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In this article, the authors suggest a profile-likelihood approach for estimating

complex models by maximum likelihood (ML) using standard software and min-

imal programming. The method works whenever setting some of the parameters

of the model to known constants turns the model into a standard model. An impor-

tant class of models that can be estimated this way is generalized linear mixed

models with factor structures. Such models are useful in educational research,

for example, for estimation of value-added teacher or school effects with persis-

tence parameters and for analysis of large-scale assessment data using multilevel

item response models with discrimination parameters. The authors describe the

profile-likelihood approach, implement it in the R software, and apply the method

to longitudinal data and binary item response data. Simulation studies and com-

parison with gllamm show that the profile-likelihood method performs well in

both types of applications. The authors also briefly discuss other types of models

that can be estimated using the profile-likelihood idea.
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1. Introduction

In this article, we suggest a profile-likelihood approach for estimating com-

plex models by maximum likelihood (ML) using standard software and minimal

programming. The method works whenever setting some of the parameters of the

model to known constants turns the model into a standard model. An important

class of models that can be estimated this way are generalized linear mixed mod-

els with factor structures.

Generalized linear mixed models, also known as multilevel or hierarchical

generalized linear models (Goldstein, 2003; Raudenbush & Bryk, 2002), are
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popular models for longitudinal data as well as cross-sectional data with units

nested in clusters, the canonical example being students nested in schools. Mod-

els with crossed random effects (e.g., Goldstein, 1987; McCaffrey, Lockwood,

Koretz, Louis, & Hamilton, 2004; Raudenbush, 1993) to handle data with two

or more nonnested classifications such as schools and neighborhoods are also

becoming increasingly popular. These models can be estimated in a wide range

of general purpose and specialized software packages. In this article, we consider

an extension of these models to include factor structures and propose a method

for estimating the extended models by ML.

To define this extension, we start by considering a standard two-level general-

ized linear mixed model with M random effects. The linear predictor for unit i in

cluster j can be written as follows:

gðmijÞ ¼ x
0

ij�þ z
0

ij�j ¼ x
0

ij�þ
XM
m¼1

�mjzmij; ð1Þ

where mij is the conditional expectation of the response variable, gð�Þ is the link

function, and xij and zij ¼ ðz1ij; z2ij; . . . ; zMijÞ
0

are covariate vectors with fixed

coefficient � and random coefficients �j ¼ ð�1ij; �2ij; . . . ; �MijÞ
0
, respectively. A

simple application of this model would be a linear growth curve model for stu-

dent achievement where the link function is the identity link and the covariates in

both the fixed and the random parts of the model are a constant and time,

xij ¼ zij ¼ ð1; tijÞ
0
. Then, the intercept b0 (coefficient of the constant) and the

coefficient b1 of time represent mean initial achievement (when time is 0) and

mean linear growth, respectively. Subject j’s growth trajectory can differ from

the mean growth trajectory by having its own intercept b0 þ �0j and coefficient

b1 þ �1j of time. Variability in growth trajectories is captured by the covariance

matrix of ð�0j; �1jÞ.
On the right-hand side of Equation (1), we see that �mj is the random coeffi-

cient of zmij (or a random intercept if zmij ¼ 1). This part of the model is extended

to include factor structures as follows:

gðmijÞ ¼ x
0

ij�þ
XM
m¼1

�mjw
0

mij�m: ð2Þ

Here, wmij is a vector of covariates and known constants associated with the ran-

dom effect or latent variable �mj and �m is a vector of coefficients that we will

refer to as factor loadings. As we will see in the applications, models with further

levels of nested and/or crossed random effects (e.g., students nested within mid-

dle school and high school) with factor structures can also be estimated. When

the factor loadings are set to known constants, we can define covariates

zmij ¼ w
0
mij�m and the model becomes a standard generalized linear mixed model.
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The reason for the name ‘‘factor loading’’ is that a confirmatory factor model

can be specified as follows: The indicators or responses yij to different items i

(i ¼ 1; . . . ; I) that measure the common factors for persons j (j ¼ 1; . . . ; J ) are

stacked into a single (unidimensional) response variable y. The resulting data are

treated as two-level data with item–person combinations ij at Level 1 nested in

persons j at Level 2. The random effects or common factors �mj vary at Level

2, taking the same value for all responses by the same person. For the mth com-

mon factor �mj, the elements of wmij are dummy variables for the items that load

on that factor. For instance, if Items 1 through 3 load on the first factor �1j, then

w1ij is a three-dimensional vector, taking the values (1, 0, 0)0 when i¼ 1, (0, 1, 0)0

when i¼ 2, and (0, 0, 1)0 when i¼ 3. Letting �1 ¼ ð�11; �12; �13Þ
0
, we see that �1j

is multiplied by w
0
11j�1 ¼ �11 for Item 1, w

0
12j�1 ¼ �12 for Item 2, and

w
0
13j�1 ¼ �13 for Item 3 as required. A traditional factor model is specified by

using an identity link and allowing the residual variance to differ between items.

This method for incorporating factor structures in mixed models is part of the gen-

eralized linear latent and mixed model (GLLAMM) framework by Rabe-Hesketh,

Skrondal, and Pickles (2004); see also Skrondal and Rabe-Hesketh (2004, 2007).

We have described how a two-level linear mixed model with factor structures

can be used to specify a confirmatory factor model. By changing the link function

to a logit link, we obtain an item response model, where the factor loadings are

now called discrimination parameters. If persons are nested in clusters, such as

schools, a three-level mixed model with factor structures can be used to specify

a multilevel factor or item response model. Since factor structures are not usually

accommodated in software for generalized linear mixed models, researchers want-

ing to use such software to estimate multilevel measurement models have had to set

the factor loadings to known constants (e.g., Raudenbush, Rowan, & Kang, 1991;

Raudenbush & Sampson, 1999) or specify one-parameter item response models,

with discrimination parameters set to one (e.g., Kamata, 2001; Maier, 2001).

