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a b s t r a c t

Generalized linear mixedmodels or latent variable models for categorical data are difficult
to estimate if the random effects or latent variables vary at non-nested levels, such as
persons and test items. Clayton and Rasbash (1999) suggested an Alternating Imputation
Posterior (AIP) algorithm for approximate maximum likelihood estimation. For item
responsemodels with random item effects, the algorithm iterates between an itemwing in
which the itemmean and variance are estimated for given person effects and a personwing
in which the person mean and variance are estimated for given item effects. The person
effects used for the item wing are sampled from the conditional posterior distribution
estimated in the person wing and vice versa. Clayton and Rasbash (1999) used marginal
quasi-likelihood (MQL) and penalized quasi-likelihood (PQL) estimation within the AIP
algorithm, but thismethodhas been shown to produce biased estimates inmany situations,
so we use maximum likelihood estimation with adaptive quadrature. We apply the
proposed algorithm to the famous salamander mating data, comparing the estimates with
many other methods, and to an educational testing dataset. We also present a simulation
study to assess performance of the AIP algorithm and the Laplace approximation with
different numbers of items and persons and a range of item and person variances.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Models with crossed random effects arise when units are nested in several types of clusters, or classifications, that
are not nested. A classical example in education is students nested in secondary schools cross-classified by primary
schools (e.g., Goldstein, 2003, p. 191–192) or students nested in schools cross-classified by neighborhoods (e.g., Raudenbush
andBryk, 2002, Chapter 12). Another example fromeducation iswhere students are nested in teachers in a given year, but the
teachers can change over time (Raudenbush, 1993; McCaffrey et al., 2004). In economics, a canonical example is panel data
where both units and panel waves can be viewed as clusters, giving rise to two-way error components models (e.g., Baltagi,
2001, pp. 33–39). In psychometrics, item response models for educational assessment data sometimes include latent
variables for persons and test items (e.g., Van den Noortgate et al., 2003). See Browne et al. (2001) for other examples.
Consider a simple example of an item response model with a random item parameter

logit
[
Pr(yij = 1|ζ1j, ζ2i)

]
= β1 + ζ1j + ζ2i, (1)

where β1 is the average logit of the probability of a correct response, averaging over persons (j = 1, . . . , J) and items
(i = 1, . . . , I), ζ1j ∼ N(0, ψ1) is a random person ability parameter, and ζ2i ∼ N(0, ψ2) is a random item difficulty
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parameter. Here the random effects or latent variables ζ1j and ζ2i are crossed since every item is offered to all persons
and every person responds to all items.
Maximum likelihood estimation ofmodels for categorical datawith crossed randomeffects is challenging. This is because

the marginal likelihood does not have a closed form so that maximum likelihood estimation requires numerical or Monte
Carlo integration. If the random effects are nested, the integrals are also nested (e.g., Rabe-Hesketh et al., 2005), keeping
the computational burden low. Models with crossed random effects can be reformulated as models with nested random
effects (Goldstein, 1987; Rasbash and Goldstein, 1994), but this approach requires evaluation of high-dimensional integrals
and is therefore computationally demanding. Specifically, an equivalent model to Eq. (1) can be written as

logit
[
Pr(yij = 1|ζ

(2)
1j , ζ

(3)
2i )

]
= β1 + ζ

(2)
1j +

I∑
a=1

ζ
(3)
2a Xai, (2)

where the superscripts denote the levels of the model, level 2 being the person and level 3 the entire dataset. The variable
Xai = 1 if a = i and Xai = 0 if a 6= i, so that the last term evaluates to ζ

(3)
2i as required (see also Rabe-Hesketh and

Skrondal, 2008, pp. 489–493). Unfortunately, this approach involves an I-dimensional integral at level 3 and is therefore
computationally demanding unless the number of items is small.
Several closely related approximations tomaximum likelihood estimationhavebeenproposed to avoidhigh-dimensional

numerical integration in generalized linear mixed models, including marginal quasi-likelihood (MQL, Goldstein, 1991),
penalized quasi-likelihood (PQL, Breslow and Clayton, 1993) and its second-order improvement (PQL-2, Goldstein and
Rasbash, 1996), bias-corrected PQL (Breslow and Lin, 1995; Lin and Breslow, 1996), Laplace approximations (Tierney
and Kadane, 1986; Pinheiro and Bates, 1995; Raudenbush et al., 2000), and the hierarchical-likelihood method (Lee and
Nelder, 1996, 2006). However, both MQL and PQL perform poorly for dichotomous response with small cluster sizes, with
a downward bias in the estimated variance components (Rodríguez and Goldman, 1995; Goldstein and Rasbash, 1996;
Raudenbush et al., 2000). Although PQL-2 performs considerably better than PQL, this downward bias often remains a
problem (Rodríguez and Goldman, 2001; Breslow, 2004; Browne and Draper, 2006). Joe (2008) found similar results for
the Laplace approximation for binary responses with small cluster sizes. Diaz (2007) found that the higher-order Laplace
approximation proposed by Raudenbush et al. (2000) reduces the bias of PQL but increases the mean squared error.
Surprisingly little work has been done on evaluating these and other approximate methods.
Bellio and Varin (2005) proposed a pairwise likelihood approach in which the product of pairwise marginal likelihoods

is maximized. Tibaldi et al. (2007) developed a conditional mixed model approach combined with pseudolikelihood
estimation. Specifically, they treat all possible item pairs as matched pairs in conditional logistic regression to eliminate
the person random effect and estimate the item variance. They then repeat the procedure with the role of items and
persons reversed to estimate the person variance. The method works only if there is no more than one observation for
each combination of the levels of the crossed random effects.
Perhaps the most straightforward approach to estimation of models with crossed random effects is Markov chain

Monte Carlo (MCMC, Karim and Zeger, 1992; Rasbash and Browne, 2007). For the Gibbs sampler, the conditional posterior
distributions remain the same as for models with fixed item parameters, except that the conditional distributions for the
item parameters now depend on the hyperprior for the item variance. However, MCMC is computationally expensive, and
it may be difficult to specify vague hyperpriors for the variance parameters in hierarchical models that result in a posterior
mean (or mode) close to the maximum likelihood estimate (Natarajan and Kass, 2000; Browne and Draper, 2006). When
the number of higher-level units is small, the choice of prior distribution becomesmore important (Lambert, 2006). Gelman
(2006) suggested using the half-t or half-Cauchy distribution in this case.
McCulloch (1994) applied a Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990) for maximum likelihood

estimation of generalized linear mixed models with crossed random effects. In the E-step, a Gibbs sampler is used to
sample the random effects from their posterior distributions and the M-step is the estimation of a generalized linear
mixed model. Booth and Hobert (1999) implemented MCEM employing importance sampling in the E-step and Vaida and
Meng (2005) employing a slice sampler to fit generalized linear models with crossed random effects. This algorithm is also
computationally expensive requiring many draws of the random effects in the E-step to achieve a sufficiently small Monte
Carlo error close to convergence.
Similar toMCMC andMCEM, the alternating imputation-posterior algorithm (AIP, Clayton and Rasbash, 1999)makes use

of data augmentation. The aim is to obtain approximate maximum likelihood estimates. The algorithm alternates between
an itemwing inwhich item difficulties are sampled for given person abilities and a personwing inwhich person abilities are
sampled for given item difficulties, by sampling from the respective conditional posterior distributions. However, instead
of drawing individual model parameters from their posterior distributions as in MCMC, β1 and log(ψ1) are estimated by
maximum likelihood in the person wing (for given item parameters), and then sampled from their estimated sampling
distribution. Similarly,β1 and log(ψ2) are estimated bymaximum likelihood in the itemwing (for given person parameters).
Each maximum likelihood estimation involves only one random effect and can therefore be accomplished relatively easily.
Unlike MCMC, the AIP algorithm does not require specification of prior distributions for the model parameters.

