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Summary. Multilevel modelling is sometimes used for data from complex surveys involving
multistage sampling, unequal sampling probabilities and stratification.We consider generalized
linear mixed models and particularly the case of dichotomous responses. A pseudolikelihood
approach for accommodating inverse probability weights in multilevel models with an arbitrary
number of levels is implemented by using adaptive quadrature. A sandwich estimator is used
to obtain standard errors that account for stratification and clustering. When level 1 weights
are used that vary between elementary units in clusters, the scaling of the weights becomes
important. We point out that not only variance components but also regression coefficients can
be severely biased when the response is dichotomous. The pseudolikelihood methodology is
applied to complex survey data on reading proficiency from the American sample of the ‘Program
for international student assessment’2000 study, using the Stata program gllamm which can es-
timate a wide range of multilevel and latent variable models. Performance of pseudo-maximum-
likelihood with different methods for handling level 1 weights is investigated in a Monte Carlo
experiment. Pseudo-maximum-likelihood estimators of (conditional) regression coefficients per-
form well for large cluster sizes but are biased for small cluster sizes. In contrast, estimators of
marginal effects perform well in both situations. We conclude that caution must be exercised in
pseudo-maximum-likelihood estimation for small cluster sizes when level 1 weights are used.

Keywords: Adaptive quadrature; Generalized linear latent and mixed model; Generalized
linear mixed model; gllamm program; Multilevel model; Probability weighting; ‘Program for
international student assessment’; Pseudolikelihood; Sandwich estimator; Stratification

1. Introduction

Surveys often employ multistage sampling designs where clusters (or primary sampling units
(PSUs)) are sampled in the first stage, subclusters in the second stage, etc., until elementary units
are sampled in the final stage. This results in a multilevel data set, each stage corresponding to
a level with elementary units at level 1 and PSUs at the top level L. At each stage, the units
at the corresponding level are often selected with unequal probabilities, typically leading to
biased parameter estimates if standard multilevel modelling is used. Longford (1995a, b, 1996),
Graubard and Korn (1996), Korn and Graubard (2003), Pfeffermann et al. (1998) and others
have discussed the use of sampling weights to rectify this problem in the context of two-level
linear (or linear mixed) models, particularly random-intercept models. In this paper we consider
generalized linear mixed models.
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When estimating models that are based on complex survey data, sampling weights are some-
times incorporated in the likelihood, producing a pseudolikelihood (e.g. Skinner (1989) and
Chambers (2003)). For two-level linear models, Pfeffermann et al. (1998) implemented pseudo-
maximum-likelihood estimation by using a probability-weighted iterative generalized least
squares algorithm. For generalized linear mixed models, a weighted version of the iterative quasi-
likelihood algorithm (e.g. Goldstein (1991)), which is analogous to probability-weighted itera-
tive generalized least squares, is implemented in MLwiN (Rasbash et al., 2003). Unfortunately,
this method is not expected to perform well since unweighted penalized quasi-likelihood often
produces biased estimates, in particular when the responses are dichotomous (e.g. Rodríguez
and Goldman (1995, 2001)). Furthermore, Renard and Molenberghs (2002) reported serious
convergence problems and strange estimates when using MLwiN with probability weights for
dichotomous responses.

A better approach for generalized linear mixed models is full pseudo-maximum-likelihood
estimation, for instance via numerical integration. Grilli and Pratesi (2004) accomplished this
by using SAS NLMIXED (Wolfinger, 1999) which implements maximum likelihood estimation
for generalized linear mixed models by using adaptive quadrature. However, they had to resort
to various tricks and the use of frequency weights at level 2 since probability weights are not
accommodated. SAS NLMIXED is furthermore confined to models with no more than two lev-
els. Another limitation is that it provides only model-based standard errors which are not valid
for pseudo-maximum-likelihood estimation. Grilli and Pratesi (2004) therefore implemented
an extremely computer-intensive nonparametric bootstrapping approach.

In this paper we describe full pseudo-maximum-likelihood estimation for generalized linear
mixed models with any number of levels via adaptive quadrature (Rabe-Hesketh et al., 2005).
Appropriate standard errors are obtained by using the sandwich estimator (Taylor lineariza-
tion). Our approach is implemented in the Stata program gllamm (e.g. Rabe-Hesketh et al.
(2002, 2004a) and Rabe-Hesketh and Skrondal (2005)), which allows specification of probabil-
ity weights, as well as PSUs (if they are not included as the top level in the model) and strata.
These methods are applied to the American sample of the ‘Program for international student
assessment’ (PISA) 2000 study.

For linear mixed models Pfeffermann et al. (1998) pointed out that the scaling of the level
1 weights affects the estimates of the variance components, particularly the random-intercept
variance, but may not have a large effect on the estimated regression coefficients (if the num-
ber of clusters is sufficiently large and the scaling constants do not depend on the responses).
In contrast, for multilevel models for dichotomous responses we expect the estimated regres-
sion coefficients to be strongly affected by the scaling of the level 1 weights. This is because the
regression coefficients are intrinsically related to the random-intercept variance. Specifically, for
given marginal effects of the covariates on the response probabilities, the regression coefficients
(which have conditional interpretations) are scaled by a multiplicative factor that increases as the
random-intercept variance increases (see Section 3.2). Thus, the maximum likelihood estimates
of the regression coefficients and the random-intercept variance are correlated in contrast with
the linear case (e.g. Zeger et al. (1988)). As far as we are aware, this potential problem has not
been investigated or pointed out before. Although Grilli and Pratesi (2004) considered pseudo-
maximum-likelihood estimation for dichotomous responses, they focused mostly on the bias
of the estimated random-intercept variance. Moreover, they simulated from models with small
regression parameters (0 and 0.1), making it difficult to detect multiplicative bias unless it is
extreme.

Using estimates from the multilevel model, approximate marginal effects can be obtained
by rescaling the regression coefficients (conditional effects) according to the random-intercept
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variance (e.g. Skrondal and Rabe-Hesketh (2004), page 125). We conjecture that these mar-
ginal effects will be less biased and less affected by the scaling of the level 1 weights than the
original parameters. This would imply that marginal effects can be more reliably estimated in
the presence of level 1 weights.

The plan of the paper is as follows. In Section 2 we briefly review descriptive and analytic
inference for complex survey data with unequal selection probabilities. We then extend these
ideas to multistage designs and introduce multilevel and generalized linear mixed models in
Section 3. In Section 4 we suggest a pseudolikelihood approach to the estimation of multilevel
and generalized linear mixed models incorporating sampling weights. We also describe various
scaling methods for level 1 weights. In Section 5 we present a sandwich estimator for the standard
errors of the pseudo-maximum-likelihood estimators, taking weighting into account. Having
described the pseudolikelihood methodology, it is applied to a multilevel logistic model for com-
plex survey data on reading proficiency among 15-year-old American students from the PISA
2000 study in Section 6. In Section 7 we carry out simulations to investigate the performance of
pseudo-maximum-likelihood estimation using unscaled weights and different scaling methods.
We also assess the coverage of confidence intervals based on the sandwich estimator and com-
pare estimators by using different sampling designs at level 1. Finally, we close the paper with
a discussion in Section 8.

2. Inverse probability weighting in surveys

In sample surveys, units are sometimes drawn with unequal selection probabilities. For exam-
ple, lower selection probabilities may be assigned to units with higher data collection costs and
higher selection probabilities to individuals from small subpopulations of particular interest.
These design probabilities πi for units i are a feature of the survey design and are assumed known
before data analysis.

2.1. Descriptive inference
If the aim is to estimate finite population (census) quantities such as means, totals or propor-
tions, a design-based approach is routinely used. Here the values of the variable of interest, yi,
are treated as fixed in a finite population and design-based inference considers the distribution
of the estimator over repeated samples by using the same sampling design. The usual estimators
such as the sample mean will be biased for the finite population quantity if the design probabil-
ities are informative in the sense that they are related to the response yi. A common solution is
to use weighted estimators where the contribution of unit i is weighted by wi =1=πi, the inverse
probability of selection into the sample (e.g. Kish (1965) and Cochran (1977)). For instance, the
Horvitz–Thompson estimator of the finite population mean is

ȳHT = 1∑
i

wi

∑
i

wiyi:

In practice the construction of survey weights often also takes account of features other than
design probabilities such as non-response adjustments and post-stratification. We shall return
to this in Sections 6 and 8 but stick with design weights until then.

