gaussian quadrature (Bock & Lieberman, 1972, Aitkin, 1999), may be
compared with the masses estimated by NPML to informally assess how
“non-normal” the random effects are. The three quadrature points and
normal density corresponding to the parameters estimated using MLwiN are
plotted in Figure 1 (upper left panel), next to the mass-points of the
semiparametric mixture model  (upper right panel).  The latter is  asymmetric
and differs substantially from the former.  The corresponding frequency
distributions of the empirical Bayes estimates of the random effects for the
two models are shown in the second row of Figure 1.  Here it is clear that
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for the semiparametric mixture model, there are more level-2 residuals at
locations near the outer mass-points than under the normal random effects
assumption.  Extremely intelligent or unintelligent families are therefore
more easily accommodated in the random part of the model so that they may
contribute less to the fixed effects estimates. This may result in an increased
contribution of the within-family differences to the estimates with the
difference in mean IQ between patients and relatives now estimated as
12.68 (2.30) and with coefficients of age and sex very close to the conditional
estimates.  In the case of the Rasch model, Lindsay et al. (1991) showed that
parameter estimates for the semiparametric mixture model are identical to
those obtained using conditional maximum likelihood.) Using the NPML
solution, we can therefore conclude that the mean (sex and age-adjusted) IQ
score of relatives lies between the mean scores of schizophrenics and
controls and differs significantly from both of them.

Heteroskedasticity at Level 1

In order to address hypothesis (c), that relatives show greater variability
(within families) than controls, model (1) was again estimated, this time
allowing the level 1 variance to differ between the three groups.  Assuming
normally distributed random effects (using MLwiN), the estimated within-
family standard deviations were 13.14, 11.34 and 9.20 for patients, relatives
and controls respectively.  The change in deviance associated with
estimating two further parameters was 1.58 so that there was no evidence
for differences in the variances.  Allowing the variances to differ for the three
mass-point solution, and re-fitting the mass-point locations and masses, gave
standard deviation estimates of 13.30, 10.70 and 8.11 for patients, relatives and
controls respectively.  The deviance decreased by 5.88 (DF = 2, p = 0.05).  The
parameter estimates for this model are shown in Table 2.  Testing the
difference between the variance estimates (parameterized as log standard
deviations) for relatives and controls using a Wald test, gave p = 0.08
whereas the difference between the variances of the schizophrenic and
control groups was highly significant (p = 0.009).

Three-Level Models

More complex models are required to analyze measures taken several
times on each subject under different conditions.  One example is the Tower
of London task (Morris et al.  1993).  Briefly, in the Tower of London task,
two arrangements of three colored disks slotted onto three rods of unequal
length are presented on a computer screen.  The top half of the screen
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displays the goal arrangement, while the lower half of the screen displays the
starting position.  The subject has to rearrange the bottom array to attain the
goal arrangement according to specified rules, making the fewest possible
moves.  The level of difficulty is increased by increasing the minimum
number of moves required.  Measures of interest include the time taken to
complete the tower and whether this is achieved using the minimum number
of moves.  For each level of difficulty, the subject is also asked to simply copy
the moves demonstrated on the top half of the screen.  This control task
provides a measure of motor response latency.

Since each subject completed each of the three levels of difficulty
(excluding the control task), all three measures may be modeled together
using a ‘repeated measures’ model that includes a further random effect for
subjects, giving a 3-level model.  The time to complete the Tower of London
was log transformed because it had a positively skewed distribution.  The log
completion time of subject j in family i on occasion k was modeled as
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Table 2
Semiparametric Mixture Model Allowing the Level 1 Variance to Differ
Between Groups

NPML

Parameter Estimate se p

Intercept 114.94 2.02
Age 0.17 0.064 0.02
Female -1.32 1.62 0.34
Patient -20.40 2.67 <0.001
Relative -8.48 2.70 0.04
�(u

0
) 13.57 -

�(r
C
) 8.11 1.16

�(r
R
) 10.70 0.96

�(r
P
) 13.30 1.48

Log-likelihood -968.743
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and  u
oij
(2)

 
and  u

oi
(3) are the level 2 (subjects) and level 3 (families) random

effects, respectively.  These random effects are assumed to be independent
of each other.  Two new, time-varying, covariates are used here, x

Lijk
 and

x
Cijk,

 the level of difficulty (coded as -1, 0, 1) and the log time taken to
complete the control task, respectively.  This model assumes that the
intraclass correlations among repeated measures are constant, that is, the
residual covariance matrix follows compound symmetry, an assumption that
may not hold if there is for example serial autocorrelation (Diggle, 1988).
Since we only have 3  repeated measures per subject, too few to provide
reliable estimates for the autocorrelation, we will ignore this issue here.