Furthermore, the algorithm typically converges much more rapidly because several model parameters are updated
simultaneously. As pointed out by Clayton and Rasbash (1999), following an initial ‘‘burn-in’’, this algorithm also requires
many fewer draws than a Gibbs sampler based on scalar nodes to estimate posteriors accurately. The reason for this is that
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characteristics of the joint posterior distribution can be estimated using Rao–Blackwellization (Gelfand and Smith, 1990).
While it would generally be possible to use Rao–Blackwellization within MCMC, it is not usually done.
Clayton and Rasbash (1999) used MQL and PQL within the AIP algorithm, as implemented in MLwiN (Goldstein et al.,

1998). As discussed above, MQL and PQL sometimes underestimate the variance components. Clayton and Rasbash (1999)
found that this problem can also occur when MQL and PQL are used within their AIP algorithm. For a simulated dataset,
AIP with PQL-2 produced a variance estimate that was just over half the true value or MCMC estimate. We therefore
develop an AIP algorithm that uses maximum likelihood estimation with adaptive quadrature (Pinheiro and Bates, 1995;
Bock and Schilling, 1997; Rabe-Hesketh et al., 2005). Adaptive quadrature is an improvement of Gauss–Hermite quadrature
(Bock and Lieberman, 1970; Butler and Moffitt, 1982; Hedeker and Gibbons, 1994) that performs well in a wide range
of situations (Rabe-Hesketh et al., 2005). For sampling item difficulties and person abilities, both a normal and a discrete
approximation are developed for the corresponding posterior distributions.
In Section 2, we describe the AIP algorithm with adaptive quadrature. We then apply the algorithm to the famous

salamander mating data and compare the results with estimates using a large range of alternative estimation methods. We
also analyze the simulated dataset considered by Clayton and Rasbash (1999) to compare our estimates with theirs. Item
response models with random item parameters are discussed in Section 3 and fitted to a dataset using several different
methods. In Section 4, we present a simulation study designed to examine the performance of the proposed algorithm
compared with the Laplace approximation. We end with a brief discussion in Section 5.

2. Method

2.1. AIP algorithm

Clayton and Rasbash (1999) suggested a special kind of Markov chain Monte Carlo (MCMC) algorithm for generalized
linear mixed models with crossed random-effects based on the imputation posterior (IP) algorithm of Tanner and Wong
(1987, pp. 90–92) which can be outlined as follows (Tanner, 1996):
I-step (data augmentation): Impute missing data (random effects) by sampling from the distribution of the missing data
conditional on the observed data. This requires first sampling the parameters from the current approximation of their
posterior distribution.
P-step: Update the approximation of the posterior distribution.
For the item response model with a random item parameter, the algorithm consists of two wings, a person wing and

an item wing. In the person wing, the item difficulties are treated as known and in the item wing, the person abilities are
treated as known. In the person wing, the parameters β1 and log(ψ1) are estimated (P-step) and the abilities ζ1j sampled
(I-step) by first sampling parameters from their approximate posterior distribution (treating the item difficulties as known).
In the item wing, the parameters β1 and log(ψ2) are estimated (P-step) and item difficulties ζ2i sampled (I-step), again by
first sampling the parameters from their approximate posterior distribution (treating the person abilities as known).
Specifically, after setting initial values ζ02 for the item difficulties, the person wing and item wing outlined below are

alternated until convergence. In iteration k:
Person wing
Treat the item difficulties ζk−12 = (ζ k−121 , . . . , ζ k−12I )′ from the previous iteration as known:

logit
[
Pr(yij = 1|ζ1j, ζ k−12i )

]
= β1 + ζ1j + ζ

k−1
2i . (3)

Let the parameters be denoted ϑ1 = {β1, log(ψ1)}.

1. Obtain maximum likelihood estimates ϑ̂
k
1 with estimated covariance matrix Σ̂

k
ϑ1

2. Sample parameters ϑk1 from their approximate sampling distribution

ϑk1|ζ
k−1
2 ∼ N (̂ϑ

k
1, Σ̂

k
ϑ1
). (4)

3. Sample ζk1 = (ζ
k
11, . . . , ζ

k
1J)
′ from its conditional posterior distribution with parameters ϑk1.

Item wing
Treat the person abilities ζk1 = (ζ

k
11, . . . , ζ

k
1J)
′ from the person wing as known:

logit
[
Pr(yij = 1|ζ2i, ζ k1j)

]
= β1 + ζ2i + ζ

k
1j. (5)

Let the parameters be denoted ϑ2 = {β1, log(ψ2)}.

1. Obtain maximum likelihood estimates ϑ̂
k
2 with estimated covariance matrix Σ̂

k
ϑ2

2. Sample parameters ϑk2 from their approximate sampling distribution

ϑk2|ζ
k
1 ∼ N (̂ϑ

k
2, Σ̂

k
ϑ2
). (6)

3. Sample ζk2 = (ζ
k
21, . . . , ζ

k
2I)
′ from its conditional posterior distribution with parameters ϑk2.
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After convergence is achieved (burn-in, see Section 2.5), the algorithm is continued for a fixed number of iterations and
the parameter estimates are obtained by averaging the estimates obtained after burn-in (see Section 2.6).
In the following three sections, we discuss the implementation of steps 1–3.