2.2. Analytic inference
Inverse probability weighting is also often used when the aim is analytic inference, such as esti-
mation of the parameters of a data-generating mechanism or statistical superpopulation model.
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Pfeffermann (1993, 1996) discussed this approach for estimating regression parameters β of
a linear regression superpopulation model. Consider a hypothetical finite population for which
the model holds. The properties of inference from survey data to model parameters can then be
investigated by decomposing the problem into

(a) inference from the survey sample to the finite population and
(b) inference from the finite population to the model.

If data were available for the entire finite population, we could estimate β consistently by using
ordinary least squares, giving the finite population parameters bp. The estimator bp is thus
model consistent for β. However, in reality, we have only an estimator bs that is based on the
sample and to make any claims about its consistency for β it must be demonstrated that bs is
design consistent for bp. Roughly speaking, this means that the estimator approaches the finite
population parameter as both the finite population size and sample size tend to ∞ (e.g. Binder
and Roberts (2003)); see Sen (1988) for a rigorous treatment.

Conventional estimators are not design consistent if the design probabilities are informative
in the sense that they are related to the response even after conditioning on the covariates in
the model (e.g. Pfeffermann (1996); see also Rubin (1976) and Little (1982)). In this case the
model holding for the sample is different from the model holding for the finite population and
superpopulation. Ignoring the sampling weights will therefore lead to biased estimates. For
instance, if inclusion probabilities are positively correlated with the residual error in a linear
regression model, the ordinary least squares estimator of the intercept will be positively biased.

To achieve design consistency the design variables determining the selection probabilities (or
sometimes the weights themselves) could be included as covariates. This is an example of a
disaggregated analysis because inference is conditional on the design variables. This approach
is justifiable only if the extra conditioning does not alter the interpretation of the regression
coefficients of interest in an undesirable manner (see also Pfeffermann (1996)). An alternative
solution is to replace the usual estimators by their weighted counterparts, which is an example
of an aggregated analysis. In the case of likelihood inference, this idea leads to a pseudolikeli-
hood (e.g. Binder (1983), Skinner (1989) and Chambers and Skinner (2003)), where weights are
incorporated as if they were frequency weights. The resulting estimator is design consistent and
hence model consistent under suitable regularity conditions such as those discussed by Isaki
and Fuller (1982) and Skinner (2005). However, this consistency typically comes at a price of
reduced efficiency (e.g. Binder and Roberts (2003)).

3. Multistage sampling and multilevel models

3.1. Multistage sampling and probability weights
It is often not feasible to sample the elementary units i directly, for instance because the sam-
pling frame is not known. Instead, two-stage sampling proceeds by sampling clusters or PSUs
such as geographical regions or schools, in the first stage. Having obtained sampling frames for
the sampled clusters, elementary units are subsequently sampled from the clusters in the second
stage. If all units are included in the second stage, this is known as cluster sampling. Multistage
sampling involves sampling (sub)clusters from clusters that were sampled in previous stages
with elementary units sampled at the final stage. For notational simplicity, we consider two-
stage sampling in this section.

At the initial stage, cluster j is sampled with probability πj, j =1, . . . , n.2/, and, at the subse-
quent stage, unit i is sampled with conditional probability πi|j, i=1, . . . , n

.1/
j , given that cluster j

was sampled in the first stage. Here and throughout the paper we use superscript .1/ for ‘level 1’
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units i and .2/ for ‘level 2’ units j. In a typical design, n.2/ clusters are sampled with probabilities
that are proportional to their sizes Sj (the number of units in the clusters),

π
.2/
j =n.2/Sj

/∑
j

Sj

and a constant number of units n.1/ subsequently sampled for each cluster, corresponding to

π
.1/
i|j =n.1/=Sj:

Such designs are self-weighting in the sense that all units have the same unconditional probability
of selection,

πij =π
.1/
i|j π

.2/
j =n.2/n.1/

/∑
j

Sj:

However, as we show in Section 4, the selection probabilities at each stage still need to be taken
into account when taking a multilevel modelling approach.

3.2. Multilevel and generalized linear mixed models
Since there is usually unobserved heterogeneity between clusters even after conditioning on
covariates, responses tend to be correlated within clusters. This dependence must be taken into
account by using for instance multilevel modelling, which is an example of a disaggregated
approach because the design variables defining the clusters are not aggregated over.

A two-level generalized linear mixed model (e.g. Breslow and Clayton (1993)) for response
yij of unit i in cluster j can be specified as a generalized linear model with linear predictor

νij =x′
ijβ+ z.2/′

ij ζ
.2/
j :

Here xij and z.2/
ij are vectors of explanatory variables, β are fixed regression coefficients and ζ

.2/
j

are multivariate normal random effects varying over clusters with zero means and covariance
matrix Ψ. The conditional expectation μij of yij (given ζ

.2/
j and the covariates) is linked to the

linear predictor νij via a link function and the conditional distribution of yij is a member of the
exponential family.

The regression parameters β represent conditional or cluster-specific effects of the covariates
xij given the random effects ζ

.2/
j . For certain link functions such as the logit and probit the

conditional effects will generally differ from the marginal or population-averaged effects (inte-
grated over the random effects); see Ritz and Spiegelman (2004). Consider a two-level logistic
random-intercept model for unit i in cluster j,

log

{
Pr.yij=1|xij, ζ.2/

j /

Pr.yij=0|xij, ζ.2/
j /

}
=νij =x′

ijβ+ ζ
.2/
j , ζ

.2/
j ∼N.0,ψ/: .1/

This model can alternatively be written in terms of a continuous latent response yÅ
ij linked to

the dichotomous observed response yij via a threshold model

yij = I.yÅ
ij > 0/,

yÅ
ij =x′

ijβ+ ζ
.2/
j + "ij,

.2/

where I.·/ is the indicator function and the "ij have independent logistic distributions with
variance π2=3. This latent response formulation is not only useful for the simulation that is
described in Section 7 but also instrumental in investigating identification and equivalence in
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latent variable models with categorical responses (e.g. Rabe-Hesketh and Skrondal (2001)). For
the two-level logistic random-intercept model the total residual ζ.2/

j +"ij has variance ψ+π2=3
and intraclass correlation

ρ= ψ

ψ+π2=3
:

The marginal effects βM are therefore approximately related to the conditional effects β via

βM ≈
√(

π2=3
ψ+π2=3

)
β

=
√(

1
1+0:30ψ

)
β, .3/

with |βM| < |β| if ψ> 0. Aggregated approaches such as generalized estimating equations or
ordinary logistic regression estimate the marginal coefficients βM directly. However, here we
focus on conditional effects and variance components which are the parameters of primary
interest in multilevel modelling.

All these ideas naturally generalize to models with more than two levels. For L levels the
generalized linear mixed model has linear predictor

ν=x′β+
L∑

l=2
z.l/′ζ.l/,

where subscripts have been omitted for notational simplicity. The random effects ζ.l/ at each
level l are multivariate normal with zero means and are uncorrelated with the random effects at
the other levels.

4. Pseudo-maximum-likelihood estimation for multilevel models

4.1. Conventional likelihood
Let ϑ be the vector of all parameters, including the fixed effects β and the unique elements of
the covariance matrix of the random effects ζ.l/ at levels l=2, . . . , L.