Three general software packages for multilevel and latent variable modeling

allow ML estimation of mixed models with factor structures: gllamm (Rabe-

Hesketh, Skrondal, & Pickles, 2004) in Stata (StataCorp, 2009), PROC

NLMIXED in SAS (Wolfinger, 1999), and Mplus (Muthén & Muthén, 2008).

However, none of these programs can fit models with crossed random effects.

SAS PROC NLMIXED is limited to two hierarchical levels and Mplus is also

limited to two levels unless the lowest level can be represented by different vari-

ables. The main contribution of our article therefore is to provide a method for

ML estimation of models that are not available in standard software. An alterna-

tive is to use Bayesian methods as implemented in WinBUGS (Spiegelhalter,

Thomas, Best, & Gilks, 1996) or in the multilevel modeling package MLwiN

(Browne, 2009; Goldstein & Browne, 2005). However, switching to Bayesian

methods for expediency alone is not always advisable since real differences exist

between Bayesian and frequentist approaches. Bayesian methods also require
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considerable expertise to specify appropriate priors and monitor convergence of

the Markov chain. If vague priors are needed in order to obtain approximate ML

estimates, it is known to be difficult to specify vague priors for variance–covar-

iance parameters in mixed models (e.g., Browne & Draper, 2006; Lockwood,

McCaffrey, Mariano, & Setodji, 2007; Natarajan & Kass, 2000).

We provide two examples handled by our approach. The first example is a ran-

dom effects model for longitudinal data on students who are nested in middle

schools for the first two occasions and high schools for the next two occasions

where middle schools are cross-classified with high schools. The effects of middle

schools and high schools on student outcomes are latent variables whose impacts

change over time. The relative contribution of the school effects each year can be

captured by associated factor loadings or persistence parameters. Such crossed

random effects models with persistence parameters have been used for value-

added assessments of school and teacher effects (e.g., McCaffrey et al., 2004). The

second example is a multilevel two-parameter logistic (2PL) item response model

for binary responses. In this example, the responses to the items in a test are viewed

as nested within students (Adams, Wilson, & Wu, 1997; Mellenbergh, 1994).

Since students are nested within schools, the resulting model is a three-level gen-

eralized linear mixed model with factor loadings or discrimination parameters. It is

straightforward to incorporate covariates for students and schools. Such models

are important for analyzing large-scale survey assessments such as the Programme

for International Student Assessment (PISA) and the National Assessment of

Educational Progress (NAEP) (e.g., Li, Oranje, & Jiang, 2009).

The outline of the article is as follows. In Section 2, we present our estimation

approach in detail, including estimation of standard errors. The two examples fol-

low in Section 3. For each example, a real dataset is analyzed and a small simu-

lation study is performed. We briefly outline alternative models that can be

handled by our approach in Section 4 and end with concluding remarks in Section

5. R code for the first application is presented in Appendix A (see the online

Appendix, available at http://jeb.sagepub.com/supplemental).

2. Estimation

2.1. Profile-Likelihood Method

Suppose there are two sets of parameters, � and �, where � represents the vec-

tor of factor loadings and � represents all other model parameters (regression

coefficients and variance parameters). The likelihood Lð� ;�Þ is then a function

of � and � . We obtain the profile-likelihood function Lð�Þ by replacing � by its

ML estimate b�ð�Þ at fixed values of � (e.g., Pawitan, 2001, p. 62)

Lð�Þ ¼ max
�

Lð� ;�Þ

¼ Lð� ; b�ð�ÞÞ:
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Here,

b�ð�Þ ¼ argmax
�

Lð� ;�Þ

does not have a closed form but is found by an iterative maximization algorithm.

Our method hinges on the observation that a mixed model with factor structures

becomes a standard mixed model when � is replaced by known values. Specif-

ically, our method consists of two nested maximizations: Lð�Þ is maximized

with respect to �, where Lð�Þ is itself obtained by maximizing Lð� ;�Þ with

respect to �.

We have written an R program to implement the nested maximizations

described above. The lmer function in the R package lme4 (Bates & Maechler,

2009) is used to find b�ð�Þ by maximizing Lð� ;�Þ with respect to � when � is

known. To maximize Lð�Þ with respect to �, we use the limited memory quasi-

Newton algorithm implemented in the R function optim (Byrd, Lu, Nocedal, &

Zhu, 1995). The function computes the Hessian matrix numerically, requires

only modest storage, and is relatively fast.

2.2. Standard Errors for b�
The covariance matrix of the parameter estimates is usually estimated by the

inverse of the observed Fisher information matrix (minus the Hessian of the log-

likelihood function evaluated at the ML estimates).

The required information matrix Iðb� ; b�Þ for the entire parameter vector

(�
0
;�

0
)
0

can be partitioned as

Iðb�; b�Þ � Ið�̂ ;�̂Þ Ið �̂;�̂Þ
Ið�̂ ;�̂Þ Ið�̂ ;�̂Þ

� �
;

and its inverse can be written as

I�1ðb� ; b�Þ � Cð�̂;�̂Þ Cð�̂;�̂Þ
Cð�̂;�̂Þ Cð�̂;�̂Þ

� �
:

Note that Cð�̂;�̂Þ, the estimated covariance matrix of b� , is not equal to the inverse

I�1

ð�̂;�̂Þ of the corresponding part of the information matrix. The latter represents

the estimated covariance matrix for b� if the parameters � were constrained equal

to their estimates since in this case, Ið�̂ ;�̂Þ would be the full information matrix. It

turns out that the inverse of minus the Hessian of the log profile-likelihood is

equal to the required covariance matrix Cð�̂;�̂Þ that takes parameter uncertainty

for � into account (see Pawitan, 2001, p. 63).
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2.3. Standard Errors for b�
Unlike for b�, the standard errors for b� are not a by-product of the profile-like-

lihood approach. Because we assume known values of b� when finding b�ðb�Þ, the

estimated covariance matrix obtained from lmer corresponds to I�1

ð�̂;�̂Þ. We will

call this the naive covariance matrix. The standard errors will be underestimated

because uncertainty involved in estimating b� is not taken into account.