2.2. Step 1: maximum likelihood estimation using adaptive quadrature

Treating the item difficulties as known (sampled in the item wing as ζ k−12i ), the likelihood maximized in step 1 of the
person wing is the product of contributions from persons j, given by

`kj (ϑ1) =

∫
∞

−∞

P(yj, ζ1j|ζk−12 )dζ1j =
∫
∞

−∞

g(ζ1j; 0, ψ1)
∏
i

P(yij|ζ1j, ζ k−12i ;β1)dζ1j

=

∫
∞

−∞

φ(νj)
∏
i

P(yij|
√
ψ1νj, ζ

k−1
2i ;β1)dνj,

where g(ζ1j; 0, ψ1) is the (prior) person ability density, specified as normal with mean 0 and variance ψ1 and φ(νj) is the
standard normal density. An analogous likelihood is maximized in the item wing.
The integral cannot be evaluated analytically and Gauss–Hermite quadrature is therefore often used (e.g., Bock and

Lieberman, 1970). However, it has been shown that the estimates are biased for large cluster sizes and/or intraclass
correlations (Albert and Follmann, 2000; Lesaffre and Spiessens, 2001; Rabe-Hesketh et al., 2005) and adaptive quadrature
has been shown to perform considerably better (Rabe-Hesketh et al., 2005).
In ordinary quadrature, the kernel φ(νj) is essentially replaced by a discrete distribution so that the integral becomes a

sum. Adaptive quadrature exploits the fact that the integrand, which is proportional to the conditional posterior density of
the random effect (for given parameter values), is often well approximated by a normal distribution (see also Section 2.4.1)
with person-specific mean µkj and person-specific variance τ

k
j . The integral can be rewritten as

`kj (ϑ1) =

∫
∞

−∞

g(νj;µkj , τ
k
j ) ·

φ(νj)
∏
i
P(yij|
√
ψ1νj, ζ

k−1
2i ;β1)

g(νj;µkj , τ
k
j )

 dν1j. (7)

Treating g(νj;µkj , τ
k
j ) as the kernel in the Gaussian quadrature approximation is analogous to treating it as importance

density in Monte Carlo integration. Changing the variable of integration from νj to zj =
(νj−µ

k
j )

τ kj
and applying the standard

quadrature rule yields,

`kj (ϑ1) '

R∑
r=1

π kjr

∏
i

P(yij|αkjr
√
ψ1, ζ

k−1
2i ), (8)

where

αkjr =

√
τ kj ar + µ

k
j , and π kjr =

√
τ kj φ(α

k
jr)

φ(ar)
pr , (9)

and ar and pr are Gauss–Hermite quadrature locations and weights respectively.
We can see from Eq. (9) that adaptive quadrature shifts and scales the quadrature locations to place them under the peak

of the integrand. Following Naylor and Smith (1982), we use the estimated posterior moments forµkj and τ
k
j . Rabe-Hesketh

et al. (2005) developed this approach for multilevel models with an arbitrary number of levels.
Another version of adaptive quadrature, suggested by Liu and Pierce (1994), uses the estimated posteriormode forµkj and

the standard deviation of the normal densitymatching the curvature of the estimated posterior density at themode for
√
τ kj .

This version has been used for two-level nonlinear mixedmodels (Pinheiro and Bates, 1995) and for exploratory factor anal-
ysis with dichotomous responses (Bock and Schilling, 1997; Schilling and Bock, 2005). Pinheiro and Chao (2006) extended
the approach to multilevel generalized linear models with more than two levels, but only for canonical link functions.
In the AIP algorithm, the parameters are estimated using Stata’s xtlogit command (StataCorp, 2007) which employs

a Newton–Raphson algorithm with analytical first and second derivatives to maximize the likelihood. The number of
quadrature points required is determined by fitting the person-wing model with item difficulties set to 0 and the item-
wing model with person abilities set to 0. The number of quadrature points is increased from 5 in 5 point increments. If the
change in maximized log-likelihood associated with an increment is less than 1 × 10−10, the smaller number of adaptive
quadrature points is used.

2.3. Step 2: sampling the model parameters

In step 2, the parameters are sampled from a multivariate normal distribution with mean given by maximum likelihood
estimates (MLEs) ϑ̂ and covariance matrix Σ̂ϑ by the inverse of the estimated information matrix obtained in step 1.
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This distribution approximates the fully Bayesian posterior if uniform priors are specified for all parameters. In this case,
the posterior distribution is just the normalized likelihood which is approximated by a multivariate normal distribution.
A log transformation of the variance parameters is used to improve the normal approximation. In step 2, we can see clear
differences between AIP and Gibbs sampling. First, we do not need to specify prior distributions in AIP. Second, a whole
vector of nodes is sampled in AIP while a scalar is sampled in Gibbs sampling.

2.4. Step 3: sampling the random effects from their posterior distribution

In the imputation step, the person abilities and item difficulties are sampled from their respective conditional posterior
distributions. For the person abilities, the posterior density is

P(ζ1j|yj, ζk−12 ;β
k,1
1 ) =

g(ζ1j; 0, ψk1)
∏
i
P(yij|ζ1j, ζ k−12i ;β

k,1
1 )∫

g(ζ1j; 0, ψk1)
∏
i
P(yij|ζ1j, ζ k−12i ;β

k,1
1 )dζ1j

, (10)

where βk,11 is the draw from the person wing (wing 1) in iteration k. In the context of imputing ability scores from item
response models in education surveys, such random draws are sometimes referred to as plausible values (Mislevy, 1991;
Mislevy et al., 1992).

2.4.1. Normal approximation
According to the Bayesian central limit theorem, posterior distributions approach normality as the sample size (here

the number of items or number of persons) tends to infinity (see Chang and Stout, 1993, for the binary case). We therefore
approximate the posterior by a normal density with person-specific posterior mean µkj and posterior standard variance τ

k
j

for parameters ϑk1,

P(ζ1j|yj; ζk−12 , β
k,1
1 ) ' g(ζ1j;µ

k
j , τ

k
j ). (11)

We compute the posteriormean and variance using the program gllamm and the corresponding prediction command (Rabe-
Hesketh and Skrondal, 2008). This normal approximation ignores any skewness for clusters with large or small cluster
totals (Thomas and Gan, 1997), and we therefore also consider a discrete approximation.

2.4.2. Discrete approximation
The discrete approximation is based on adaptive quadrature. The values αkjr

√
ψk1 (r = 1, . . . , R) are sampled with

probabilities

Pr =
π kjr
∏
i
P
(
yij

∣∣∣∣αkjr√ψk1 , ζ k−12i ;β
k,1
1

)
R∑
r=1
π kjr
∏
i
P
(
yij

∣∣∣∣αkjr√ψk1 , ζ k−12i ;β
k,1
1

) , (12)

where αkjr and π
k
jr are the adaptive quadrature locations and weights defined in Eq. (9).

In the context of generating plausible values for theNational Assessment of Educational Progress, Thomas andGan (1997)
suggested a sampling importance resampling (SIR) approach. R values of the random effect are first sampled from an im-
portance density g , giving the support points ζ r1 (r = 1, . . . , R) of the discrete distribution. Probabilities Pr associated with
ζ r1 are then calculated by normalizing f (ζ

r
1 )/g(ζ

r
1 ) to sum to 1, where f is the posterior density. Keeping in mind the impor-

tance sampling interpretation of adaptive quadrature, our approach can be considered a deterministic version of SIR, with
g(ζ1j;µkj , τ

k
j ) as importance density (See Eq. (7)). In this paper we use 50 quadrature points for the discrete approximation.