The analysis was based on 212 subjects from 112 familes who attempted
the Tower of London; all of these subjects had observations on all three
occasions.  The model was estimated using gllamm by numerically
integrating the joint likelihood of the data and the random effects over the
random effects distributions using 16-point Gaussian quadrature.  The
resulting parameter estimates for this model are shown in Table 3 (first
column).  Using eight quadrature points did not change the parameter
estimates after rounding to two significant figures, suggesting that the 16
quadrature points were adequate.  The parameters indicate that the
completion times increase significantly with age and are higher for females
and for patients.  The relatives are slower than the controls and quicker than
the patients, but these differences are not significant.

Heteroskedasticity at Level 2

To test hypothesis (c), we again allowed the variance component for
subjects to differ between the three groups.  This time the between-subject
variance is at level 2 and this model was fitted using gllamm, again employing 16-
point Gaussian quadrature.  The standard deviations were estimated as 0.00,
0.22 and 0.00 for patients, relatives and controls respectively and the change in
deviance was 3.42 (DF = 2, p = 0.18).  The difference between relatives and
controls was not significant using the Wald test (p = 0.38) but the difference
between relatives and patients was nearly significant at the 5% level (p = 0.08).
Again, the same parameter estimates were obtained using 8 point quadrature.

Multilevel Generalized Linear Mixed Models (GLMMS)

Instead of log-transforming the time taken to complete the Tower of
London task, we could model the time on its natural scale, using a generalized
linear model.  A natural choice of error distribution for a positively skewed
response would be the gamma distribution and we will combine this with a
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log link.  As for the linear regression model with random effects, the random
effect may be added to the linear predictor giving

(8) Y
ijk

 | x
ijk

, u
0ij
(2), u

0i
(3) ~ gamma(�

ijk
, �2),

and

(9)log(�
ijk

) = �
0
 + �

1
x

Aij 
+ �

2
x

Fij  
+ �

3
x

Pij
 + �

4
x

Rij
 + �

5
x

Lijk
 + �

5
x

Cijk
 + u

0ij
(2)

 
+ u

0i
(3).

where �2 is the squared coefficient of variation so that var(Y
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2 .  Adding the random effects to the linear predictor in this way is

appealing if one wishes to interpret the random effects as representing
unmeasured covariates.

The linear model assumes a constant variance of the log completion time
whereas the gamma model assumes a constant coefficient of variation, that
is, the standard deviation in completion time is proportional to the mean.  The
two assumptions are approximately equivalent because the log of a variable
with a gamma distribution and a small coefficient of variation � has a
constant variance of approximately �2 (McCullagh & Nelder, 1989, p. 285).

Table 3
Parameter Estimates for (a) a Three Level Model for the Log Time to
Completion of the Tower of London Assuming an Identity Link and Normal
Errors and (b) a Three Level Model for the Time to Completion of the Tower
of London Assuming a Log Link and Gamma Errors

lognormal time gamma time

Parameter Estimate se Estimate se

Intercept 1.27 0.27 1.47 0.20
Age 0.0081 0.0023 0.0082 0.0026
Female 0.14 0.056 0.16 0.064
Patient 0.19 0.083 0.21 0.093
Relative 0.10 0.077 0.11 0.087
Level 0.42 0.036 0.42 0.039
C. task 0.70 0.10 0.67 0.12
�[u

0
(3)] 0.21 0.044 0.25 0.049

�[u
0
(2)] 0.076 0.13 0.23 0.048

� 0.63 0.021 0.59 0.019
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The log-normal model equates the mean of the log of Y to the linear
predictor and the gamma model equates the log of the mean of Y to the linear
predictor.  In the gamma model, the exponentiated slope parameters are
therefore ratios between mean completion times; this is more natural than the
interpretation in the log-linear model where the exponentiated slope
parameters are ratios between the geometric means of the completion
times.  However, the distinction may be academic, since, in the absence of
random effects, linear regression of the log-transformed response gives
consistent but possibly inefficient estimates of the regression parameters,
except for the intercept, of the gamma model with log link [see McCullagh
& Nelder (1989), p. 285-286.]