In this section, we discuss three ways of estimating adjusted standard errors

for b� taking into account the uncertainty regarding �. In the following, we let

the dimensions of � and � be denoted p and q, respectively.

2.3.1. Hessian Matrix

The most straightforward way to obtain the correct standard errors for b� is

using the Hessian matrix obtained by numerical differentiation. The Hessian con-

sists of ðpþ qÞðpþ qþ 1Þ=2 second derivatives and each derivative requires

multiple evaluations of the log likelihood. Unfortunately, it is not easy to obtain

the Hessian in our implementation because lmer can, at the time of writing, not

be used to just evaluate the log likelihood at a given parameter vector.

2.3.2. Likelihood Ratio

The second method is based on the fact that the difference in twice the log

likelihood between two nested models approximately equals the corresponding

Wald statistic. In models where the log likelihood is quadratic in the parameters,

such as linear mixed models with known variance parameters, the approximation

becomes exact.

Suppose L and L0 are the log likelihoods of two nested models where the

reduced model has a restriction on � such as b1 ¼ b1ð0Þ. The likelihood ratio sta-

tistic, g2 � 2ðL� L0Þ is assumed to be approximately equal to the Wald statistic

for the null hypothesis, H0 : b1 ¼ b1ð0Þ as

g2 �
bb1 � b1ð0Þ

SEðbb1Þ

" #2

:

Then, the standard error SEðbb1Þ is approximately

SEðbb1Þ �
bb1 � b1ð0Þ

g
ð3Þ

The quadratic approximation is likely to work better for smaller differences

between the estimated and hypothesized values of b1. We therefore suggest using

the null value b1ð0Þ ¼ bb1 � d, where d is some small value close to zero (e.g., 0.1

or 0.01).
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A similar method was proposed by Miettinen (1976) who used any chi-square

statistic (such as a Mantel–Haenszel statistic) for g in Equation (3). This

approach was criticized by Halperin (1977) and Greenland (1984) because, for

many parameters, the approximation works only when the null hypothesis is true.

Here we assume, as is typically done in generalized linear mixed models, that the

standard errors of regression coefficients do not depend on the true values of the

coefficients (we will not apply this method to variance–covariance parameters).

Also, by specifying a null value near the estimate (instead of a null hypothesis of

‘‘no association’’ as in Miettinen, 1976), we assume only that the log likelihood is

quadratic near the mode, an assumption inherent in the estimation of asymptotic

standard errors.

Notice that the likelihood ratio method requires p maximizations.

2.3.3. Delta Method

It follows from Parke (1986) that the asymptotic covariance matrix of b� is

given by

Covðb�Þ ¼ I�1

ð�̂ �̂ Þ þ
qb�ð�Þ
q�

 !
Cð�̂�̂Þ

qb�ð�Þ
q�

 !0
;

which is the naive covariance matrix treating � as known plus a correction term,

where
qb�ð�Þ
q�

is the Jacobian matrix of partial derivatives of b�ð�Þwith respect to

� evaluated at b� and Cð�̂�̂Þ is the covariance matrix of b�. We estimate this cov-

ariance matrix by plugging in estimates for I�1

ð �̂�̂Þ and Cð�̂�̂Þ, from lmer and

optim, respectively, and estimating the elements of the Jacobian, evaluated atb�, using

qbbr

qb�s

�
bbrðb�s þ d; b��sÞ � bbrðb�Þ

d
: ð4Þ

Here, bbrðb�s þ d; b��sÞ is the estimate of the rth element of � when a small con-

stant d (close to zero) is added to the sth element �s of b� and all other elements ofb� remain the same. Instead of a constant d, the step size is often chosen to be a

fraction of �s, such as
ffiffiffi
e
p
�s, where e is the machine precision.

This method requires q maximizations if we use b�ðb�Þ and all elements ofb�ðb�s þ d; b��sÞ to obtain an entire column of the Jacobian matrix for each

maximization.

Both the likelihood ratio and delta methods produce similar results in similar

computation time. They both also involve a choice of d in Equations (3) and (4)

that could affect the results. For the delta method, we can avoid an arbitrary
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choice of d using an established method for numerical derivatives (e.g., R pack-

age numDeriv) making that method easier to implement.

3. Applications

The profile-likelihood method allows us to estimate a wide range of general-

ized (crossed) random effects models with factor structures. In this section, we

describe two applications of this method.

3.1. Crossed Random Effects Model With Persistence Parameters

The first example is a study of school effects using longitudinal data where

students are in middle school during the first two waves and in high school in

Waves 3 and 4. The response variable could be vertically scaled achievement

scores or psychological scales such as self-esteem where the questions do not

change over time. Figure 1 shows the structure of the data as a diagram similar

to those suggested by Browne, Goldstein, and Rasbash (2001).

In the figure, rectangles represent units or clusters. A single arrow represents a

nested relationship and unconnected rectangles at the same height represent a

cross-classified relationship. The four repeated measures (Time 1 to Time 4)

at the bottom level are nested within students. Students are nested both within

middle school and high school but middle and high schools are crossed. The

dashed arrows indicate that the first two measures (Time 1 and Time 2) are nested

within middle school but the last two measures (Time 3 and Time 4) are nested

within high school.

The required model is a crossed random effects model because students

belong to a cross-classification of middle school and high school across time

(e.g., see Goldstein, 1987; Raudenbush, 1993). We will fit the model

Ytsmh ¼ b1 þ b2time2t þ b3time3t þ b4time4t þ �s þ �mmt þ �hZt þ etsmh; ð5Þ

where Ytsmh is a continuous score at time t for student s who attended middle

school m and high school h. b1 is an intercept and b2, b3, and b4 are coefficients

for Time 2, Time 3, and Time 4 dummy variables. The random part of the model

consists of a student-level random effect �s � Nð0;s2
s Þ, a middle school random

effect �m � Nð0;s2
mÞ, a high school random effect �h � Nð0;s2

hÞ, and an occa-

sion- and student-specific residual etsmh � Nð0;s2
eÞ.