2.5. Convergence checking

The Gelman and Rubin (1992) method is used for checking convergence of the AIP algorithm. This method relies on
running at least two independent chains. Let βkq1 denote the kth sampled value from chain q, with k = 1, . . . , n and
q = 1, . . . ,m. We compute two quantities, the between-chain variance, B, and the within-chain variance,W , as follows:

B =
n

m− 1

m∑
q=1

(β
.q
1 − β

..

1)
2, (13)

where β
.q
1 =

1
n

∑n
k=1 β

kq
1 , and β

..

1 =
1
m

∑m
q=1 β

.q
1 , and

W =
1
m

m∑
q=1

s2q, (14)

where s2q =
1
n−1

∑n
k=1(β

kq
1 − β

.q
1 )
2.



Author's personal copy

S.-J. Cho, S. Rabe-Hesketh / Computational Statistics and Data Analysis 55 (2011) 12–25 17

The marginal posterior variance of the estimand can be estimated as follows:

V = v̂ar+(β1|y) =
n− 1
n
W +

1
n
B. (15)

Convergence can be monitored by calculating the following potential scale reduction:√
R̂ =

√
n−1
n W +

1
nB

W
. (16)

If
√
R̂ is ‘‘near’’ 1, convergence is achieved.
For parameters that are sampled in both wings (here β1), Clayton and Rasbash (1999) suggest using the wings as chains.

To obtain different chains for parameters sampled in only one of the wings (here log(ψ1) and log(ψ2)), we use different
realizations from ζ 02i ∼ N(0, 2

2) as starting values for the item difficulties. An alternative method for generating different
chains would be to alternate the order of the wings, i.e., for one chain start with the person wing and for the other chain
start with the item wing.
For each parameter common to both wings, there are four pairs of chains that can be used for convergence checking, the

two wings for each set of starting values and the two sets of starting values for each wing. For each parameter unique to a
wing there is one pair of chains.
Convergence is assessed by calculating sequences of statistics V (h), W (h), and R̂(h), h = 1, . . . ,H , as recommended

by Brooks and Gelman (1998). Each pair of chains is divided into batches of length b = 10, so that the hth value of the
statistic is based in the latter half of 2hb observations, where H = 150. For each pair of chains, hc is found as the smallest

h where
√
R̂(h) never exceeds 1.01. The burn-in is set to b times the largest hc across all pairs of chains for all parameters.

Graphs of V (h),W (h) and
√
R̂(h) versus h are also inspected to make sure that V (h) andW (h) stabilize as a function of h

and
√
R̂(h) approaches 1 (Brooks and Gelman, 1998).

2.6. Posterior moments

The marginal posterior means and covariance matrix could be estimated by the sample means and sample covariance
matrix of the simulated parameter values ϑk. However, it is more efficient to exploit the means ϑ̂

k
and variances Σ̂ϑ of the

conditional posterior distributions. Gelfand and Smith (1990) pointed out that this follows from the Rao–Blackwell theorem.
Let n be the total number of iterations and p the number of iterations to reach convergence, i.e., the burn-in. The marginal
posterior means are estimated by the mean of the conditional posterior means

E(̂ϑ|y) ≈ ϑ ≡
1
n− p

n∑
k=p+1

ϑ̂
k
. (17)

The corresponding covariance matrix is estimated by

Var(̂ϑ|y) ≈
1
n− p

n∑
k=p+1

Σ̂ϑ +
1

n− p− 1

n∑
k=p+1

(̂ϑ
k
− ϑ)(̂ϑ

k
− ϑ)′. (18)

The first term is the sample mean of the conditional posterior (or ‘‘within-imputation’’) variance and the second term is the
sample variance of the conditional posterior means (or the ‘‘between-imputation’’ variance) (Rubin, 1987). In the context
of multiple imputation of missing data, Rubin (1987) argues that large-sample relative efficiency is high enough when the
number of imputations (i.e., n − p) is as low as 5. We use his small-sample correction which consists of multiplying the
second term by 1+ 1/(n− p).

2.7. Algorithm comparison for salamander mating data

We consider the widely used salamander mating data for the purpose of algorithm comparison. The data comes from
three experiments conducted by S. Arnold and P. Verell at the University of Chicago, Department of Ecology and Evolution.
The first experiment in the summer of 1986 used two groups of 20 salamanders from two distinct populations called
roughbutts andwhitesides. Each group comprised 5 roughbutt males (rbm), 5 whitesides males (wsm), 5 roughbutt females
(rbf), and 5 whitesides female (wsf). Within each group, 60 male–female pairs were formed so that each salamander had 3
partners from the same population and 3 partners from the other population. The response is coded 1 if salamanders mate
successfully and 0 otherwise. Two further experiments were performed with the same design, the first of which used the
same salamanders.
Followingmost of the papers in which the salamander data have been analyzed, we considermodel A of Karim and Zeger

(1992):

logit
[
Pr(yij = 1|x2i, x3j, ζ1i, ζ2j)

]
= β1 + β2x2i + β3x3j + β4x2ix3j + ζ1i + ζ2j, (19)
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Table 1
AIP estimates (SE) for the Salamander data: discrete posterior.

Male wing Fem. wing Mean

Fixed part
β1 [cons] 1.02(0.41) 1.02(0.41) 1.02(0.41)
β2 [wsm] −0.70(0.48) −0.70(0.48) −0.70(0.48)
β3 [wsf] −2.96(0.58) −2.97(0.58) −2.96(0.58)
β4 [wsm×wsf] 3.64(0.65) 3.64(0.65) 3.64(0.65)

Random part
√
ψ1 [Males] 1.11(0.26)
√
ψ2 [Females] 1.17(0.27)

Table 2
Approximate maximum likelihood estimates for the Salamander data.

AQ-3pt xtmelogit MCEMa PQLb Laplace H-Likelihoodc Pairwise likelihoodd

xtmelogit lmer
Est SE Est Est SE Est SE Est SE Est Est SE

Fixed part
β1 [cons] 1.01 0.41 1.02 0.79 0.32 1.00 0.39 1.00 0.37 1.02 1.07 0.46
β2 [wsm] −0.70 0.48 −0.69 −0.54 0.39 −0.70 0.46 −0.70 0.44 −0.72 −0.73 0.53
β3 [wsf] −2.95 0.58 −2.96 −2.29 0.43 −2.90 0.56 −2.91 0.50 −2.97 −3.09 0.65
β4 [wsm×wsf] 3.62 0.64 3.63 2.82 0.50 3.59 0.64 3.59 0.54 3.66 3.81 0.75
Random part
√
ψ1 [Males] 1.10 1.12 0.79 1.02 1.03 1.10 1.26 0.34
√
ψ2 [Females] 1.16 1.18 0.72 1.08 1.08 1.18 1.30 0.33

a Booth and Hobert (1999), Derived from Table 6 (different parameterization); Within .01 of estimates derived from Table 2 in Vaida and Meng (2005).
b Breslow and Clayton (1993), Tables 8 and 9.
c Lee et al. (2006), Table 6.3.m HL(2), SE not reported.
d Bellio and Varin (2005), Table 2. SE computed as range of 90% CI/3.3.