We let yjk.2/ denote the response vector for level 2 unit j in level 3 unit k (omitting subscripts
for higher level units) and ζ.l+/ = .ζ.l/′, ζ.l+1/′, . . . , ζ.L/′/′. The log-likelihood contribution of a
level 2 unit, conditional on the random effects at levels 3 and above, can be expressed as

L.2/
jk .yjk.2/|ζ.3+/

k /= log

[∫
exp

{
n

.1/
jk∑

i=1
L.1/

ijk.yijk|ζ.2+/
jk /

}
g.2/.ζ

.2/
jk /dζ

.2/
jk

]
,

where L.1/
ijk.yijk|ζ.2+/

jk / is the log-likelihood of a level 1 unit given all random effects and g.2/.ζ
.2/
jk /

is the multivariate normal density of the random effects at level 2. For notational simplicity we
have omitted explicit reference to ϑ, x and z.l/ in the log-likelihoods and will continue to do so.

Using subscripts q for level l−1 units and r for level l units, the log-likelihood at level l

conditional on ζ.[l+1]+/ is

L.l/
r .yr.l/|ζ.[l+1]+//= log

[∫
exp

{
n

.l−1/
r∑
q=1

L.l−1/
qr .yqr.l−1/|ζ.l+/

r /

}
g.l/.ζ.l/

r /dζ.l/
r

]
: .4/

Applying equation (4) recursively for l=2, . . . , L, we obtain the required log-likelihood as
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L.y/=
n.L/∑
t=1

L.L/
t .yt/,

where t is the subscript for the highest level L and y is the vector of all responses.

4.2. Pseudolikelihood
Let w.l−1/

q|r denote the inverse probability that the qth level l−1 unit in the rth level l unit was
selected conditionally on the rth level l unit having been selected. The log-pseudolikelihood is
defined by replacing equation (4) with

L.l/
r .yr.l/|ζ.[l+1]+//

= log

[∫
exp

{
n

.l−1/
r∑
q=1

w.l−1/
q|r L.l−1/

qr .yqr.l−1/|ζ.l+/
r /

}
g.l/.ζ.l/

r /dζ.l/
r

]
, l=2, . . . , L,

giving the log-pseudolikelihood as

L.y/=
n.L/∑
t=1

w.L/
t L.L/

t .yt/: .5/

Here the weights enter the log-pseudolikelihood as if they were frequency weights, representing
the number of times that each unit should be replicated. Adaptive quadrature (e.g. Rabe-
Hesketh et al. (2002, 2005)) provides good approximations to the integrals in the pseudolikeli-
hood and this approach is implemented in gllamm.

It is clear from the form of the log-pseudolikelihood that we cannot simply use one set of
weights based on the overall inclusion probabilities but must use separate weights at each level.
Consequently, the self-weighting property of many multistage designs is lost.

4.3. Level 1 weights and bias in multilevel models
Unfortunately, pseudo-maximum-likelihood estimation is not as straightforward for multilevel
models as it is for conventional single-level models. One issue that was discussed by Pfeffermann
et al. (1998) for two-level linear mixed models is that, although consistency for the regression
coefficients requires only that the number of clusters n.2/ increases, both n.2/ and the number
of units n

.1/
j per cluster must increase to ensure consistency for the variance components.

Another issue is that the scaling of weights, which is immaterial in single-level models, can
now affect the estimates if the scaling is applied at level 1. Attempts have been made to devise
methods for scaling the level 1 weights that reduce the bias in the variance components for small
cluster sizes.

4.3.1. Bias of variance component estimators and effects of scaling
For simplicity, we shall consider a two-level linear variance components model

yij =β0 + ζj + "ij, ζj ∼N.0,ψ/, "ij ∼N.0, θ/,

and assume that the data are balanced with n
.1/
j =n.1/. To focus on the problems that are asso-

ciated with level 1 weights, we let all level 2 units from the finite population be included in the
sample.
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Analytical expressions for the maximum likelihood estimators are given by (e.g. McCulloch
and Searle (2001), page 39)

β̂0 = ȳ::, .6/

θ̂=

n.2/∑
j=1

n.1/∑
i=1

.yij − ȳ:j/2

n.2/.n.1/ −1/
.7/

and

ψ̂=

n.2/∑
j=1

.ȳ:j − ȳ::/
2

n.2/
− θ̂

n.1/
: .8/

(These estimators for θ and ψ only apply if ψ̂ is positive.)
We can use level 1 weights w.1/

i|j by replacing all sums over i by weighted sums and n.1/ by

w·|j =
n.1/∑
i=1

w.1/
i|j ,

which we shall refer to as the ‘apparent’ cluster size.
The problem with this approach is that the between-cluster variance ψ is overestimated. This

can be seen by considering the weighted version of the first term in equation (8), letting the level
1 weights have constant sums w:|j for simplicity. The expectation of the first term of the weighted
estimator ψ̂ is a sum of a contribution due to between-cluster variability ψ (not affected by the
weighting) and a contribution due to within-cluster variability θ. The latter is given by

1
n.2/

E

{
n.2/∑
j=1

."̄:j − "̄::/
2

}
= n.2/ −1

n.2/
H

θ

w:|j
≈H

θ

w:|j
, .9/

where the approximation is good when n.2/ is large and

H = 1
n.2/

n.2/∑
j=1

n.1/∑
i=1

w2
i|j

w:|j
:

Without weights (wi|j = 1), H = 1 and subtraction of the weighted version of the second term
in equation (8) makes ψ̂ consistent. However, for large weights (H > 1), subtraction of the sec-
ond term does not suffice (note that the weighted version of θ̂ has expectation less than θ).
Intuitively, the scaling makes the clusters appear larger without reducing the between-cluster
variability due to the "ij. This extra between-cluster variability is incorrectly attributed to ψ.

If sampling of level 1 units is within strata that are determined by the sign of "ij (as in
Pfeffermann et al. (1998) and the simulations of this paper), this stratification will reduce the
expectation in expression (9) (which is not compensated for by a corresponding change in θ̂),
leading to smaller estimates ψ̂ than in the unstratified case. We expect qualitatively similar
behaviour for generalized linear mixed models where analytic investigation of estimators is not
possible.

Scaling the weights at the top level L by multiplying by a scalar a simply results in the log-
pseudolikelihood being rescaled and therefore does not affect the point estimates. In contrast,
scaling the lower level weights does affect the parameter estimates even if a constant scaling
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factor a.l/ is used at level l. For the linear variance components model for balanced data, it is
clear from equation (6) that rescaling the weights as a.1/w.1/

i|j does not affect the estimator of β0.
However, for the variance components, we obtain

θ̂a = w·|j −1
w·|j −1=a.1/

θ̂w,

and

ψ̂a = ψ̂w + θ̂w

w·|j

(
1− w·|j −1

a.1/w·|j −1

)
,

where θ̂w and ψ̂w denote the weighted estimators using weights w.1/
i|j and θ̂a and ψ̂a denote the

estimators using scaled weights a.1/w.1/
i|j . θ̂a decreases and ψ̂a increases with the scaling factor

a.1/ for a given sample, but the effect of a.1/ decreases when the apparent cluster size w·|j based
on the raw weights becomes large, for instance when the actual cluster size n.1/ becomes large.
The increase in ψ̂a is again related to the increase in apparent cluster size wa

·|j =a.1/w·|j.

4.3.2. Weighting schemes
The two most common scaling methods for the level 1 weights are as follows.

(a) Method 1: Longford (1995a, b, 1996) argued that the scaling factor a
.1/
1 should be deter-

mined so that the ‘apparent’ cluster size wa
:|j equals the ‘effective’ sample size (e.g. Pothoff

et al. (1992)),

wa
:|j =

n
.1/
j∑

i=1
a

.1/
1 w.1/

i|j

= w2
·|j∑
w2

i|j
�n

.1/
j ,

so the scale factor, which was referred to as ‘method 1’ in Pfeffermann et al. (1998),
becomes

a
.1/
1 = w·|j

n
.1/
j∑

i=1
.w.1/

i|j /2

:

This is motivated by unbiasedness of the resulting weighted moment estimator of θ which
coincides with the maximum likelihood estimator in the balanced case (Longford (1996),
page 336). Similarly, Pfeffermann et al. (1998) investigated the performance of the proba-
bility-weighted iterative generalized least squares estimators for the variance components
in a two-level linear mixed model with a single random effect. Assuming that the level
1 weights (but not the level 2 weights) are approximately non-informative and that the
weights are uncorrelated with the covariate multiplying the random effect, they showed
that the estimators of both variance components are approximately unbiased if scaling
method 1 is used.