The model has occasion-specific parameters, μ ¼ ð1; m2;m3; m4Þ0 and

η ¼ ð0; 0; 1;Z4Þ0, which represent the relative contribution of school effects

on student outcomes at each time point. m1 and Z3 are set to one for model iden-

tification (since the middle and high school variances are free parameters) and

Z1 and Z2 are set to zero because the future high school is assumed not to affect

students while they are still in middle school. The model assumes that the effects

of a school on the response variable at different times are perfectly correlated.
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Furthermore, the within-student covariance structure is exchangeable with con-

stant variances and correlations.

Figure 2 represents the model by adapting the diagram notation of Rabe-Hes-

keth et al. (2004) to models with nonnested random effects. Circles represent

latent variables and rectangles observed variables. The frames represent the lev-

els represent at which variables within them vary. Variables located within the

frame labeled ‘‘MS’’ vary between middle schools and variables located within

the frame labeled ‘‘HS’’ vary between high schools. The latent variable �s for

students is located in the intersection of these frames because subjects are

cross-classified by middle schools and high schools. Arrows connecting latent

and/or observed variables represent linear relations. We see that the middle

school latent variable �m affects all four responses, whereas the high school latent

variable affects only Responses 3 and 4. The short arrows pointing at the

responses from below represent the residuals etsmh.

Using the framework of Equation (2), we can write the factor structures as

�mmt þ �hZt ¼ �m d
0

tμ þ �hd
0

t η; ð6Þ

where dt is a four-dimensional vector of dummy variables with tth element equal

to 1 and other elements equal to 0.

Student

time1 time2 time3 time4

Middle

School

 High

School

FIGURE 1. Diagram for the longitudinal cross-classified data.
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This model is similar to multiple membership models that include weights for

school effects in proportion to the amount of time spent in each school (e.g.,

Goldstein, Burgess, & McConnell, 2007; Hill & Goldstein, 1998). Unlike multi-

ple membership models, however, we treat the weights (or impacts) of school

effects as parameters to be estimated.

McCaffrey et al. (2004) employed a similar model to investigate teacher

contributions to student achievement. They considered situations where stu-

dents were cross-classified by the different teachers who taught them in dif-

ferent grades. Teacher effects were modeled as random effects and the

varying impacts of the teacher effects (called persistence parameters) were

estimated by ML. They used an unstructured covariance matrix for the

Level-1 residuals etsmh. While such a specification is currently not possible

in lmer, we could specify random slopes for two functions of time, such

as time and time squared, to use 7 free parameters for the 10 unique var-

iances and covariances of the within-subject covariance matrix, as suggested

by Maas and Snijders (2003). Mariano, McCaffrey, and Lockwood (2010)

relaxed the assumption of perfect correlations among teacher effects across

time by specifying an unstructured covariance matrix. Such a ‘‘generalized

y1

y2

y4

y3

δs

δm δh

MS
HS

student s

FIGURE 2. Diagram for the crossed random effects model with persistence parameters.
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persistence model’’ can be fitted in lmer, but here we are interested in

illustrating the profile-likelihood approach for a model with persistence para-

meters that cannot be fitted in lmer. The purpose-written ML estimation

software for models with persistence parameters by McCaffrey et. al.

(2004) was practically constrained to small datasets with continuous

outcomes.

Because of the computational difficulty with ML estimation, Lockwood et al.

(2007) suggested a Bayesian formulation of their earlier model (McCaffrey et al.,

2004) and its extensions and used Markov chain Monte Carlo (MCMC). Lock-

wood et al. (2007) developed an MCMC algorithm in C since WinBUGS (Spie-

gelhalter et al., 1996) was prohibitively slow for their large datasets.

3.1.1. Empirical Study

We applied this model to the Korea Youth Panel Survey (KYPS) that sampled

middle schools in the first stage and then randomly selected one class per school

in the second stage. Students and parents were interviewed every year from 2003

to 2008. We analyzed data on 3,281 students observed in 104 middle schools at

Waves 1 and 2 and 2,924 students followed up after dispersing into 860 high

schools at Waves 3 and 4.

About 2.7% students switched their school membership during the middle

school or high school years. Including them would necessitate making assump-

tions regarding the effects of the first and second middle schools in the second

and subsequent waves of data and about the effects of the first and second high

schools in the fourth wave of data. Since the portion of those students was small,

we excluded them from the data for simplicity. In addition, 559 students with

missing school identifiers were deleted. We handled the drop in student numbers

after transition to high school by analyzing all available data under the missing at

random (MAR) assumption (except for deleting 31 students who dropped out in

Waves 2 and 4, although they could have easily been included). Missing school

identifiers could alternatively be handled by assigning students to dummy

schools as suggested by Lockwood et al. (2007).

There are an average of 34 students per middle school and 4 per high school,

implying a highly sparse cross-classification between middle school and high

school. The number of middle schools per high school ranges from 1 to 5,

whereas the number of high schools per middle school ranges from 2 to 17. The

response variable is self-esteem which is a mean-composite variable computed

from six 5-point Likert-type scale items. The mean (standard deviation) of

self-esteem is 3.16 (0.62), 3.26 (0.62), 3.31 (0.60), and 3.33 (0.61) at Waves 1,

2, 3, and 4, respectively. The internal consistency of the measures (Cronbach’s

a) is on average 0.734.

Table 1 lists the result of fitting the model in Equation (5) to the data. All para-

meters were estimated using the profile-likelihood method described in the
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previous section. We used the delta method described in Section 2.3 to estimate

the adjusted standard errors for the regression coefficients b�. Differences

between the delta method and likelihood ratio method for estimating standard

errors were less than 10�6. The naive, unadjusted standard errors from lmer
were generally smaller than the adjusted standard errors as expected, but the dif-

ference was less than 10�5 in this application. As for computation time, it took

about 160 seconds in total to fit the model and obtain the adjusted standard errors

using the delta method on an Intel Pentium Dual-Core 2.5-GHz processor com-

puter with 3.2 GB of memory.