Table 3
MCMC estimates for the Salamander data.

MCMCa MCMC/Half normal MCMC/Half Cauchy MCMC/Uniform MCMC/Inv-Gamma
Median SD Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Fixed part
β1 [cons] 1.03 0.43 1.07 1.06 0.49 1.05 1.04 0.42 1.09 1.07 0.45 1.06 1.05 0.44
β2 [wsm] −0.69 0.50 −0.73 −0.71 0.54 −0.73 −0.72 0.51 −0.75 −0.74 0.52 −0.72 −0.71 0.50
β3 [wsf] −3.01 0.60 −3.18 −3.14 0.67 −3.06 −3.03 0.58 −3.17 −3.14 0.63 −3.06 −3.03 0.62
β4 [wsm×wsf] 3.74 0.68 3.90 3.87 0.71 3.75 3.72 0.66 3.90 3.88 0.69 3.74 3.72 0.68
Random part
√
ψ1 [Males] 1.17 0.28 1.28 1.27 0.30 1.17 1.16 0.28 0.83 0.80 0.21 1.19 1.18 0.28
√
ψ2 [Females] 1.22 0.29 1.35 1.32 0.31 1.24 1.22 0.28 0.78 0.75 0.22 1.24 1.22 0.29

a Karim and Zeger (1992), Table 3. SE computed as range of 90% CI/3.3.

where x2i is a dummyvariable for being awhitesidemale, x3j is a dummyvariable for being awhiteside female, ζ1i is a random
intercept for male i, and ζ2j is a random intercept for female j. The random intercepts are assumed to be independently
distributed as ζ1i|x2i, x3j ∼ N(0, ψ1) and ζ2j|x2i, x3j ∼ N(0, ψ2). Here the salamanders from experiments 1 and 2 are treated
as independent.
Ten quadrature points were used for estimation in the male and female wings. Both a normal and a discrete

approximation were used for sampling from the posterior distributions of the random effects. The burn-in was found to be
340 for the normal approximation and 190 for the discrete approximation. Using the graphical method, the three statistics
(V (h),W (h), and R̂(h), h = 1, . . . ,H) stabilized as a function of h.
An additional 2600 iterations after burn-in were used for the estimation of posterior moments. Results for the discrete

posterior are shown in Table 1. Results for the normal approximation never differed bymore than 0.01 from those of Table 1.
Estimates using alternative methods are given in Tables 2 and 3. Table 2 shows results from 3-point adaptive

quadrature (combined with reformulation of the model as described in the introduction) implemented in Stata’s xtmelogit
command (StataCorp, 2007), Monte Carlo EM (MCEM) (Vaida and Meng, 2005), PQL (Breslow and Clayton, 1993), Laplace
implemented in Stata’s xtmelogit command and the R function lmer (Bates et al., 2008), H-likelihood, HL(2) (Lee et al., 2006),
and pairwise likelihood (Bellio and Varin, 2005). Table 3 shows MCMC results from Karim and Zeger (1992), who specified
uniform priors for the variances, as well as results using WinBUGS 1.4 (Spiegelhalter et al., 2003) with four different priors:
half normal on the standard deviation (mean 0, variance 10000), half-Cauchy on the standard deviation (as illustrated in the
Appendix of Gelman, 2006), locally uniform on the standard deviation (from 0 to 100), and inverse-Gamma on the variance
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Fig. 1. Sampler lag-autocorrelation for
√
ψ1 using AIP with normal approximation (top panel) and Gibbs sampler (bottom panel).

(parameters 10000, 10000). Convergence checking was performed inWinBUGS using similar graphical checks as described
in Section 2.5 along with the condition that

√
R̂ is less than 1.001.

The results for the fixed effects are nearly identical across methods. The estimates of the standard deviations of the
random effects are similar for AIP with adaptive quadrature, xtmelogit/adaptive quadrature, MCEM, and the H-likelihood
method, HL(2). Considering MCEM the gold-standard because, apart from simulation noise, it corresponds to maximum
likelihood estimation, the PQL and Laplace estimates implemented in xtmelogit and lmer are too low. The reason for this is
probably the small cluster size of 6, with each salamander mating with 6 salamanders. The pairwise likelihood estimates
are too high. The estimates from MCMC are different from those of other algorithms, and the results depend on the choice
of hyperprior.
Karim and Zeger (1992) reported the medians of the posterior distributions. Their estimates (based on uniform

hyperpriors for variances) are similar to the medians based on inverse-Gamma hyperpriors for the variances and the means
or medians based on half-Cauchy on the standard deviation.
Sampler lag-autocorrelations for the person standard deviation are shown in Fig. 1 for the AIP algorithm (normal

approximation) and the Gibbs sampler (with inverse-Gamma hyperprior distributions for the variance parameters). The
autocorrelation declines considerably more rapidly with increasing lag for AIP than for the Gibbs sampler.

2.8. Algorithm comparison with three-level data

We use three-level data from Rodríguez and Goldman (1995) and Clayton and Rasbash (1999) to compare our version of
AIP with adaptive quadrature to the version used by Clayton and Rasbash (1999) with PQL-2. Clayton and Rasbash (1999)
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Table 4
Estimates (SE) using different methods for simulated dataset 3 from Rodríguez and Goldman (1995).

True parameter MCMC Gammaa Adative (10pt) AIP Adaptive AIP PQL-2b

F-wing (12pt) C-wing (10pt) F-wing C-wing

β0 0.665 0.557 0.556 0.557 0.557 0.507 0.520
(0.196) (0.191) (0.195) (0.192) (0.167) (0.175)

β1 1.000 1.125 1.121 1.123 1.128 1.041 1.037
(0.225) (0.224) (0.225) (0.226) (0.202) (0.206)

βF 1.000 1.048 1.044 1.042 1.046 0.984 0.973
(0.119) (0.116) (0.117) (0.117) (0.100) (0.100)

βC 1.000 0.929 0.926 0.927 0.928 0.857 0.867
(0.253) (0.244) (0.249) (0.244) (0.214) (0.223)

ψF 1.000 0.979 0.962 0.969 0.527
(0.322) (0.306) (0.310) (0.155)

ψC 1.000 0.847 0.800 0.809 0.695
(0.194) (0.182) (0.185) (0.136)

a Clayton and Rasbash (1999), Table 3.
b Clayton and Rasbash (1999), Table 5.