(b) Method 2: another obvious choice of scaling factor is one that sets the apparent cluster
size wa

·|j equal to the actual cluster size n
.1/
j , which is referred to as scaling method 2 in

Pfeffermann et al. (1998),

a
.1/
2 =n

.1/
j =w·|j:
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Simulations in Pfeffermann et al. (1998) suggest that this method works better than
method 1 for informative weights. Such a scaling factor has also been used by Clogg and
Eliason (1987) in a different context.

Instead of scaling the level 1 weights, Graubard and Korn (1996) suggested a ‘method D’
which does not use any weights at level 1.

(c) Method D: new level 2 weights wÅ
j are constructed as

wÅ
j =

n
.1/
j∑

i=1
wi|jwj,

and level 1 weights are wÅ
i|j =1.

Korn and Graubard (2003) pointed out that moment estimators of the variance components
using these weights are approximately unbiased under non-informative sampling at level 1.

5. Sandwich estimator of the standard errors

From standard likelihood theory (e.g. Pawitan (2001), pages 372–374 and 407), the asymptotic
covariance matrix of the maximum likelihood estimator is

cov.ϑ̂/=I−1J I−1: .10/

Here I is the expected Fisher information and

J ≡ E

{
@L.y;ϑ/

@ϑ

@L.y;ϑ/

@ϑ′

}∣∣∣∣
ϑ=ϑ0

,

where ϑ0 is the true parameter vector and the expectations are over the (true) distribution of
the responses given the covariates. For model-based standard errors, the sandwich form of the
covariance matrix in equation (10) collapses to I−1 because J =I if the likelihood represents
the true distribution of the responses (given the covariates). The expected Fisher information I
is typically estimated by the observed Fisher information I at the maximum likelihood estimates.
Since the pseudolikelihood does not represent the distribution of the responses, the sandwich
does not collapse. Instead, we estimate cov.ϑ̂/ by ĉov.ϑ̂/ = I−1JI−1, where I is the observed
(pseudo-) Fisher information at the pseudo-maximum-likelihood estimates and the estimator J

of J is obtained by exploiting the fact that the pseudolikelihood is a sum of independent cluster
contributions so that

@L.y;ϑ/

@ϑ
=

n.L/∑
t=1

w.L/
t

@L.L/.yt.L/;ϑ/

@ϑ

≡
n.L/∑
t=1

St.ϑ/:

We then estimate J by

J = n.L/

n.L/ −1

n.L/∑
t=1

St.ϑ̂/St.ϑ̂/′

≡ n.L/

n.L/ −1

n.L/∑
t=1

sts′
t ,

where st is the weighted score vector of the top level unit t.
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We now consider a more complex design where the top level units of the multilevel model
are clustered in even higher level clusters. We need to consider only the highest level clusters or
PSUs which may have been sampled using stratified sampling. To accommodate this situation
we shall use shgt for the weighted score vector of the top level unit t in stratum h, h=1, . . . , H ,
and cluster g, g=1, . . . , Gh, where t, t =1, . . . , Nhg, is now an index within stratum h and cluster
g. The gradient of the log-pseudolikelihood can then be expressed as

@L.y;ϑ/

@ϑ

∣∣∣∣
ϑ=ϑ̂

=
H∑

h=1

Gh∑
g=1

Nhg∑
t=1

shgt :

The corresponding covariance matrix, taking stratification and additional clustering into ac-
count, becomes

J =
H∑

h=1

Gh

Gh −1

Gh∑
g=1

.shg· − s̄h··/.shg· − s̄h··/′,

where

shg· =
Nhg∑
t=1

shgt ,

s̄h·· = 1
Gh

Gh∑
g=1

shg·:

Pseudolikelihood inference for complex surveys is discussed in Skinner (1989). The sandwich
estimator that is described in this section has been implemented in gllamm.

As we shall see in our application, the procedures that were described above allow us to
adopt a hybrid aggregated–disaggregated approach where lower levels of substantive interest
are explicitly included in the multilevel model, whereas PSUs are considered a nuisance and are
used only to adjust the standard errors.

6. Application

We analyse data from the 2000 Organisation for Economic Co-operation and Development
PISA study on reading proficiency among 15-year-old American students.

In a three-stage cluster sampling design, geographic areas (PSUs) were sampled at stage 1,
schools at stage 2 and students at stage 3. Stage 1 yielded 52 PSUs. In stage 2, public schools with
more than 15% minority students were twice as likely to be sampled as other schools. Within
high minority and other schools, the probability of selection was proportional to an estimate of
size. Of the 220 schools that were sampled, only 128 were both eligible and willing to participate.
These schools were supplemented with 32 replacement schools each having similar character-
istics to those of a non-participating school. In stage 3, up to 35 students were sampled from
160 schools. In public schools with more than 15% minority students, minority students were
oversampled (Lemke et al. (2001), appendix 1), but otherwise all students aged 15 years had an
equal chance of being selected. Many of the students sampled did not participate owing to inel-
igibility, withdrawal, exclusion or failure to take assessments. 145 schools with more than 50%
student participation were classified as ‘responding’ and eight schools with between 25% and
50% responding as ‘partially responding’. These 153 schools with a total of 3846 participating
students are included in the PISA database.
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The PISA data include weights at the school and student levels. According to the manual for
the PISA 2000 database (Organisation for Economic Co-operation and Development, 2000), the
provided school level weights v

pr
j (called WNRSCHBW) are design weights wj =1=πj adjusted

for school non-response,

v
pr
j =f1jwj:

Here f1j compensates for non-participation by other schools that are similar to school j (in terms
of variables including region, metropolitan or non-metropolitan status, percentage minority and
percentage of students eligible for free lunch).

The provided student weights v
pr
ij (called W_FSTUWT) are given by

v
pr
ij =f1jf2jf A

1jwi|jwj:

Here, wi|j =1=πi|j are design weights at level 1, f A
1j adjusts for non-inclusion by some schools of

15-year-old students from grades other than the modal grade for 15-year-old students and f2j

adjusts for non-participation of students who are included in the sample. Note that all terms in
v

pr
ij except wi|j are school specific and that these terms do not affect the rescaled version of v

pr
ij

by using either method 1 or 2.
We consider the response variable [Proficiency], an indicator taking the value 1 for the two

highest reading proficiency levels as defined in Organisation for Economic Co-operation and
Development (2000). Specifically, the threshold 552.89 was applied to the weighted maximum
likelihood estimates (Warm, 1989) of reading ability. Ability scoring was based on a partial
credit model, estimated by maximum marginal likelihood on a subset of the international data;
see Adams and Wu (2002) for details.

As student level explanatory variables we use gender and most of the family background
variables that were considered in Lemke et al. (2001):

(a) [Female]—the student is female (dummy);
(b) [ISEI]—international socio-economic index (see Ganzeboom et al. (1992));
(c) [Highschool]—highest education level by either parent is high school (dummy);
(d) [College]—highest education level by either parent is college (dummy);
(e) [English]—the test language (English) is spoken at home (dummy);
(f) [Oneforeign]—one parent is foreign born (dummy);
(g) [Bothforeign]—both parents are foreign born (dummy).

We also consider contextual or compositional effects of socio-economic status, i.e. the difference
between the between-school and within-school effects. This has attracted considerable interest
in education (e.g. Willms (1986) and Raudenbush and Bryk (2002)). For instance, Willms (1986)
argued that the benefits of comprehensive schooling depend to a large extent on whether the
socio-economic mix of a school has an effect on students’ outcomes above the effect of indi-
vidual student characteristics. In addition to the student level socio-economic index [ISEI] we
therefore also consider its school mean [MnISEI] as a school level covariate.