In the fixed part, bb1 is the estimated mean self-esteem of students at Wave 1

(second grade in middle school). The coefficients for the time dummy variables,bb2, bb3, and bb4 represent the estimated differences in the mean self-esteem between

each wave and Wave 1. Therefore, the mean growth Waves 1 to 2 is estimated as

0.11, the mean growth from Waves 2 to 3 is estimated as 0.05, whereas the mean

growth from Waves 3 to 4 is estimated as 0.02. Self-esteem tends to increase, but

the rate of growth decreases somewhat over time.

In the random part, we observe that the estimated within-student and between-

student variation (bs2
e ; bs2

s ) is greater than the between-school variation (bs2
m; bs2

h).

The estimated factor loadings suggest that school effects on the students’ self-

esteem change over time. To be specific, first recall that the middle school

TABLE 1

Parameter Estimates and Standard Errors for Crossed Random Effects Model With Per-

sistence Parameters

Parameters Estimate Standard Error

Fixed part

b1 3.162 0.015

b2 0.109 0.012

b3 0.159 0.016

b4 0.176 0.018

Random part

s2
s 0.152 —

s2
m 0.011 —

s2
h 0.008 —

s2
e 0.213 —

Factor loading

m2 0.787 0.166

m3 0.003 0.288

m4 �0.180 0.352

Z4 1.509 0.285

Log likelihood �9509.0
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loading at Wave 1 was set to one. Hence, the estimate bm2 ¼ 0:79 implies a

decline in the effect of middle school. However, comparing the estimate with its

standard error, we see that the loading does not differ significantly from one at

the 5% level. It does, however, differ significantly from zero (at the 5% level),

so we can reject the hypothesis that the middle school effect vanishes in Wave

2. In contrast, the Waves 3 and 4 loadings do not differ significantly from zero,

suggesting that middle school effects do not persist after students have moved

into high school. For the high school random effect, the loadings for Waves 1 and

2 were set to zero and the loading for Wave 3 was set to one. The estimatebZ4 ¼ 1:5 suggests that high school effects increase over time, but the increase

is not significant at the 5% level.

We do not provide the standard errors for variance parameters because the use

of the standard errors for Wald-type tests and confidence intervals is inappropri-

ate for these parameters (e.g., Berkhof & Snijders, 2001).

3.1.2. Simulation Study

Keeping the structure of the data as in the empirical application, we simulated

new responses from the model fitted in the previous section with parameters set to

the estimates in Table 1. This parametric bootstrapping procedure allows us to assess

properties of the estimator. Table 2 summarizes the results for 100 replicates. The

standard errors for the regression coefficients were obtained using the delta method.

The estimated bias (dBiasB) is negligible except for the factor loadings. Using

one-sample t tests, we did not find that any of the bias estimates differed signif-

icantly from zero at the 5% level. The mean standard error estimates (cSE) were

quite close to the standard deviations of the estimates or bootstrap standard errors

(cSEB). These results suggest that the estimates are approximately unbiased and

the estimated standard errors are approximately correct.

3.2. Multilevel 2PL Item Response Model

Another useful application is the multilevel 2PL item response model. One-

parameter item response models can be viewed as two-level logistic regression

models for binary responses Yip to item i by person p, nested in persons, where

the person ability is a random intercept and item difficulties are regression coef-

ficients of item dummy variables (e.g., Adams et al., 1997; Mellenbergh, 1994)

logit½PrðYip ¼ 1jypÞ� ¼
XI

r¼1

brdri þ yp:

Here dri is a dummy variable taking the value 1 when r ¼ i and 0 otherwise, �bi

are item difficulties, and yp are person abilities. yp is a random effect (or latent

variable) with yp � Nð0;s2
pÞ. Multilevel versions of this model, for students
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nested in schools, can be specified by simply adding higher-level random

intercepts.

Unlike one-parameter models, two-parameter models are no longer standard

generalized linear mixed models due to the item discrimination parameters mul-

tiplying the latent variable. The two-parameter model is usually written as

logit½PrðYip ¼ 1jypÞ� ¼ aiðyp � biÞ ¼ aiyp � aibi;

where ai is the discrimination parameter and bi is the difficulty parameter for

item i. Defining intercept parameters as bi ¼ �aibi, the model can be written

as a two-level logistic mixed model with a factor structure

logit½PrðYip ¼ 1jypÞ� ¼
XI

r¼1

brdri þ yp

XI

r¼1

ardri ¼ d
0

i �þ ypd
0

i�;

where di, �, and � are vectors with elements dri (r ¼ 1; . . . ; I), bi; and ai

(i ¼ 1; . . . ; I), respectively. For model identification, a factor loading (ai) for one

TABLE 2

Results of the Simulation Study for Crossed Random Effects Model With Persistence Para-

meters Estimated Using the Profile-Likelihood Method

Parameters y by dBiasB
dSEB

cSE dRMSEB

Fixed part

b1 3.162 3.160 �0.002 0.014 0.016 0.014

b2 0.109 0.110 0.001 0.012 0.013 0.012

b3 0.159 0.159 0.000 0.014 0.017 0.014

b4 0.176 0.177 0.001 0.018 0.018 0.018

Random part

s2
e 0.213 0.213 0.000 0.003 — 0.003

s2
s 0.152 0.152 0.000 0.006 — 0.006

s2
m 0.011 0.011 �0.000 0.003 — 0.003

s2
h 0.008 0.008 0.000 0.004 — 0.004

Factor loading

m2 0.787 0.792 0.005 0.141 0.144 0.141

m3 0.003 0.024 0.021 0.163 0.155 0.165

m4 �0.180 �0.166 0.014 0.165 0.177 0.166

Z4 1.509 1.538 0.029 0.374 0.373 0.375

Note. y are the true parameters, by is the mean of the parameter estimates, dBiasB is the estimated bias,dSEB is the standard deviation of the parameter estimates, cSE is the mean of the standard error esti-

mates, and dRMSEB is the root mean square error of the parameter estimates.
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item is typically constrained to one or the variance of the latent variable (s2
p) is

constrained to one as in conventional factor models.