compared the performance of AIP combinedwithMQL-1,MQL-2, PQL-1, and PQL-2 using the third of 100 datasets simulated
by Rodríguez and Goldman (1995). The data are binary responses generated from a three-level random intercept logistic
regression model for 2249 subjects nested in 1558 families from 161 communities. Although the classifications of family
and community are nested, the AIP algorithm can be applied in the same way as for crossed classifications. The model
included a subject-level covariate with coefficient β1 = 1, a family-level covariate with coefficient βF = 1, a community-
level covariate with coefficient βC = 1, and the intercept was β0 = 0.665. The variance components at the family and
community level wereψF = 1 andψC = 1. The estimates ofψF reported in Clayton and Rasbash (1999) for AIP withMQL-1,
MQL-2, PQL-1, PQL-2, are, respectively 0.304, 0.393, 0.329, and 0.527. For ψC , the estimates are, in the same order, 0.518,
0.559, 0.598, and 0.695. It is not surprising that the estimate of the family level variance are particularly low since there
are on average only 1.4 members per family, and the MQL/PQL approximations are known to perform poorly for binary
responses when cluster sizes are small.
Table 4 reports the AIP with PQL-2 estimates from Clayton and Rasbash (1999) together with our AIP estimates with

adaptive quadrature. For AIP with adaptive quadrature, 12 quadrature points were used for estimation in the family wing
and 10 quadrature points were employed for estimation in the community wing. The burn-in was set to be 130 and an
additional 1800 iterations after burn-inwere used for the estimation of posteriormoments. Also shown in Table 4 areMCMC
estimates fromClayton andRasbash (1999),with uniformpriors on fixed effects and inverse-Gammapriors (parameters 909,
909) for the variances parameters, andmaximum likelihood estimates using adaptive quadraturewith 10 quadrature points
per random effect using gllamm. There is little difference in the estimates of fixed effects across different methods except
for AIP with PQL-2. While the family-level variance is severely underestimated using AIP with PQL-2, the estimate using
AIP with adaptive quadrature is very close to the true value and to the estimates using MCMC or adaptive quadrature. The
community-level variance is also underestimated using AIP with PQL-2 in comparison to the other three methods.

3. Item response models with random item parameters

Item response models nearly always have random person parameters (e.g., Bock and Lieberman, 1970). Due to the
incidental parameter problem (Neyman and Scott, 1948), this approach is preferable to treating both items and persons
as fixed and estimating item and person parameters simultaneously. It is also more appropriate to consider the person
parameter as randomwhen we are interested in making inferences regarding the population, not just the persons included
in the sample.
Item response models with random item parameters are also sometimes specified (e.g., Van den Noortgate et al., 2003).

Such models are appropriate if items are sampled from an item bank. One application in educational testing is sampling
a different set of items from the same pool of items at different time points to prevent cheating by item exposure (Albers
et al., 1989). Even for items that are not randomly sampled, we may want to generalize to the ‘‘universe of items’’ as in
generalizability theory (see also Briggs and Wilson, 2007). Sometimes items can be computer-generated ‘‘on the fly’’ from
an itemmodel or item family. The item parameters are then not known for the purpose of scoring, but amodel with random
item parameters can be used (Janssen et al., 2000; Sinharay et al., 2003; Johnson and Sinharay, 2005; Glas and van der
Linden, 2003) in which the distribution of the item parameters for the item family has been estimated. In addition, if the
model includes item covariates as in explanatory item response models (De Boeck and Wilson, 2004), it is natural to allow
for a random residual in the ‘‘item regression’’ (De Boeck, 2008; Janssen et al., 2004).
Random item difficulty parameters have also been used for modeling differential item functioning (DIF) between groups

of examinees. The traditional model-based approach is to introduce a group by item interaction in an item response model.
Chaimongkol et al. (2006) extend such models to a multilevel setting by including a random intercept for schools and
a school-level random group by item interaction to model variability in the severity of DIF across schools. De Jong and
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Table 5
Different estimates for the math test data.

AIPa Laplace
xtmelogit

MCMC

Half normal Half Cauchy Uniform Inv-Gamma
Est SE Est SE Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Fixed part
β1 1.17 0.19 1.17 0.19 1.17 1.17 0.24 1.13 1.15 0.13 1.14 1.12 0.22 1.23 1.23 0.19

Random part
√
ψ1 [Person] 1.16 0.03 1.14 0.03 1.16 1.16 0.03 1.16 1.16 0.03 0.86 0.86 0.02 1.16 1.16 0.03
√
ψ2 [Item] 0.79 0.13 0.79 0.13 0.89 0.87 0.17 0.83 0.81 0.15 1.17 1.16 0.21 0.85 0.82 0.16

a Identical results for normal and discrete approximations.

Steenkamp (2010) allow the thresholds and item discrimination parameters in a graded response model for polytomous
items to vary randomly between countries to investigate DIF across countries. De Jong and Steenkamp (2007) extend this
model to multidimensional latent traits and by specifying a finite mixture distribution for the random thresholds and
discrimination parameters. De Boeck (2008) specifies a latent class model on the item side, with items belonging to one
latent class displayingDIF and items belonging to the other latent class being free fromDIF. ForDIF items, the itemdifficulties
for the focal and reference groups are assumed to follow a bivariate normal distribution with different means and variances
for the two groups. For non-DIF items, the difficulties have a normal distribution with mean and variance the same across
groups and equal to the mean and variance for the DIF items in the reference group.

3.1. Empirical study

Here we consider a dataset collected by Doolaard (1999) and previously analyzed by Fox and Glas (2001) and Ver-
munt (2007). The data are from an 18-item math test taken by 2156 pupils belonging to 97 schools in the Netherlands.
We estimated the model described in the introduction (i.e., Eq. (1)). The dataset was chosen because it is publicly available
(http://www.statisticalinnovations.com/products/latentgold_datasets.html), allowing future comparison with other meth-
ods. Further, by considering a simple model with a random intercept for each of two cross-classifications (items and per-
sons), this example resembles examples from other disciplines such as panel data models with two-way error components,
or random-intercept models for students nested in schools cross-classified by neighborhoods.
Fifteen quadrature points were used for the person wing and 5 quadrature points for the item wing. Convergence was

achieved after less than 70 iterations for all parameters using the normal approximation and 150 iterations for all parameters
using the discrete posterior approximation. An additional 2800 iterationswere used to calculate the posteriormoments after
burn-in.
Table 5 shows estimates using AIP, the Laplace approximation implemented in xtmelogit, and MCMC using the same

priors/hyper-priors as for the salamander data. The fixed effects estimates are similar across methods except for MCMC
with inverse-Gamma priors on the variances. The standard deviation estimates for the person random effect are similar
across methods except for MCMC with locally uniform priors on the standard deviations. However, the standard deviation
estimates for the item randomeffect differ considerably betweenmethods. The Bayesian estimates of the standard deviation
of the item random effect are a little larger than the approximate maximum likelihood estimates, except for the MCMC
estimate with locally uniform priors which is considerable larger.