We use the two-level random-intercept logistic regression model (1) for student i in school
j, where [Proficiency] is regressed on the covariates that are mentioned above. The PISA data-
base does not include any identifier for the PSUs but this information was kindly provided by
the National Council for Education Statistics. We do not include PSUs as a level in the model
because the variance between PSUs (with undisclosed definition) does not appear to be of sub-
stantive interest and estimation would require knowledge of the PSU selection probabilities.
PSUs were instead accounted for in the sandwich estimator of the standard errors. Because of
missing data on some of the covariates (mostly for [Highschool], [College] and [ISEI]), estima-
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Table 1. Maximum likelihood estimates (with model-based and robust standard errors)
and pseudo-maximum-likelihood estimates by using scaling method 1 (with robust stan-
dard errors taking and not taking PSUs into account)

Parameter Unweighted maximum Weighted pseudo-
likelihood maximum-likelihood

Estimate SE SER SEPSU
R Estimate SER SEPSU

R

β0, [Constant] −6:034 0.539 0.547 0.458 −5:878 0.955 0.738
β1, [Female] 0.555 0.103 0.102 0.111 0.622 0.154 0.161
β3, [ISEI] 0.014 0.003 0.003 0.003 0.018 0.005 0.004
β4, [MnISEI] 0.069 0.009 0.009 0.009 0.068 0.016 0.018
β5, [Highschool] 0.400 0.256 0.262 0.224 0.103 0.477 0.429
β6, [College] 0.721 0.255 0.257 0.235 0.453 0.505 0.543
β7, [English] 0.695 0.285 0.269 0.301 0.625 0.382 0.391
β8, [Oneforeign] −0:020 0.224 0.200 0.159 −0:109 0.274 0.225
β9, [Bothforeign] 0.099 0.236 0.245 0.295 −0:280 0.326 0.292
ψ 0.271 0.086 0.082 0.088 0.296 0.124 0.115

tion was based on 2069 students from 148 schools in 46 PSUs. The rescaling of level 1 weights
was based on the estimation sample.

For the 148 schools contributing to the analysis, the provided school level weights v
pr
j had

mean 262, standard deviation 539, lower decile 32 and upper decile 499. For the 2069 students,
the provided student level weights v

pr
ij had mean 843, standard deviation 410, lower decile 347

and upper decile 1353. Because of a very large intraclass correlation of 0.98, the rescaled student
level weights using methods 1 or 2 were close to 1 and almost identical, both having standard
deviations of 0.05 and lower and upper deciles of 0.94 and 1.07 respectively.

Estimates using (unweighted) maximum likelihood and pseudo-maximum-likelihood with
scaling method 1 are shown in Table 1. We used 12-point and 20-point adaptive quadrature,
giving the same results to the precision that is reported. Model-based standard errors SE are
given (for maximum likelihood only), together with robust standard errors from the sandwich
estimator not taking PSUs into account (SER) and taking PSUs into account (SEPSU

R ). Esti-
mates using scaling method 2 (which are not shown) were almost identical to those using
method 1 because the level 1 weights are close to 1.

The pseudo-maximum-likelihood estimates are in accordance with educational theory and
previous research. For instance, controlling for other covariates, reading proficiency is better
for females than for males, better for students with parents having higher levels of education
and better for students having English as their home language. As expected, socio-economic
status [ISEI] has a positive effect; for students from the same school, a one within-school stan-
dard deviation change in [ISEI] of 15.5 is associated with an increase in the log-odds of 0.22,
controlling for the other covariates. For students from different schools, a 1 standard deviation
change in school mean socio-economic status [MnISEI] of 8.9 is associated with an increase in
the log-odds of 0.74 after controlling for student level [ISEI] and the other covariates. There is
thus evidence of a contextual effect of socio-economic status. The intraclass correlation of the
latent responses yÅ

ij in equation (2), given the covariates, is estimated as about 0.08 (0.14 when
the school level covariate [MnISEI] is excluded).

Many of the pseudo-maximum-likelihood estimates are very different from the correspond-
ing unweighted maximum likelihood estimates. This illustrates the importance of weighting and
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suggests that sampling probabilities are informative in the present application. However, the
loss in efficiency due to weighting is also apparent with substantially larger standard errors for
pseudo-maximum-likelihood estimators. Note that taking PSUs into account does not neces-
sarily increase the standard errors.

7. Simulation

A Monte Carlo experiment was carried out to assess the performance of pseudo-maximum-
likelihood estimation and the sandwich estimator.

First, dichotomous responses were simulated for a finite population from the two-level logistic
random-intercept model (1) with linear predictor

νij =β0 +β1x1j +β2x2ij + ζ
.2/
j ,

and β0 =β1 =β2 = 1 and ψ= 1. Since performance of estimators may differ for coefficients of
between-cluster and within-cluster covariates, we simulated both types of covariate. For both
types of covariate we drew independent samples from a Bernoulli distribution with probability
0:5. For the between-cluster covariate x1j, a single value was sampled for the entire cluster and,
for the unit-specific covariate x2ij, different values were first sampled for each unit and then the
cluster mean was subtracted (so that x2ij varied purely within clusters). The finite population
had 500 level 2 units, each with the same number N

.1/
j of level 1 units.

Second, we sampled from the finite population by using the following two-stage sampling
design. A subset of the level 2 units were sampled by using stratified random sampling without
replacement with approximate (due to rounding) sampling fractions

π
.2/
j ≈

{
0:25 if |ζ.2/

j |> 1,

0:75 if |ζ.2/
j |�1.

The average overall sampling fraction is about 0:6, yielding about 300 level 2 units.
From each level 2 unit, level 1 units were sampled (again by using stratified random sampling

without replacement) with approximate sampling fractions

π
.1/
i|j ≈

{
0:25 if "ij > 0
0:75 if "ij �0,

where "ij are the residuals in the latent response formulation (2). Sampling at level 1 was similar
to the proportional allocation method that was used by Pfeffermann et al. (1998) and Grilli and
Pratesi (2004) except that our sampling fraction is higher, nearly half the units (n.1/

j ≈N
.1/
j =2)

being sampled from each cluster.
By making the sampling probabilities at stages 1 and 2 dependent on the corresponding resid-

uals ζ.2/
j and "ij, we are ensuring that sampling is informative at both levels. In practice, sampling

probabilities would depend on observed design variables and our simulation corresponds to the
situation where these design variables are strongly associated with the residuals. In a school
survey, sampling at stage 1 could be stratified by school size or type (e.g. private and public)
where the oversampled schools are more homogeneous with school level residuals closer to 0
(with a Pearson correlation between stratification variable and absolute value of school level
residual of 0.82). At stage 2, strata could be based on some student characteristic (e.g. minority
status) which correlates with the student level residual (here a correlation of 0.76).

The weights w.2/
j = 1=π

.2/
j and w.1/

i|j = 1=π
.1/
i|j that were used in pseudo-maximum-likelihood

estimation were based on the proportions of units that were actually sampled. (Because of the
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small strata that are involved when sampling level 1 units from level 2 units, the proportion that
was sampled could differ considerably from 0.25 and 0.75.)

We varied the cluster sizes of the finite population N
.1/
j ∈{5, 10, 20, 50, 100} and simulated

100 data sets for each condition. Although a stratified sampling design at level 1 may be unusual
with cluster sizes as small as 5 or 10, these situations might correspond to longitudinal data
(occasions nested in subjects) where missingness depends on a time-varying covariate that is
correlated with the level 1 residual. Five estimation methods were used for each simulated data
set:

(a) unweighted maximum likelihood,
(b) pseudo-maximum-likelihood using raw unscaled weights,
(c) pseudo-maximum-likelihood using scaling method 1,
(d) pseudo-maximum-likelihood using scaling method 2 and
(e) pseudo-maximum-likelihood using method D.

Estimation was performed by using gllamm with 12-point adaptive quadrature.
In Tables 2–5 we report means and standard deviations over the 100 replications for the

estimates of the conditional regression parameters β0 (the fixed intercept), β1 (the regression
coefficient for the cluster-specific covariate) and β2 (the regression coefficient for the unit-
specific covariate), and the random-intercept standard deviation

√
ψ. We also report the mean

estimated marginal effects βM
0 , βM

1 and βM
2 , which were obtained by plugging the param-

eter estimates into approximation (3). We do not present the results for N
.1/
j = 100 as they are

almost identical to those for N
.1/
j =50.