An important problem with generalized linear mixed models (GLMM) is
that the likelihood in Equation 2 does not have a closed form solution except
for certain combinations of distributions of the response and random effects.
We will discuss this issue in more detail in the next section.  Here we again
used 16-point Gaussian quadrature to approximate the likelihood.  The
resulting parameter estimates are given in Table 3 (column 2).  The fixed
effects coefficients are remarkably similar to those for the model assuming
normal errors of the log completion times.  The standard deviation within
subjects is about 0.59 times the mean, so that the coefficient of variation is
close to the standard deviation of 0.63 of the log-normal model as expected.
However, the level-2 standard deviation of the gamma model is considerably
higher than that of the log-normal model.  Allowing the level 2 variance to
differ between groups gave standard deviation estimates of as 0.14, 0.28 and
0.16 for patients, relatives and controls, respectively and decreased the
deviance by only 1.82 (DF = 2, p = 0.40).

Accuracy of Quasilikelihood and Quadrature

We used the following logistic mixed model to model the probability that
subject j in family i completes the tower in the minimum number of moves
on occasion k,
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Two methods that are frequently used to estimate generalized linear
mixed model are marginal quasilikelihood (MQL) or penalized quasi-
likelihood  (PQL)  (Breslow & Clayton, 1993), methods implemented in
MLwiN (Goldstein & Rasbash, 1996).  In PQL, the inverse link as a function
of the linear predictor including the random effects, for example, p[x

ij
T

� + u
0ij
(2)

 
+ u

0i
(3)], is approximated by a first order Taylor expansion with
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respect to the fixed effects (around the ‘current’ estimates) plus a first or
second order Taylor expansion with respect to the random effects (around
the ‘current’ empirical Bayes estimates of the random effects).  This
reduces the model to a linear model so that procedures for linear multilevel
models may be used.  MQL is less accurate than PQL because the random
part is expanded about zero, not about the current empirical Bayes estimates
of the random effects.  The second order PQL parameter estimates for the
model in Equation 10 (using data on 112 families, 212 subjects and 3
observations per subject) are shown in Table 4.  Since the variance
component for families was not significant, the estimates for the two-level
model without this variance component are also shown.

We will now consider the accuracy of these estimates.  McCulloch
(1999) remarked “Unfortunately this penalized quasi-likelihood approach
has worked poorly in practice.  This has been especially the case where
generalized linear mixed models are most needed, for example, with binary
data.” The method is particularly inaccurate when the binomial denominator
and number of lower level units per higher level unit are small and when the
variance components are large (see e.g., Breslow & Lin 1995; Rodíguez, G.
& Goldman, 1995; Lin & Breslow, 1996).  All three criteria appear to be met
in the current example.

In order to evaluate the second order PQL estimates for the logistic
regression model in Equation 10, we will first compare them with 30 point
Gaussian quadrature estimates which are given in Table 4 for both the three-
level and two-level models.  We assessed the accuracy of the quadrature
solution by investigating the change in parameter estimates when the number
of quadrature points was increased from 6 to 12 to 20 to 30.  For both  models,
the first increase resulted in changes in the parameter estimates in the
second to fifth significant figure.  The increases from 12 to 20 and from 20
to 30 resulted in changes in no more than the fourth significant figure (largest
relative changes of 0.03%).   Since the discrepancies between the PQL and
quadrature estimates in Table 4 are greater for the two-level model, we will
focus the rest of our discussion on this model.  It is interesting to note that
the estimated standard errors for PQL are lower than for quadrature,
particularly for the between-subjects standard deviation.  The same is true
of the standard deviation estimate itself.  The latter is likely to be at least
partly due to a downward bias in the PQL estimate since this has been shown
to be a particular problem for the level-2 standard deviation (see e.g.  Lin &
Breslow 1995) and since the estimate increased substantially from 0.82 for
first order MQL to 1.21 for second order PQL