4. Simulation study

In this section, we present a simulation study designed to assess the performance of the AIP algorithm with adaptive
quadrature and the Laplace approximation across a range of conditions that are realistic either for item response data or
longitudinal data.
A latent response formulation for the item responsemodelwith a random itemparameter can be used to define intraclass

correlations. Let there be a latent response y∗ij so that the observed response is 1 if y
∗

ij > 0 and 0 otherwise. Assuming that

y∗ij = β1 + ζ1j + ζ2i + εij, (20)
and that the error εij follows a logistic distribution, produces themodel in Eq. (1) for the observed responses yij. We can now
define an intraclass correlation for persons as the correlation among latent responses for the same person, conditional on
the item difficulties,

Corr(y∗ij, y
∗

i′j|ζ2i, ζ2i′) = ρ(P) =
ψ1

ψ1 +
π2

3

. (21)

Similarly, the intraclass correlation for items or occasions is defined as

Corr(y∗ij, y
∗

ij′ |ζ1j, ζ1j′) = ρ(I) =
ψ2

ψ2 +
π2

3

. (22)
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Table 6
Estimates using AIP with a discrete approximation.

Con. J I RP RI ρ(P) ρ(I) β1 ψ1 ψ2

True Bias SD M(SE) True Bias SD M(SE) True Bias SD M(SE)

1 100 10 5 5 0.1 0.1 0 −0.006 0.207 0.199 0.366 −0.007 0.135 0.129 0.366 −0.045* 0.181 0.168
2 100 10 5 10 0.1 0.5 0 −0.073 0.564 0.545 0.366 0.016 0.184 0.166 3.290 −0.348* 1.507 1.436
3 100 10 5 5 0.5 0.1 0 −0.030 0.258 0.274 3.290 0.049 0.684 0.718 0.366 −0.049* 0.188 0.175
4 100 10 15 10 0.5 0.5 0 −0.071 0.577 0.567 3.290 0.057 0.757 0.745 3.290 −0.426* 1.463 1.373
5 100 50 10 10 0.1 0.1 0 0.016 0.118 0.110 0.366 0.007 0.064 0.068 0.366 −0.007 0.090 0.083
6 100 50 5 15 0.1 0.5 0 0.036 0.284 0.257 0.366 0.003 0.071 0.073 3.290 −0.092 0.697 0.693
7 100 50 10 5 0.5 0.1 0 0.012 0.223 0.209 3.290 0.051 0.511 0.542 0.366 −0.007 0.091 0.087
8 100 50 10 10 0.5 0.5 0 0.032 0.357 0.326 3.290 0.042 0.520 0.532 3.290 −0.085 0.715 0.685
9 1000 10 10 5 0.1 0.1 0 0.027 0.183 0.176 0.366 0.002 0.044 0.041 0.366 −0.047* 0.160 0.145
10 1000 10 5 5 0.1 0.5 0 0.004 0.604 0.507 0.366 0.005 0.054 0.051 3.290 −0.474* 1.282 1.270
11 1000 10 15 5 0.5 0.1 0 −0.006 0.205 0.185 3.290 0.032 0.248 0.228 0.366 −0.056* 0.145 0.142
12 1000 10 15 5 0.5 0.5 0 −0.015 0.589 0.501 3.290 0.000 0.235 0.233 3.290 −0.523* 1.272 1.246
13 1000 50 10 5 0.1 0.1 0 −0.002 0.081 0.084 0.366 0.002 0.020 0.021 0.366 −0.016* 0.072 0.071
14 1000 50 5 5 0.1 0.5 0 −0.020 0.251 0.256 0.366 0.000 0.021 0.023 3.290 −0.148* 0.618 0.636
15 1000 50 15 5 0.5 0.1 0 0.003 0.095 0.102 3.290 0.008 0.153 0.169 0.366 −0.016* 0.070 0.072
16 1000 50 10 5 0.5 0.5 0 −0.015 0.243 0.264 3.290 0.023 0.159 0.167 3.290 −0.139* 0.633 0.635
* True value outside approximate 95% confidence interval.

Table 7
Estimates using the Laplace approximation implemented in xtmelogit.

Con. J I ρ(P) ρ(I) β1 ψ1 ψ2

True Bias SD M(SE) True Bias SD M(SE) True Bias SD M(SE)

1 100 10 0.1 0.1 0 −0.010 0.207 0.195 0.366 −0.024 0.131 0.125 0.366 −0.046* 0.180 0.167
2 100 10 0.1 0.5 0 −0.062 0.558 0.533 0.366 −0.015 0.167 0.155 3.290 −0.408* 1.462 1.401
3 100 10 0.5 0.1 0 −0.022 0.261 0.267 3.290 −0.065 0.656 0.695 0.366 −0.039* 0.192 0.181
4 100 10 0.5 0.5 0 −0.067 0.571 0.559 3.290 −0.033 0.719 0.724 3.290 −0.436* 1.436 1.364
5 100 50 0.1 0.1 0 0.017 0.119 0.109 0.366 0.007 0.064 0.068 0.366 −0.006 0.091 0.083
6 100 50 0.1 0.5 0 0.040 0.278 0.262 0.366 0.004 0.071 0.073 3.290 −0.100 0.691 0.690
7 100 50 0.5 0.1 0 0.015 0.219 0.206 3.290 0.035 0.501 0.537 0.366 −0.002 0.093 0.088
8 100 50 0.5 0.5 0 0.032 0.348 0.315 3.290 0.053 0.514 0.533 3.290 −0.069 0.722 0.688
9 1000 10 0.1 0.1 0 0.030 0.183 0.175 0.366 −0.020* 0.043 0.040 0.366 −0.050* 0.158 0.144
10 1000 10 0.1 0.5 0 0.008 0.593 0.516 0.366 −0.028* 0.049 0.048 3.290 −0.510* 1.265 1.254
11 1000 10 0.5 0.1 0 −0.003 0.202 0.182 3.290 −0.118* 0.231 0.216 0.366 −0.060* 0.141 0.140
12 1000 10 0.5 0.5 0 0.006 0.586 0.515 3.290 −0.144* 0.217 0.220 3.290 −0.556* 1.231 1.231
13 1000 50 0.1 0.1 0 −0.004 0.081 0.086 0.366 0.000 0.020 0.021 0.366 −0.016* 0.072 0.071
14 1000 50 0.1 0.5 0 −0.014 0.237 0.251 0.366 −0.003 0.022 0.023 3.290 −0.131* 0.633 0.639
15 1000 50 0.5 0.1 0 0.000 0.096 0.102 3.290 −0.010 0.151 0.167 0.366 −0.014 0.070 0.072
16 1000 50 0.5 0.5 0 −0.012 0.241 0.257 3.290 0.011 0.158 0.166 3.290 −0.139* 0.630 0.634
* True value outside approximate 95% confidence interval.