When no weights are used, the deliberate undersampling of level 2 units with large absolute
values |ζ.2/

j | leads to a downward bias for the random-intercept standard deviation
√
ψ. The

deliberate undersampling of level 1 units with positive values of "ij leads to a downward bias
for the fixed intercept β0. This downward bias for β0 is also observed for the weighted estimates
by using method D because this method uses the cluster averages of overall inclusion weights
wij as level 2 weights whereas the level 1 sampling probabilities πi|j vary mostly within clusters.

Table 2. Cluster size N.1/
j D5: mean estimates and standard deviations

Parameter True Unweighted Weighted pseudo-maximum-likelihood
value maximum estimates

likelihood estimate

Raw Method 1 Method 2 Method D

Model parameters: conditional effects
β0 1 0.40 1.03 0.68 0.75 0.42

(0.11) (0.19) (0.16) (0.15) (0.15)
β1 1 1.08 1.19 0.96 0.98 1.05

(0.18) (0.32) (0.26) (0.26) (0.25)
β2 1 1.06 1.22 0.94 0.96 1.02

(0.22) (0.35) (0.25) (0.26) (0.26)√
ψ 1 0.39 1.47 0.58 0.70 0.62

(0.37) (0.21) (0.31) (0.30) (0.51)

Rescaled regression coefficients: approximate marginal effects
βM

0 0.88 0.39 0.80 0.64 0.70 0.38
βM

1 0.88 1.04 0.92 0.91 0.90 0.96
βM

2 0.88 1.02 0.94 0.89 0.89 0.93
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Table 3. Cluster size N.1/
j D10: mean estimates and standard deviations

Parameter True Unweighted Weighted pseudo-maximum-likelihood
value maximum estimates

likelihood estimate

Raw Method 1 Method 2 Method D

Model parameters: conditional effects
β0 1 0.37 1.04 0.83 0.88 0.37

(0.11) (0.16) (0.14) (0.14) (0.17)
β1 1 1.13 1.06 0.91 0.94 1.13

(0.14) (0.23) (0.20) (0.20) (0.22)
β2 1 1.14 1.11 0.91 0.97 1.13

(0.14) (0.20) (0.16) (0.17) (0.16)√
ψ 1 0.77 1.19 0.40 0.73 1.04

(0.10) (0.13) (0.34) (0.16) (0.12)

Rescaled regression coefficients: approximate marginal effects
βM

0 0.88 0.34 0.87 0.79 0.82 0.32
βM

1 0.88 1.04 0.89 0.87 0.87 0.98
βM

2 0.88 1.05 0.93 0.88 0.90 0.98

Table 4. Cluster size N.1/
j D20: mean estimates and standard deviations

Parameter True Unweighted Weighted pseudo-maximum-likelihood
value maximum estimates

likelihood estimate

Raw Method 1 Method 2 Method D

Model parameters: conditional effects
β0 1 0.36 1.02 0.91 0.94 0.36

(0.09) (0.16) (0.14) (0.15) (0.17)
β1 1 1.16 1.05 0.94 0.97 1.16

(0.14) (0.22) (0.20) (0.21) (0.23)
β2 1 1.16 1.05 0.95 0.99 1.15

(0.10) (0.14) (0.12) (0.13) (0.12)√
ψ 1 0.82 1.09 0.70 0.83 1.10

(0.06) (0.09) (0.13) (0.16) (0.08)

Rescaled regression coefficients: approximate marginal effects
βM

0 0.88 0.32 0.87 0.84 0.85 0.31
βM

1 0.88 1.06 0.89 0.87 0.88 0.99
βM

2 0.88 1.05 0.90 0.89 0.89 0.98

As in linear random-intercept models,
√
ψ is overestimated by using raw weights, less so as

the cluster size increases, with very little bias for cluster sizes N
.1/
j of 50 or more (corresponding

to n
.1/
j � 25). One reason for the relatively good performance of the raw weights is the high

sampling fractions at level 1, leading to moderate level 1 weights of about 4 and 1.3, whereas
the sampling fractions in Pfeffermann et al. (1998) were smaller. In this paper the sampling
fractions are the same regardless of cluster size n

.1/
j , making it possible to isolate the effect of
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Table 5. Cluster size N.1/
j D50: mean estimates and standard deviations

Parameter True Unweighted Weighted pseudo-maximum-likelihood
value maximum estimates

likelihood estimate

Raw Method 1 Method 2 Method D

Model parameters: conditional effects
β0 1 0.35 1.01 0.96 0.98 0.35

(0.08) (0.13) (0.12) (0.12) (0.14)
β1 1 1.18 1.03 0.98 1.00 1.18

(0.11) (0.17) (0.17) (0.17) (0.19)
β2 1 1.18 1.02 0.98 0.99 1.17

(0.06) (0.08) (0.07) (0.07) (0.07)√
ψ 1 0.87 1.05 0.87 0.94 1.14

(0.04) (0.08) (0.08) (0.07) (0.08)

Rescaled regression coefficients: approximate marginal effects
βM

0 0.88 0.31 0.87 0.87 0.87 0.29
βM

1 0.88 1.07 0.90 0.88 0.89 1.00
βM

2 0.88 1.06 0.88 0.88 0.88 0.99

cluster size. This is in contrast with the results of Pfeffermann et al. (1998) where smaller cluster
sizes were due to smaller sampling fractions, leading to confounding of these effects.

Scaling methods 1 and 2 both appear to overcorrect the positive bias for
√
ψ. This may be

due to the within-cluster stratification based on the sign of "ij as discussed in Section 4.3.1.
Scaling method 2 seems to perform better than method 1, giving results that are interme-
diate between those for raw weights and scaling method 1 as would be expected since the
scaling constants tend to be closer to 1 than for method 1. The three methods employing
both level 1 and level 2 weights (raw, method 1 and method 2) produce biased estimates for
the regression coefficients whenever they are biased for the random-intercept standard devia-
tion. Interestingly, these biases roughly cancel out in the expression (3) for the marginal effects.

Our simulation results appear to be consistent with the results in Grilli and Pratesi (2004)
for informative sampling at both levels with small cluster sizes. For the level 2 variance, their
unscaled fully weighted (our ‘raw’) estimators are upward biased whereas scaling method 2
overcorrects this bias. However, for the intercept and regression coefficients, the weighted esti-
mators are less severely biased in Grilli and Pratesi (2004). As mentioned in Section 1, this could
be due to the small true values for these parameters. In Grilli and Pratesi (2004), the sampling
variability is considerably lower by using scaled weights than by using raw weights, whereas
this difference is less pronounced in our simulations. The reason could be the lower sampling
fractions that were used in their simulations.

To study the performance of the sandwich estimator, we simulated the model 1000 times
for cluster size N

.1/
j =50. We used raw level 1 weights, which produced only small biases for this

cluster size. Table 6 shows the mean estimates and their standard deviations, as well as the mean
standard errors and coverage for approximate 95% confidence intervals based on the normal
distribution. The mean standard errors are almost identical to the standard deviations of the
estimates. The coverage is close to the nominal level, even for the random-intercept standard
deviation where the normality approximation may be dubious.

To investigate whether the relatively small bias for
√
ψ using raw weights (and downward bias
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Table 6. Coverage of 95% confidence intervals for cluster size N.1/
j D50 by using

raw weights (1000 replications)

Parameter True Mean Standard deviation Mean 95% confidence
value estimate of estimate SE interval coverage

β0 1 1.01 0.13 0.13 94.1
β1 1 1.02 0.18 0.18 94.7
β2 1 1.03 0.08 0.08 94.1√
ψ 1 1.07 0.07 0.08 92.4

using scaled weights) is due to the within-cluster stratification as discussed in Section 4.3.1, we
conducted further simulations for cluster size N

.1/
j =10, using three stratification methods:

(a) stratification based on the sign of "ij as used in all simulations so far,
(b) the same design but with stratification determined by the sign of a standard normal

random variable that was correlated 0.5 with "ij and
(c) stratification determined by the sign of a standard normal random variable that was

uncorrelated with "ij and thus independent of the response.