Multilevel versions of the two-parameter model for student p nested in school

k have been suggested by Fox & Glas (2001) and Rabe-Hesketh et al. (2004). The

model we will consider here can be written as

logit½PrðYipk ¼ 1jypkÞ� ¼ d
0

i �þ ypkd
0

i�;

ypk ¼ �ð2Þpk þ �
ð3Þ
k ;

ð7Þ

where k indicates schools, �
ð2Þ
pk � Nð0;s2

pÞ is a person-level random intercept and

�
ð3Þ
k � Nð0;s2

s Þ is a school-level random intercept. The latter represents school

mean ability, whereas the former represents the deviation of the student’s ability

from the school mean. Substituting the model for ypk into the model for yipk, we

obtain a three-level logistic random intercept model with factor structures

logit½PrðYipk ¼ 1j�ð2Þpk þ �
ð3Þ
k Þ� ¼ d

0

i�þ �
ð2Þ
pk d

0

i� þ �
ð3Þ
k d

0

i �: ð8Þ

The factor loadings (�) are assumed to be the same at Levels 2 and 3. For model

identification, we can set the factor loading of one item to one or the variance of

�
ð2Þ
pk to one.

Figure 3 shows a path diagram for the two-parameter multilevel item response

model in Equation (8) using the path diagram conventions from Rabe-Hesketh

et al. (2004). Here, the paths no longer represent linear relations and the short

arrows represent Bernoulli variability instead of additive errors.

Multilevel two-parameter item response models have seldom been used due to

computational obstacles. Standard software for item response models cannot

handle latent variables at higher levels, whereas software for mixed models can-

not estimate factor loadings or discrimination parameters. The general packages

Mplus and gllamm (Zheng & Rabe-Hesketh, 2007) can be used to fit multilevel

two-parameter item response theory (IRT) models as can various purpose-written

programs including the Bayesian package mlirt in R (Fox, 2007).

In this section, we show how a multilevel two-parameter item response model

can be fitted using the profile-likelihood method. Unlike linear mixed models for

continuous responses, generalized linear mixed models for binary responses do

not have a closed-form likelihood because the integrals over the random effects

or latent variables are intractable. Whereas some software uses adaptive quadra-

ture to evaluate the integrals numerically, the lme4 package did not allow this

option for models with more than two levels at the time of writing this article.

Our profile-likelihood method therefore had to rely on the Laplace approxima-

tion of the integrals. This method is faster than numerical integration but is

known to produce downward bias for variance parameters for binary data with

small cluster sizes (here small number of items) and large variance components

(Cho & Rabe-Hesketh, 2011; Joe, 2008). The lme4 package is nevertheless a
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popular choice for item response modeling (e.g., De Boeck et al., 2011; Doran,

Bates, Bliese, & Dowling, 2007).

As described in Section 4, more complex measurement models can also be

estimated using the profile-likelihood approach.

3.2.1. Empirical Study

We analyzed data collected by Doolaard (1999), and previously analyzed by

Cho and Rabe-Hesketh (2011), Fox and Glas (2001), and Vermunt (2007). (The

data can be downloaded from http://www.statisticalinnovations.com/products/

latentgold_datasets.html.) The data are from a Dutch primary school mathe-

matics test that includes 18 items taken by 2,156 students who attended 97

schools in the Netherlands. Equation (8) was fitted using the profile-likelihood

method. To estimate the adjusted standard errors for the fixed-effect parameters,

the delta method was used. Differences between the delta and likelihood ratio

methods were smaller than 0.001. The naive standard errors from lmer were

about 0.1 to 0.3 smaller than the adjusted standard errors.

For comparison, the model was also fitted using gllamm whose adaptive

quadrature method has been shown to be very accurate with a sufficient number

y1
...y2

δ 
(2)

δ 
(3)

student p

school k 

y4y3

 θ

FIGURE 3. Diagram for the multilevel two-parameter item response model.
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of quadrature points (Rabe-Hesketh, Skrondal, & Pickles, 2005). For this appli-

cation, we used eight quadrature points at each level. Differences in the para-

meter estimates and standard errors with 6 and 9 quadrature points were at

most 0.03. The computation time to fit this model using the profile-likelihood

approach and obtain adjusted standard errors was about 3 days which was about

the same as with gllamm. The time for a single maximization in lmer with

known � was 418 seconds. Table 3 shows the results.

The last columns of Table 3 show the relative difference for all parameters and

standard errors defined as the estimate using profile-likelihood minus the esti-

mate using gllamm divided by the estimate using gllamm. We see that agree-

ment between the two methods is quite good both for the point estimates and for

the standard errors.

3.2.2. Simulation Study

A small simulation study was carried out to evaluate the profile-likelihood

method for Equation (8). We generated 50 datasets in which there are 10 dichot-

omous items for 1,000 students in 50 schools with 20 students per school. For

each dataset, we fitted the model using both the profile-likelihood method and

the gllamm. Table 4 shows the results.

The results for the profile-likelihood method and gllamm are remarkably

similar. In both cases, the estimated bias (dBiasB) is quite small. Using one-sample

t tests for each parameter, we did not find any bias to be significant at the 5%
level except for a5 (t ¼ �2.60, df ¼ 49, p ¼ 0.01). The bias estimates using

gllamm were very similar. The mean standard error estimates (cSE) were quite

close to the standard deviations of the estimates ( dSEB), considering that there are

only 50 replicates. These results suggest that the estimates are approximately

unbiased and the estimated standard errors are approximately correct.

4. Other Models That Can Be Estimated Using the

Profile-Likelihood Approach

Any model that becomes a standard model when some parameters are set to

known constants can be fitted using the profile-likelihood idea. Most of the mod-

els discussed in this section include factor structures and become standard gen-

eralized mixed models when the factor loadings are known.