Goldstein et al.  (1998) suggest using parametric bootstrap estimation to
correct any bias in PQL parameter estimates for binomial data.   The
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parametric bootstrap procedure works as follows.  The response vector is
simulated n times from the initial PQL parameter values and the parameters
are re-estimated for each simulation.  This provides an estimate of the bias
in the initial PQL parameter values that is used to correct these values.
However, this single bias correction is unlikely to be sufficient because the
bias depends on the ‘true parameters’ used to simulate the model.  The
procedure is therefore repeated by carrying out further sets of n simulations
each, where each set uses the ‘current’ parameter values for the simulations
and provides a bias estimate that is used to update these values for the next
set.  This procedure is repeated until convergence and the results of the last
parameter update represent the final bias-corrected parameter estimates.
Convergence  is judged informally by inspecting trajectories of the bias-
corrected parameter estimates both within and between sets of simulations.
In order to be confident that the procedure has converged, we ran the
bootstrap procedure in MLwiN with seven sets of n=3000 simulations each
to obtain the parameter estimates shown in Table 4.

Simulation Study

The parametric boostrap estimates, particularly the between subject
standard deviation estimate and its standard error, are much closer to the
quadrature estimates than to the PQL estimates.  In order to further evaluate
the quadrature estimates, we carried out the following small simulation study.
Using the same hierarchical structure and covariate values as the observed
data, a new response variable was simulated 1000 times using the parameters
estimated by 30 point quadrature (two-level model) shown in Table 4.  Table
5 summarizes the results of estimating the model for each simulated dataset
using 30 point Gaussian quadrature.  Note that this is similar to carrying out a
single set of the parametric bootstrap procedure and the bias estimate could
be used to correct the quadrature parameter estimates.

The estimates of the intercept and of the coefficient of “level” have
significant downward bias (at the 5% level) as does the standard deviation
estimate of the random effect.  The relative bias in these parameters is no more
than about 2%, however, much smaller than the discrepancy in these parameters
between the PQL and quadrature estimates.  The small biases do not appear to
be due to insufficient quadrature points since the parameter estimates of the first
200 simulations did not change when 60 quadrature points were used.  The mean
standard errors are close to the standard deviations over the1000 simulations and
the coverage probabilities of the 95% confidence intervals do not differ
significantly from 0.95 using an exact binomial test at the 5% level except for the
standard deviation estimate where the coverage probability appears to be slightly
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too high.  We conclude that the quadrature estimates can be relied on in this case
whereas the PQL estimates appear to be biased.  The standard errors estimated
by quadrature appear to be correct whereas those estimated by PQL may be too
low, although we did not investigate this directly.

Discussion

Multilevel models are useful for investigating differences in means and
variances between groups when some of the subjects are related to each other
or otherwise clustered in groups.  Other methods such as within cluster or
between cluster estimators are less efficient because they use only part of the
information and inferences based on ordinary regression are invalid.  Unlike the
other methods, multilevel models also provide estimates of variance components
which were of interest in their own right in the present study.  However,
multilevel models must be used with care.  Assuming a normal distribution of the
random effects can lead to incorrect conclusions.  This may be avoided by
inspecting the empirical Bayes estimates of the residuals at each level or by using
non-parametric maximum likelihood.  When the response variable is non-normal,
we have to make further assumptions regarding transformations, distribution,
links and level-1 variances.  Estimation of the model becomes approximate only
so that it is necessary to assess the accuracy of the parameter estimates.  When
Gaussian quadrature is used, it is straightforward to assess the parameters
because we can compare solutions with increasing numbers of quadrature
points.  So, although there are examples where quadrature falls down due to
numerical instability, this is usually detectable by comparing estimates with
different numbers of points.  For quasilikelihood methods, we can also compare
increasingly accurate approximations (first order MQL through to second order
PQL) to assess convergence, but if the change in parameters is not negligible,
the approximation cannot be refined any further except when higher order
approximations are available.  Instead we can employ parametric bootstrap
estimation, a very computer intensive procedure.  Another method of parameter
estimation, Markov Chain Monte Carlo (MCMC), is also very computer
intensive and convergence needs to be carefully checked.  To date, no single
approach to parameter estimation for GLMMs is available that is suitable for all
situations and the development of new methods is currently an active research
area (see e.g., McCulloch & Searle, 2001, and references therein).
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