Table 7 shows that the reasonable performance of the raw method that was seen earlier for
case (a) deteriorates as the stratification becomes less related to the response. Scaling method
1 works very well for (c) where stratification is independent of the response. Qualitatively the
same results (worse performance of the raw method and better performance of scaling method 1
as stratification becomes less related to the response) are obtained when the sampling fractions
in both strata are 0.5. This suggests that the results are not due to varying the ‘informativeness’
of the weights (the correlation between the weights and the responses).

Table 7. Effect of stratification method: mean estimates and standard
deviations for cluster size N.1/

j D10

Parameter True Results for raw weights Results for method 1
value and the following and the following

stratification methods: stratification methods:

(a) (b) (c) (a) (b) (c)

Model parameters: conditional effects
β0 1 1.04 1.10 1.29 0.83 0.88 1.01

(0.16) (0.16) (0.21) (0.14) (0.13) (0.16)
β1 1 1.06 1.11 1.26 0.91 0.92 0.99

(0.23) (0.26) (0.30) (0.20) (0.23) (0.25)
β2 1 1.11 1.12 1.17 0.91 0.91 0.96

(0.20) (0.21) (0.25) (0.16) (0.17) (0.19)√
ψ 1 1.19 1.33 1.77 0.40 0.61 0.98

(0.13) (0.15) (0.15) (0.34) (0.24) (0.16)

Rescaled regression coefficients: approximate marginal effects
βM

0 0.88 0.87 0.88 0.92 0.79 0.83 0.89
βM

1 0.88 0.89 0.89 0.90 0.87 0.86 0.86
βM

2 0.88 0.93 0.90 0.83 0.88 0.86 0.84



Modelling Complex Survey Data 823

8. Discussion

We have described a pseudolikelihood approach for generalized linear mixed modelling of data
from complex sampling designs. Unlike previous contributions (e.g. Pfeffermann et al. (1998),
Skinner and Holmes (2003) and Grilli and Pratesi (2004)), our approach can handle multilevel
models with any number of levels, as well as allowing for stratification and PSUs that are not
represented by a random effect in the model.

The pseudolikelihood methodology was applied to three-stage complex survey data on read-
ing proficiency from the American PISA 2000 study, using the Stata program gllamm (e.g.
Rabe-Hesketh et al. (2002, 2004a) and Rabe-Hesketh and Skrondal (2005)). The performance of
pseudo-maximum-likelihood for two-level logistic regression using different methods for hand-
ling level 1 weights was investigated in a Monte Carlo experiment. This revealed that not only
the estimated random-intercept variance but also the (conditional) regression coefficients were
biased for small cluster sizes. Thus, considerable caution should be exercised in this case and
sensitivity analyses should be conducted by comparing estimates from different scaling methods.
It may also be useful to simulate a finite population from the estimated model, select a sample
by mimicking the actual sampling design and investigate how well different methods recover
the model parameters. The estimated marginal regression coefficients performed well even for
small cluster sizes, suggesting that interpretation may best be confined to marginal effects in
this case. We also conducted a small Monte Carlo experiment to investigate the performance of
the sandwich estimator and found that the coverage was good.

The contribution of this paper is not confined to multilevel models but also applies to factor,
item response, structural equation and latent class models. For these models we view the vari-
ables, indicators or items measuring the latent variables as level 1 units and the subjects as level 2
units, since the latent variables vary at the subject level (e.g. Skrondal and Rabe-Hesketh (2004)).
Most previous pseudolikelihood approaches for latent variable models have been confined to
weighting at level 2 (subjects) where the problem of appropriately scaling the weights does not
arise. An exception is Skinner and Holmes (2003) who discussed structural equation models
for longitudinal data by using weights both at level 2 (the subject) and level 1 (the occasion).
Asparouhov (2005) considered pseudo-maximum-likelihood estimation for structural equation
modelling with level 2 weights. Muthén and Satorra (1995), Stapleton (2002) and Skinner and
Holmes (2003) considered a related approach where weighted mean and covariance matrices are
used in the fitting functions of the weighted least squares estimator implemented in standard
software for structural equation modelling. Wedel et al. (1998), Patterson et al. (2002) and Ver-
munt (2002) discussed pseudo-maximum-likelihood estimation of latent class models by using
complex survey data with weighting at level 2 (subjects).

A major practical obstacle in using pseudo-maximum-likelihood estimation for multilevel
modelling of complex survey data is that the necessary information is often not provided in
publicly available data sets. For instance, many surveys include only a single overall weight-
ing variable for the level 1 units, whereas the pseudolikelihood approach requires the weights
corresponding to the levels of the hierarchical sampling design. Approaches to retrieving this
information from the overall weights have been suggested by Kǒvacević and Rai (2003), pages
116–117, and Goldstein (2003), page 79, but little appears to be known regarding the perfor-
mance of their approximations.

Non-response at any level can easily be addressed by adjusting the weights. However, post-
stratification weights are typically constructed by considering sampling proportions for level 1
units by subpopulations such as males and females. These weights are not conditional weights
dependent on the selected cluster j as required for the pseudolikelihood for multilevel models.
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An exception may be cross-national surveys where the level 2 clusters are nations and post-strat-
ification weights are constructed by nation. Another example where post-stratification weights
can be used is panel surveys since the subject-specific weights are then at level 2.

Level 1 weights are not only used in standard multilevel models. In panel surveys, waves can
be regarded as level 1 units and subjects as level 2 units. In this case πj are the usual sample
selection probabilities for the first panel wave whereas the level 1 weights are determined by non-
response and attrition (Skinner and Holmes, 2003). Level 1 weighting to account for drop-out
has also been used in generalized estimating equations (e.g. Robins et al. (1995)).

Thepseudolikelihoodmethodologythat isdiscussedhereandimplemented ingllamm accom-
modates the wide range of models subsumed in the generalized linear latent and mixed model
framework of Rabe-Hesketh et al. (2004b) and Skrondal and Rabe-Hesketh (2004). In addition
to conventional multilevel and latent variable models, this framework includes extensions such
as multilevel structural equation models and models with nonparametric random effects or
latent variable distributions (Rabe-Hesketh et al., 2003). Responses can be continuous, dichot-
omous, ordinal or nominal variables (Skrondal and Rabe-Hesketh, 2003), as well as counts and
durations.
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Appendix A: Stata commands for the application

The data without the PSU identifier can be downloaded from http://www.blackwellpublishing.
com/rss and the gllamm program from http://www.gllamm.org.

Below are the Stata and gllamm commands for producing the estimates that are reported in Table 1.

insheet pisaUSA2000.txt, clear

ÅÅÅ Level 1 weights using scaling method 1

gen sqw = w-fstuwtˆ2

egen sumsqw = sum(sqw), by(id-school)

egen sumw = sum(w-fstuwt), by(id-school)

gen pwt1s1 = w-fstuwt Å sumw/sumsqw

ÅÅÅ Level 1 weights using scaling method 2

egen nj = count(female), by(id-school)

gen pwt1s2 = w-fstuwt Å nj/sumw

egen mn-isei = mean(isei), by(id-school)

ÅÅÅ Maximum likelihood estimates (no weights)

gllamm pass-read female isei mn-isei high-school college test-lang ///

one-for both-for, i(id-school) l(logit) f(binom) nip(12) adapt

Å Robust standard errors

gllamm, robust

Å Robust standard errors taking PSUs into account

gllamm, robust cluster(wvarstr)
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ÅÅÅ Pseudo-maximum-likelihood estimates (scaling method 1)

matrix a = e(b)

gen pwt2 = wnrschbw

gen pwt1 = pwt1s1

gllamm pass-read female isei mn-isei high-school college test-lang ///

one-for both-for, i(id-school) pweight(pwt) l(logit) f(binom) ///

from(a) copy nip(12) adapt

Å Robust standard errors taking PSUs into account

gllamm, cluster(wvarstr)

Here, the option pweight(pwt)means that the inverse probability weights for level l are in the variable
pwtl, l=1, . . . , L. At least one of these variables must be defined. If there is no variable for a given level,
the weights are assumed to equal 1. For pseudo-maximum-likelihood-estimation with scaling method 2,
pwt1 must be replaced by pwt1s2.
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Kǒvacević, M. S. and Rai, S. N. (2003) A pseudo maximum likelihood approach to multilevel modelling of survey

data. Communs Statist. Theory Meth., 32, 103–121.
Lemke, M., Calsyn, C., Lippman, L., Jocelyn, L., Kastberg, D., Liu, Y., Roey, S., Williams, T., Kruger, T. and

Bairu, G. (2001) Outcomes of Learning: Results from the 2000 Program for International Student Assessment of
15-year-olds in Reading, Mathematics, and Science Literacy. Washington DC: National Center for Education
Statistics.