We examined all combinations of two test lengths or numbers of occasions (10 and 50), two sample sizes (100 persons
and 1000 persons), two intraclass correlations for persons (0.1 and 0.5) and two intraclass correlations for items (0.1 and
0.5), resulting in 16 conditions. For each condition, we simulated 100 datasets and estimated the model using AIP with a
normal and discrete approximation and using Laplace (as implemented in Stata’s xtmelogit command). For each condition,
the same 100 datasets were analyzed by the three methods to enable accurate comparisons.
Five to 15 quadrature points were used. One simulated data set for each condition was used for convergence checking

and the same burn-in was set across replications. Using the convergence check described in Section 2.5 (with b = 10),
convergence was achieved in 10–80 iterations for the normal approximation and in 10–90 iterations for the discrete
approximation. An additional 10 iterations were obtained to estimate the posterior moments.
Table 6 shows the number of quadrature points, estimated bias, standard deviation (SD) of the estimates, andmean of the

standard errors (M(SE)) for theAIP algorithmwith a discrete approximation. (The results for AIPwith the normal anddiscrete
approximations were very similar across simulation conditions.) Table 7 presents the results of the Laplace approximation
implemented in xtmelogit. Asterisks indicate that there was significant bias at the 5% level using a one-sample t-test. There
was no significant bias for β1 for any of the conditions using any of the methods. There was also no significant bias for the
person variance ψ1 using the AIP algorithm.
However, using the Laplace approximation, there was significant downward bias for ψ1 for conditions 9–12 with

J = 1000 and I = 10. The estimated bias was larger when the person variance was larger. Such downward bias has
previously been found for Laplace (Joe, 2008) and related methods (MQL and PQL) (Browne and Draper, 2006) for binary
responses with small cluster sizes (here I = 10) and high intraclass correlations. It might therefore be expected that there
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Table 8
Additional conditions with large person variance.

Method J I ρ(P) ρ(I) β1 ψ1 ψ2

True Bias SD M(SE) True Bias SD M(SE) True Bias SD M(SE)

AIP/Normal 100 10 0.8 0.5 0 −0.001 0.749 0.676 13.146 −0.046 3.326 3.099 3.290 −0.465* 1.476 1.380
AIP/Discrete 100 10 0.8 0.5 0 0.013 0.696 0.666 13.146 −0.315 2.908 2.992 3.290 −0.504* 1.393 1.352
Laplace 100 10 0.8 0.5 0 −0.001 0.722 0.643 13.146 −1.074* 2.873 2.770 3.290 −0.493* 1.409 1.360
AIP/Normal 100 50 0.8 0.5 0 0.067 0.422 0.463 13.146 0.319 2.624 2.334 3.290 −0.093 0.717 0.691
AIP/Discrete 100 50 0.8 0.5 0 0.052 0.424 0.462 13.146 0.236 2.464 2.312 3.290 −0.079 0.749 0.690
xtmelogit 100 50 0.8 0.5 0 0.056 0.430 0.456 13.146 −0.045 2.326 2.239 3.290 −0.033 0.748 0.704
* True value outside approximate 95% confidence interval.

should be significant downward bias also for I = 10 combined with J = 100 (conditions 1–4), but the power is reduced due
to the smaller sample size as reflected by the larger standard errors.
All methods show downward bias for the item variance ψ2 when there are I = 10 items (conditions 1–4 and 9–12),

with larger estimated bias for larger item variances. This downward bias may be due to the usual downward bias found in
maximum likelihood estimation with a small number of clusters (e.g., Raudenbush and Bryk, 2002, p. 283). In linear models,
this problem is addressed by using restricted maximum likelihood (REML) estimation (Patterson and Thompson, 1971).
Unfortunately, the REML concept cannot be directly applied to generalized linear mixed models, although there are some
ad-hoc approaches (Schall, 1991; Breslow and Clayton, 1993; McGilchrist, 1994; Stiratelli et al., 1984; Noh and Lee, 2007).
The assumption that downward bias is due to the small number of clusters was confirmed by eliminating the person

random effect, simulating data for 10 and 100 items (with J = 100 and ψ2 = 3.290) and finding that there is a significant
downward bias for the item variance with 10 items but not with 100 items, estimated, respectively, as−0.25 (SE = 0.05)
and −0.01 (SE = 0.02) using 1000 replications. Returning to Tables 6 and 7, there was also significant, but considerably
less bias for the item variance for I = 50 combined with J = 1000 (conditions 13–16). The estimated biases were not
considerably larger than for I = 50 and J = 100, but significance was reached in part because of smaller standard errors
due to the larger sample size. Themeans of the estimated standard errors are quite close to the empirical standard deviations
of the estimates for all parameters and conditions.
Two additional conditions were considered as shown in Table 8. The conditions are the same as conditions 4 and 8 in

Tables 6 and 7 except that the person variance is now ψ1 = 13.146, producing a larger ρ(P) of 0.8 instead of 0.5. When
I = 10, this larger variance resulted in a larger and significant downward bias for ψ1 using Laplace (c.f. condition 4 in
Table 7). However, the downward bias for ψ1 was non-significant for I = 50. Using all three methods, the estimated bias
for the item variance ψ2 was similar to the bias estimated when the person variance was lower (c.f. conditions 4 and 8 in
Tables 6 and 7).
The results suggest that estimation of a given variance component is affected mostly by the true value of that variance

component, the relevant cluster size (number of items for person variance and number of persons for item variance) and
the relevant number of clusters (number of persons for person variance and number of items for item variance). A small
number of clusters leads to downward bias for all threemethods, particularly when the corresponding true variance is large.
A small cluster size is only a problem for the Laplace approximation, particularly when the corresponding cluster variance is
large.

5. Discussion

The AIP algorithm gave similar results to alternative approximate maximum likelihoodmethods for two real datasets. In
the salamander data, it performed better than PQL and Laplace, probably because of the small clusters of size 6. In the
simulation study, the AIP algorithm performed well in a wide range of conditions. An exception was estimation of the
random intercept variance when the corresponding number of clusters was 10, but the downward bias appears to be due to
using approximate maximum likelihood estimation with a small number of clusters. The Laplace approximation performed
similarly well, except for the random intercept variance when the corresponding cluster size was 10.
A disadvantage of AIP, shared by other MCMC methods, is that it can be difficult to assess convergence. However,

unlike other MCMC methods, AIP does not require specification of prior distributions for model parameters. This may be
an advantage since, as we have shown, the choice of hyperprior for the variance components can affect the parameter
estimates. Unfortunately, AIP does not share the advantages of full Bayesian MCMC estimation which delivers the entire
posterior distribution of each parameter including the randomeffect and does not rely on asymptotic theory (in sample size).
Although not usually done, it would generally be straightforward to increase efficiency in MCMC estimation of posterior
means and standard deviations by using Rao–Blackwellization.
An important advantage of the AIP algorithm is that it is easy to implement. The algorithm can be used to estimate more

complex random effects and latent variable models than considered here. All that is required is that the random part of
the model can be split into two or more parts, corresponding to wings in the algorithm, so that the parameters of each
part can be estimated when the other random effects are held constant. A possible application in psychometrics would be
two-parameter item response models with random item difficulty and discrimination parameters.
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