An obvious extension of the multilevel two-parameter item response model

discussed in Section 3 is to include more hierarchical levels and cross-classified

levels, such as students nested in schools cross-classified with neighborhoods. To

our knowledge, such a model has not been fitted before. It would also be straight-

forward to estimate multidimensional multilevel item response models (see, e.g.,

Goldstein, Bonnet, & Rocher, 2007) as outlined for the single-level case in the

introduction. An example would be a bifactor model (Cai, Yang, & Hansen,
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TABLE 3

Parameter Estimates and Standard Errors for Multilevel Two-Parameter Item Response

Model Using gllamm and the Profile-Likelihood Method

gllamm
Eight Quadrature Points

Profile-Likelihood

With Laplace

Relative

Difference

Parameters byg
cSEg

byl
cSEl

byg � bylbyg

dSEg � cSElcSEg

Fixed part

b1 �0.541 0.097 �0.545 0.099 0.001 �0.002

b2 �1.438 0.103 �1.441 0.111 0.000 �0.008

b3 �0.185 0.087 �0.188 0.088 0.003 �0.002

b4 �1.634 0.098 �1.635 0.107 0.000 �0.012

b1 �0.885 0.067 �0.886 0.068 0.001 �0.004

b6 0.064 0.069 0.061 0.069 0.004 �0.001

b7 �0.723 0.086 �0.726 0.088 0.001 �0.011

b8 �2.300 0.098 �2.297 0.116 0.000 0.000

b9 �0.448 0.077 �0.451 0.078 0.002 �0.006

b10 �1.293 0.078 �1.294 0.082 0.000 �0.002

b11 �1.391 0.084 �1.392 0.090 0.000 �0.002

b12 0.007 0.062 0.005 0.062 0.065 �0.003

b13 �2.941 0.112 �2.931 0.143 0.000 �0.002

b14 �1.834 0.121 �1.838 0.136 0.000 �0.013

b15 �1.168 0.091 �1.171 0.095 0.001 �0.010

b16 �0.874 0.070 �0.875 0.072 0.001 �0.002

b17 �2.561 0.113 �2.555 0.139 0.000 �0.010

b18 �0.462 0.083 �0.464 0.084 0.000 �0.004

Random part

sp 1.259 — 1.283 — �0.019 —

ss 0.756 — 0.767 — �0.015 —

Factor loading

a2 1.031 0.092 1.027 0.088 0.000 0.009

a3 0.873 0.081 0.872 0.073 0.001 0.005

a4 0.937 0.088 0.931 0.082 0.000 0.001

a5 0.551 0.061 0.546 0.053 0.001 0.005

a6 0.622 0.061 0.616 0.055 0.001 0.001

a7 0.835 0.079 0.832 0.072 0.001 0.012

a8 0.842 0.088 0.830 0.084 0.000 0.009

a9 0.726 0.067 0.722 0.063 0.000 0.001

a10 0.687 0.071 0.681 0.064 0.000 0.013

a11 0.768 0.073 0.762 0.070 0.001 0.006

a12 0.513 0.053 0.506 0.049 0.001 0.002

a13 0.879 0.096 0.860 0.096 0.000 0.002

(continued)
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2011; Gibbons & Hedeker, 1992; Jeon, Rijmen, & Rabe-Hesketh, in press) where

the entire test can be viewed as Level 3, whereas the item bundles or testlets are at

Level 2, and the items are at Level 1.

Covariates could be added to the measurement model in several ways. Adding

person or school covariates xpk to the latent regression in Equation (7)

ypk ¼ x
0

pkγ þ �ð2Þpk þ �
ð3Þ
k ;

with regression coefficients γ , and substituting this model into the response

model, we obtain

logit½PrðYipk ¼ 1jypkÞ� ¼ d
0

i�þ x
0

pk γd
0

i�þ �
ð2Þ
pk d

0

i� þ �
ð3Þ
k d

0

i�: ð9Þ

When the factor loadings or discrimination parameters � are known, d
0
i� can be

treated as a covariate that multiplies each of the covariates in xpk. Such a model

was recently discussed by Li, Oranje, and Jiang (2009).

Interactions between person covariates and item dummies can be added to the

model to accommodate and test for differential item functioning (DIF); if such an

interaction is included in the di vector in Equation (9), we obtain non-uniform

DIF (see e.g., Swaminathan & Rogers, 1990).

We can also structure the difficulty parameters as a linear combination of item

covariates (LLTM; De Boeck & Wilson, 2004; Fisher, 1983). When there is no

discrimination parameter, the model is a standard generalized linear mixed

model. Structuring the discrimination parameters this way in addition to the

TABLE 3 (continued)

gllamm
Eight Quadrature Points

Profile-Likelihood

With Laplace

Relative

Difference

Parameters byg
cSEg

byl
cSEl

byg � bylbyg

dSEg � cSElcSEg

a14 1.237 0.118 1.233 0.108 0.000 0.003

a15 0.881 0.082 0.877 0.076 0.001 0.004

a16 0.603 0.060 0.597 0.057 0.000 0.002

a17 1.024 0.109 1.009 0.099 0.000 0.001

a18 0.811 0.076 0.809 0.069 0.001 0.009

Log likelihood �20090.9 �20071.8 0.001

Note. byg and cSEg are the parameter estimates and standard errors obtained from gllamm and y1 andcSEl are the parameter estimates and standard errors obtained from the profile-likelihood method.
byg�bylbyg

and
bSEg� bSElbSEg

are the relative difference of the parameter estimates and standard errors between

gllamm and the profile-likelihood method.
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difficulty parameters, as suggested by Embretson (1999), we obtain (in the sin-

gle-level case)

logit½PrðYip ¼ 1jypÞ� ¼ x
0

i�ðyp � x
0

i�Þ:

The first term, ypx0i�, is a standard factor structure (but for the first time in

this article, the variables multiplying the factor loadings are not dummy vari-

ables) and the second term is analogous to the second term in Equation (9)