Little, R. J. A. (1982) Models for nonresponse in sample surveys. J. Am. Statist. Ass., 77, 237–250.
Longford, N. T. (1995a) Model-based methods for analysis of data from 1990 NAEP Trial State Assessment.

Research and Development Report NCES 95-696. Washington DC: National Center for Education Statistics.
Longford, N. T. (1995b) Models for Uncertainty in Educational Testing. New York: Springer.
Longford, N. T. (1996) Model-based variance estimation in surveys with stratified clustered designs. Aust. J.

Statist., 38, 333–352.
McCulloch, C. E. and Searle, S. R. (2001) Generalized, Linear and Mixed Models. New York: Wiley.



826 S. Rabe-Hesketh and A. Skrondal

Muthén, B. O. and Satorra, A. (1995) Complex sample data in structural equation modeling. In Sociological
Methodology 1995 (ed. P. Marsden), pp. 267–316. Cambridge: Blackwell.

Organisation for Economic Co-operation and Development (2000) Manual for the PISA 2000 Database. Paris:
Organisation for Economic Co-operation and Development (Available from http://www.pisa.oecd.
org/dataoecd/53/18/33688135.pdf.)

Patterson, B. H., Dayton, C. M. and Graubard, B. I. (2002) Latent class analysis of complex sample survey data:
application to dietary data (with discussion). J. Am. Statist. Ass., 97, 721–741.

Pawitan, Y. (2001) In All Likelihood: Statistical Modelling and Inference using Likelihood. Oxford: Oxford Uni-
versity Press.

Pfeffermann, D. (1993) The role of sampling weights when modeling survey data. Int. Statist. Rev., 61, 317–337.
Pfeffermann, D. (1996) The use of sampling weights for survey data analysis. Statist. Meth. Med. Res., 5, 239–261.
Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H. and Rasbash, J. (1998) Weighting for unequal

selection probabilities in multilevel models. J. R. Statist. Soc. B, 60, 23–40.
Pothoff, R. F., Woodbury, M. A. and Manton, K. G. (1992) ‘Equivalent sample size’ and ‘equivalent degrees of

freedom’ refinements for inference using survey weights under superpopulation models. J. Am. Statist. Ass.,
87, 383–396.

Rabe-Hesketh, S., Pickles, A. and Skrondal, A. (2003) Correcting for covariate measurement error in logistic
regression using nonparametric maximum likelihood estimation. Statist. Modllng, 3, 215–232.

Rabe-Hesketh, S. and Skrondal, A. (2001) Parameterization of multivariate random effects models for categorical
data. Biometrics, 57, 1256–1264.

Rabe-Hesketh, S. and Skrondal, A. (2005) Multilevel and Longitudinal Modeling using Stata. College Station:
Stata.

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2002) Reliable estimation of generalized linear mixed models
using adaptive quadrature. Stata J., 2, 1–21.

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004a) GLLAMM manual. Technical Report 160. Divi-
sion of Biostatistics, University of California, Berkeley. (Available from http://www.bepress.com/
ucbbiostat/paper160/.)

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004b) Generalized multilevel structural equation modeling.
Psychometrika, 69, 167–190.

Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005) Maximum likelihood estimation of limited and discrete
dependent variable models with nested random effects. J. Econometr., 128, 301–323.

Rasbash, J., Browne, W. J. and Goldstein, H. (2003) MLwiN 2.0 Command Manual, Version 2.0.01. London: Insti-
tute of Education. (Available from http://multilevel.ioe.ac.uk/download/comman20.pdf.)

Raudenbush, S. W. and Bryk, A. S. (2002) Hierarchical Linear Models. Thousand Oaks: Sage.
Renard, D. and Molenberghs, G. (2002) Multilevel modeling of complex survey data. In Topics in Modelling

Clustered Data (eds M. Aerts, H. Geys, G. Molenberghs and L. M. Ryan), pp. 263–272. Boca Raton: Chapman
and Hall–CRC.

Ritz, J. and Spiegelman, D. (2004) A note about the equivalence of conditional and marginal regression models.
Statist. Meth. Med. Res., 13, 309–323.

Robins, J. M., Rotnitzky, A. G. and Zhao, L. P. (1995) Analysis of semiparametric regression models for repeated
outcomes in the presence of missing data. J. Am. Statist. Ass., 90, 106–121.

Rodríguez, G. and Goldman, N. (1995) An assessment of estimation procedures for multilevel models with binary
responses. J. R. Statist. Soc. A, 158, 73–89.

Rodríguez, G. and Goldman, N. (2001) Improved estimation procedures for multilevel models with binary res-
ponse: a case-study. J. R. Statist. Soc. A, 164, 339–355.

Rubin, D. B. (1976) Inference and missing data. Biometrika, 63, 581–592.
Sen, P. K. (1988) Asymptotics in finite populations. In Handbook of Statistics, vol. 6, Sampling (eds P. R. Krish-

naiah and C. R. Rao), pp. 291–331. Amsterdam: North-Holland.
Skinner, C. J. (1989) Domain means, regression and multivariate analysis. In Analysis of Complex Surveys (eds

C. J. Skinner, D. Holt and T. M. F. Smith). Chichester: Wiley.
Skinner, C. J. (2005) On weight scaling for estimation in multilevel models using survey weights. Unpublished.

Department of Social Statistics, University of Southampton, Southampton.
Skinner, C. J. and Holmes, D. J. (2003) Random effects models for longitudinal data. In Analysis of Survey Data

(eds R. L. Chambers and C. J. Skinner). Chichester: Wiley.
Skrondal, A. and Rabe-Hesketh, S. (2003) Multilevel logistic regression for polytomous data and rankings. Psy-

chometrika, 68, 267–287.
Skrondal, A. and Rabe-Hesketh, S. (2004) Generalized Latent Variable Modeling: Multilevel, Longitudinal, and

Structural Equation Models. Boca Raton: Chapman and Hall–CRC.
Stapleton, L. (2002) The incorporation of sample weights into multilevel structural equation models. Struct. Equn

Modlng, 9, 475–502.
Vermunt, J. K. (2002) Discussion on ‘Latent class analysis of complex sample survey data: application to dietary

data’. J. Am. Statist. Ass., 97, 736–737.
Warm, T. A. (1989) Weighted likelihood estimation of ability in item response models. Psychometrika, 54, 427–450.



Modelling Complex Survey Data 827

Wedel, M., ter Hofstede, F. and Steenkamp, J.-B. E. M. (1998) Mixture model analysis of complex samples.
J. Classificn, 15, 225–244.

Willms, J. D. (1986) Social class segregation and its relationship to pupils’ examination results in Scotland.
Am. Sociol. Rev., 51, 224–241.

Wolfinger, R. D. (1999) Fitting non-linear mixed models with the new NLMIXED procedure. Technical Report.
SAS Institute, Cary.

Zeger, S. L., Liang, K.-Y. and Albert, P. S. (1988) Models for longitudinal data: a generalized estimating equation
approach. Biometrics, 44, 1049–1060.