TABLE 4

Summary of the Simulation Study for Multilevel Two-Parameter Item Response Model

Using the Profile-Likelihood Method and gllamm

Profile gllamm Profile gllamm Profile

Parameters y dBiasB
dBiasB

dRMSEB
dRMSEB

dSEB
cSE

Fixed part

b1 0.0 �0.008 �0.007 0.119 0.119 0.119 0.096

b2 0.5 0.024 0.023 0.086 0.086 0.083 0.092

b3 1.0 �0.022 �0.025 0.110 0.110 0.108 0.088

b4 �0.5 �0.010 �0.008 0.094 0.094 0.094 0.081

b5 0.5 0.026 0.027 0.123 0.124 0.121 0.098

b6 0.0 0.016 0.017 0.120 0.121 0.119 0.103

b7 �0.5 0.024 0.021 0.125 0.126 0.123 0.109

b8 1.5 0.014 0.004 0.130 0.127 0.129 0.105

b9 �1.5 0.000 0.013 0.143 0.141 0.143 0.103

b10 0.0 0.006 0.006 0.098 0.098 0.098 0.093

Random part

sp 1.0 0.043 0.107 0.222 0.262 0.218 —

ss 0.25 0.009 0.015 0.093 0.097 0.092 —

Factor loading

a2 0.9 0.016 0.009 0.163 0.170 0.163 0.149

a3 0.8 �0.019 �0.036 0.118 0.124 0.116 0.136

a4 0.7 �0.009 �0.022 0.100 0.105 0.100 0.124

a5 1.1 �0.057 �0.057 0.164 0.173 0.154 0.171

a6 1.2 �0.043 �0.031 0.161 0.170 0.156 0.180

a7 1.3 �0.032 �0.013 0.209 0.225 0.207 0.198

a8 1.0 0.017 �0.009 0.151 0.152 0.150 0.185

a9 1.0 �0.021 �0.051 0.122 0.132 0.120 0.165

a10 1.0 �0.025 �0.026 0.142 0.150 0.140 0.162

Note. y are the true parameters, dBiasB is the estimated bias, dRMSEB is the root mean square error of

the parameter estimates, dSEB is the standard deviation of the parameter estimates, and cSE is the mean

of the standard error estimates.
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and can thus be handled by multiplying each element of xi by the scalar xi

0
�

for known �.

As discussed by De Boeck et al. (2011), models for polytomous responses

with a continuation ratio logit link can be estimated by software for binary

responses such as lmer by expanding the data appropriately.

For longitudinal data, Meredith and Tisak (1988) model nonlinear growth by

specifying a growth curve model where the random coefficient does not multiply

the known times associated with the measurement occasions, as in linear growth

curve models, but unknown factor loadings to be estimated. The model has a sim-

ilar structure to our model with persistence parameters, but it also includes a ran-

dom intercept. For identification, two of the factor loadings are typically set to

zero and one.

Factor loadings can also be used to relax the homoscedasticity assumption for

random intercepts and random coefficients. For example, to let the variance of

the random coefficient �1j of a covariate zij differ between males and females,

specify wij ¼ ðdijzij; ð1� dijÞzijÞ
0
, where dij is a dummy variable for being male.

Then include the term �1j,w
0
ij,� in the linear predictor. For males, �1j is then mul-

tiplied by w
0
ij� ¼ �1zij and for females �1j is multiplied by w

0
ij� ¼ �2zij. If �j has

variance s2, then s2�2
m and s2�2

m can be interpreted as the variances of the ran-

dom coefficient for males and females, respectively. One of the factor loadings

could be set to one for identification.

Factor structures are not the only model extension that can be handled using

the profile-likelihood approach. We could also estimate extensions of general-

ized linear (mixed) models with nonlinear terms such as b1x�i or

b1 expðxi þ �ziÞ in the linear predictor. Or we could have products of regression

coefficients as in the stereotype model where

log
Prðyi ¼ sÞ
Prðyi ¼ 1Þ ¼ as þ �sðx

0

i�Þ:

When the �s are known, this becomes a standard conditional logistic regression

model with category-specific intercept and covariates �sx i.

The above list of models that can be estimated using the profile-likelihood

method clearly does not exhaust all possibilities but should give a flavor of the

power of this approach.

5. Concluding Remarks

In this article, we have developed a simple approach for estimating complex

models by ML using standard software and minimal programming. The method

works whenever setting some of the parameters of the model to known constants

turns the model into a standard model. An important class of models that can be

estimated this way are generalized linear mixed models with factor loadings.

Such models include random effects or latent variables weighted by some
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unknown parameters which are called factor loadings, persistence parameters, or

discrimination parameters depending on the context.

We have described two applications in this article. Crossed random effects

models with persistence parameters are useful for the assessment of value-added

effects for teachers and schools. Multilevel two-parameter item response models

are important for analysis of large-scale assessment studies such as NAEP and

PISA.

We implemented the profile-likelihood method using the lme4 package in R.

Readers who wish to implement the methods may find it useful to refer to the

code for the crossed random effects models with persistence parameters (Section

3.1) that is provided in Appendix A (see the online Appendix, available at http://

jeb.sagepub.com/supplemental).

Our implementation of the profile-likelihood method shares advantages as

well as disadvantages of lme4. For instance, we are able to handle an arbitrary

number of levels, nested and fully or partially crossed structures, and different

response types. For discrete data, however, the method may in some cases pro-

duce biased estimates for variance parameters since the Laplace approximation

method is used for estimation. However, simulations and comparison with other

software suggest that estimation of parameters and standard errors performs well

in the types of applications considered here.

The profile-likelihood method could also be implemented in other program-

ming environments such as SAS or Stata that provide a method for fitting gen-

eralized mixed models and a function for optimization.

Finally, as described in Section 4, we emphasize that the possible applications

go further than the supplied cases. Much broader classes of models can be esti-

mated using the proposed profile-likelihood approach.
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